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ABSTRACT Cyber-physical systems (CPS) have the great potential to transform people’s lives. Smart
cities, smart homes, robot assisted living, and intelligent transportation systems are examples of popular
CPS systems and applications. It is an essential but challenging requirement to offer secure and trustworthy
real-time feedback to CPS users using spectrum sharing wireless networks. This requirement can be satisfied
using collaborative spectrum sensing technology of cognitive radio networks. Despite its promising benefits,
collaborative spectrum sensing introduces new security threats especially internal attacks (i.e., attacks
launched by internal nodes) that can degrade the efficiency of spectrum sensing. To tackle this challenge,
we propose a new transferring reputation mechanism and dynamic game model-based secure collaborative
spectrum sensing strategy (TRDG).More specifically, a location-aware transferring reputation mechanism is
proposed to resolve the reputation loss problem caused by user mobility. Furthermore, a dynamic game-based
recommendation incentive strategy is built to incentivize secondary users to provide honest information. The
simulation experiments show that the TRDG enhances the accuracy of spectrum sensing and defends against
the internal attacks effectively without relying on a central authority.
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INDEX TERMS Cyber-physical systems, cognitive radio networks, dynamic game theory, reputation
mechanism, spectrum sensing.

I. INTRODUCTION16

Due to the rapid proliferation of mobile devices such as smart17

phones and various things equipped with built-in sensors18

and processors, Cyber-Physical Systems (CPS) have been19

attracting wide attention in both academia and industry [1].20

CPS is a system featuring a combination of computational21

and physical elements, all of which are capable of interacting,22

reflecting and influencing each other [2]. The emergence of23

the CPS will significantly change the way we see the world.24

In the meantime, the convergence of the physical and cyber25

spaces will exhibit a variety of complicated characteristics,26

which brings more open issues and challenges for research27

communities. Especially, how to provide secure and trustwor-28

thy real-time feedback relied on the existing wireless com-29

munication networks with limited spectrum resource is an30

essential and challenging requirement in CPS [2]. To tackle31

this challenge, as an efficient emerging technology, Cognitive32

radio network (CRN) based collabrative spectrum sensing33

(CSS) is introduced into the CPS to solve the spectrum 34

scarcity problem and provide reliable and secure real-time 35

communication [3], [4], where unlicensed users access idle 36

channels opportunistically based on the dynamic channels’ 37

sensing information, without creating any harmful interfer- 38

ence to primary users (PU) [4]. This method will also help to 39

incorporate billions of wireless devices for different applica- 40

tions such as Internet-of-Things (IoT), CPS, smart grids, etc. 41

These channels could be highly congested and may not be 42

able to provide secure and reliable communications in urban 43

areas [5]. 44

CSS can improve the efficiency of spectrum usage, but it 45

also introduces new security threats including internal attacks 46

during the spectrum sensing process, which can degrade the 47

effectiveness of spectrum sensing dramatically. For example, 48

an adversary may launch spectrum sensing data falsification 49

(SSDF) attacks, where the adversary corrupts a subset of 50

secondary users (SUs) as illustrated in the Fig. 1 to report 51
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FIGURE 1. SSDF attacks model.

falsified information, aiming to affect the final group deci-52

sion [6]. Moreover, an adversary may also launch internal53

Mobile attacks by moving position as shown in the Fig.2 to54

implement a new round interaction with the other secondary55

users as an initial secondary user.56

Many papers [7]–[12] propose various methods to improve57

the security in spectrum sensing. These solutions are usu-58

ally based on a centralized infrastructure, where a central59

authority plays an essential role in coordinating the attack60

defending. However, the centralized schemes will incur61

heavy communication overheads, and the malicious nodes62

can compromise the central authority to paralyze the entire63

system. Different distributed sensing schemes have also64

been proposed [13]–[17], using game theory [13], incentive65

design [14], consensus algorithm [15], [18], outlier detection66

and computation verification [17], etc. Most of the existing67

works ignore the internal SSDF attacks and Mobile attacks68

launched by an inside attacker that has the legal identity.69

In CPS, most client users are mobile and they access70

the CPS opportunistically. Therefore, there is an urgent71

need for a new secure and reliable CSS strategy to address72

above-mentioned limitations of existing methods by taking73

in account the characteristics of CPS. To design a new secure74

and reliable CSS strategy, it is necessary to analyze the75

trustworthiness of the users. Thus, reputation based CSS76

has been introduced into CPS to implement secure spectrum77

sensing [9], [12], [16], [18]–[24].78

Although some reputation based CSS strategies have been79

proposed in the literatures, most of them were based on the80

trusted third party and traditional cryptographic encryption81

and authentication techniques, thus ignoring internal attacks82

launched by an inside attacker that has the legal identity and83

dishonest recommendations used to frame up good parties84

and/or boost trust values of malicious peers. Moreover, they85

did not consider Mobile attacks and information leak.86

To overcome the above-mentioned problems, a transfer-87

ring reputation mechanism and dynamic game model based88

secure collaborative spectrum sensing strategy (TRDG) is89

proposed in this paper. In TRDG, a transferring reputation90

mechanism is firstly proposed. Then, a dynamic game based91

FIGURE 2. Mobile attacks model.

recommendation incentive strategy (DGRIS) is built. Finally, 92

a secure collaborative spectrum sensing strategy TRDG is 93

proposed based on the transferring reputation mechanism 94

and the DGRIS. The major contributions of this work 95

include: 96

(1) A location aware transferring reputation mechanism is 97

proposed to resolve the reputation loss problem during the 98

moving process of the SU. The proposed mechanismmakes it 99

possible to transfer the SUs’ reputation to the new interaction 100

area, which can better reflect the real-world nature of CPS, 101

and defend against the internal Mobile attacks. 102

(2) A dynamic game based recommendation incentive 103

strategy (DGRIS) is built to incentive the SUs to provide 104

honest information. The DGRIS makes the attacks’ utility 105

below cost, which decreases the motivations of the rational 106

malicious adversaries and thus can defend against the internal 107

SSDF attacks. 108

(3) A transferring reputation mechanism and dynamic 109

game model based secure collaborative spectrum sensing 110

strategy (TRDG) is designed to help secondary users (SUs) 111

sense the spectrum state and decide. SUs iteratively update 112

their local values to arrive at consensus, without help from 113

any central authority. 114

(4) Simulation experiments demonstrate that the TRDG 115

can provide an effective, secure and trustworthy spectrum 116

sensing countermeasure against the internal SSDF attacks 117

and Mobile attacks without relying on a central authority. 118

The remainder of this paper is organized as follows. 119

Section II presents a brief review of the related work; 120

Section III describes the network and adversary models; 121

Section IV introduces the implementation details of the 122

TRDG strategy; Section V presents the performance evalu- 123

ation of the TRDG; Finally, Section VI concludes the paper 124

and discusses some future work. 125

II. RELATED WORK 126

In this section, we provide a literature review on the concepts 127

of collaborative spectrum sensing. Spectrum sensing in CRN 128

have been widely studied, using game theory [13], incentive 129

design [14], consensus algorithm [18], outlier detection and 130

computation verification [17], and etc. 131
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For instance, Mukherjee [13] discussed cooperative sens-132

ing problem in distributed CRN with the game-theoretic133

models. Mukherjee considered the utility function for sec-134

ondary users as improved sensing accuracy and examined135

the impact of various sensing parameters. Li et al. [14] first136

identified a new selfishness model named entropy selfishness137

in distributed CRN. They further proposed YouSense, a one-138

time pad based incentive design in which sensing reports139

were encrypted before sharing, to prevent the entropy self-140

ish users from learning the sensing reports, but the hon-141

est user can recover this plaintext by spectrum sensing.142

Zhang et al. [18] proposed a distributed and scalable cooper-143

ative spectrum-sensing scheme based on recent advances in144

consensus algorithms. In the proposed scheme, the secondary145

users can maintain coordination based on only local infor-146

mation exchange without a centralized common receiver and147

the proposed scheme used the consensus of secondary users148

to make the final decision. Zhang et al. [6], [16] designed a149

fully distributed security scheme ReDiSen to counter attacks150

in cooperative sensing. ReDiSen applied the reputation gen-151

erated from exchanged sensing results as an aid to restrict the152

impact of the malicious behaviours. Yan et al. [17] proposed153

a robust distributed outlier detection scheme with adaptive154

local threshold to counter covert adaptive attacks by exploit-155

ing the state convergence property. In addition, they also156

presented a hash-based computation verification scheme to157

effectively defend against colluding attackers.158

Amjad et al. [21] proposed a framework for trustworthy159

collaboration in spectrum sensing for ad hoc CRNs. The160

framework incorporates a semi-supervised spatio-spectral161

anomaly/outlier detection system and a reputation system,162

both designed to detect byzantine attacks in the form of163

SSDF from malicious nodes within the CRN. Sun et al. [25]164

proposed hard and soft fusion collaborative spectrum sensing165

schemes based on online hidden bivariate Markov chain166

modeling of the signals received by secondary users. The167

proposed schemes do not rely on precomputed thresholds or168

weights, and provide predictive information that can be used169

to improve the performance of dynamic spectrum access.170

Sharifi et.al proposed attack-aware CSS (ACSS) scheme to171

against SSDF attack in literatures [26] and [27], respectively.172

The ACSS proposed in [26] estimates attack strength and173

applies it in the k-out-N rule to obtain the optimum value174

of k that minimizes the Bayes risk. And, the ACSS pro-175

posed in [27] estimates the credit value of each cognitive176

radio user and identifies the malicious attackers along with177

their attack strategies by allocating an appropriate collabo-178

rative weight for each user, which improves the CSS per-179

formance effectively. Hsieh et.al [28] proposed a coalition-180

based model for the Interference-aware spectrum sensing181

to maximize the utility sum of all secondary users while182

observing the protection requirement of the primary user. The183

proposed model first formulates a joint threshold detection184

and coalition formation problem under the target cooperative185

model, and then explore important properties of the target186

problem.187

FIGURE 3. Architecture of CRN-CPS.

Overall, existing collaborative spectrum sensing methods 188

are usually based on a centralized infrastructure in which 189

a central entity coordinates the operations of the spectrum 190

sensing and sensing information collection, thus brings heavy 191

communication overheads and the issue that central authority 192

may be compromised by attackers. On the one hand, they 193

overlook the internal attacks launched by an inside attacker 194

that has the legal identity whose presence is likely in the 195

CRN and CPS environment. Consequently, it is still an open 196

problem and a challenging task to design secure and dis- 197

tributed spectrum sensing allocation schemes in CRN to resist 198

the internal attacks and provide sensing information security 199

protection. 200

III. SYSTEM AND ADVERSARY MODEL 201

A. SYSTEM MODEL 202

In this paper, we focus on the network environment of CRN 203

based CPS (CRN-CPS), which is a viable solution to imple- 204

ment fast and large-scale CPS applications [2], [4]. The 205

typical CRN-CPS architecture is depicted in Fig. 3, which 206

adopts the CRN as the access network. As shown in fig.3, 207

the CRN in the CRN-CPS is consist of a PU network and 208

a SU network. We suppose that each SU is equipped with a 209

cognitive radio and they utilize omnidirectional antennas to 210

communicate with each other. Meanwhile, SUs are located 211

within the transmission range of the PUs, and can individ- 212

ually sense the environment to detect the existence of the 213

Pus [16], [18]. In the CSS process, we use the energy sensing 214

method for a SU to detect PUs’ presence. We also assume 215

that an adversary can compromise a subset of honest SUs. 216

A SUmay provide incorrect information (including attacking 217

malicious SUs and honest SUs that sense incorrectly due 218

to severe fading or system failure) or correct information 219

(including honest SUs that sense correctly and non-attacking 220

malicious SUs). An honest SU has no a priori information 221

on which of its neighbors are malicious. If the final sensing 222

results indicate that the PUs are not transmitting on certain 223

channels, the SUs use the spectrum allocation scheme to 224

allocate and transmit on these channels. 225

B. ADVERSARY MODEL 226

In this paper, we focus on the internal attacks launched 227

by an inside legal and certificated user, which makes the 228
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FIGURE 4. The TRDG system structure.

traditional encryption and authentication techniques no229

longer effective. In the internal attacks, the attackers may230

or may not participate in the cooperative sensing process,231

and may report falsified values when participating. Further-232

more, we assume, in spectrum sensing, the following internal233

attacks will be launched by the inside malicious SU:234

• SSDF attacks: attackers corrupt a subset of SUs and235

strategically report falsified sensing results, aiming at236

incurring interference between the PUs and legitimate237

SUs and affect the final group decision.238

• Mobile attacks: attackers move to other position and239

disguised as an initial or normal SU to implement a new240

round interaction with the other SUs.241

IV. TRANSFERRING REPUTATION MECHANISM AND242

DYNAMIC GAME MODEL BASED SECURE243

COLLABORATIVE SPECTRUM SENSING STRATEGY (TRDG)244

In this section, a novel transferring reputation mechanism245

and dynamic game model based secure collaborative spec-246

trum sensing strategy (TRDG) is extended from our previous247

work [23], [24]. The TRDG integrates the collaborative spec-248

trum sensing with multi-level security, reputation mechanism249

and dynamic game theory to defend against the insider threat250

and enhance the securityand efficiency of spectrum sensing inAQ:1 251

distributed CRNbasedCPS. The system structure of TRDG is252

shown in figure 4, and the details of the TRDG are described253

as follows.254

A. DYNAMIC GAME BASED RECOMMENDATION255

INCENTIVE STRATEGY (DGRIS)256

Traditional reputation mechanisms improve the trustworthi-257

ness of recommendations through weighted summation of258

recommendations from different recommenders. However, in259

the open network environment such as CPS, these mecha-260

nismsmust face the significant problems caused by the selfish261

and malicious users who refuse to render the recommenda-262

tions in order to avoid consuming limited resources or provide263

dishonest recommendations so as to launch attacks. To over-264

come the above shortcomings, in this subsection, we first265

propose a dynamic game based recommendation incentive266

strategy (DGRIS). Then the DGRIS is incorporated into the267

recommend reputation evaluation tomotivate users to provide 268

honest recommendations. 269

In DGRIS, the principal agent theory [29], [30] is used 270

to incent recommenders to provide the honest information 271

during the recommend reputation evaluation process. In this 272

paper, we assume that the agent could take an action like 273

S = {honest response (h), fake response (f)} after principal 274

sends the request of cooperative spectrum sensing. Based on 275

the dynamic game theory that is proposed in this paper, for 276

example, if the neighbour secondary user replies with false 277

information, its reputation will be reduced as punishment. 278

When the value of reputation is lower than a threshold, no one 279

would be provided cooperative to this user. If the secondary 280

user SUa replies honestly, the payoff is Ua. The formula for 281

calculation is as follows: 282

Ua = 2 ∗ A ∗ Pd ∗ R (1) 283

A is the reward for secondary user of cooperative sensing 284

from requesting cooperative sensing secondary user. R is a 285

comprehensive value, according to the reputation valuewhich 286

passed by multipath and the requester’s reputation value from 287

local database. The more incentivize involvement of cooper- 288

ative sensing, the greater value would be. P is the detection 289

rate of spectrum sensing that is the probability of principal 290

exist with correct judgment, Pd = 1 − Pf , P will provide a 291

relative accurate sensing response. 292

The secondary user is rational. If the secondary user who 293

offer collaboration provides an honest response, its own giv- 294

ing a fake response to other secondary users. The payoff is 3A 295

and the other’s is –A; Both secondary users provide an honest 296

response, then the payoff is 2A for each; They will receive 0 if 297

two sides all offer fake response. 298

As for the i-way interaction process of cooperative spec- 299

trum sensing, it can be divided into the following situations. 300

(a) All secondary user provides honest response, so the 301

total payoff is as follows: 302

Ux = 2 ∗ A+ (
∞∑
i=2

Ua) ∗ R 303

= 2 ∗ A+ 2 ∗ A ∗ [R/(1− Pd ∗ R)] (2) 304

(b) The first round offers a fake response, then other rounds 305

give honest responses, the total payoff is as follows: 306

Uy = 3 ∗ A− A ∗ R+
∞∑
i=3

0 = 3 ∗ A− A ∗ R (3) 307

(c) The secondary user provides fake response continu- 308

ously. The first cooperation is likely to succeed, but from 309

the second-round other secondary users will not offer honest 310

response any more. The total payoff is as follow: 311

Uz = 3 ∗ A+
∞∑
i=2

0 = 3 ∗ A (4) 312
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(d) Providing an honest response first, then giving the fake313

response. The total payoff is:314

Uπ = 2 ∗ A+ 3 ∗ A ∗ R+
∞∑
i=3

0 = 2 ∗ A+ 3 ∗ A ∗ R (5)315

In the situation of repeated games, the two situations com-316

pared:317

Situation (a) with situation (b), if Ux > Uy, then 2 ∗ A +318

2 ∗ A ∗ R
1−Pd∗R

> 3 ∗ A − A ∗ R and 0 ≤ R ≤ 1, so319

R ≥ 3+Pd−
√
(3+Pd )2−4Pd
2Pd

and R is monotonically increasing320

with the value of Pd changes. Since 0 ≤ Pd ≤ 1, then321

R ≥ 2−
√
3. Therefore, if R ≥ 2−

√
3, the total payoff of the322

strategy with honest response is greater than the payoff from323

deceive strategy (situation b). To summarize: if R ≥ 2−
√
3,324

honest response strategy is a dominant strategy. Otherwise,325

secondary user will provide fake response.326

The next two situations compared: situation (a) with situ-327

ation (c), if the payoff of honest response is greater than the328

fake response‘s payoff, then Ux −Uz ≥ 0, that (
∞∑
i=2

Ua)∗R−329

A = (2∗A∗R)/(1−Pd∗R)−A ≥ 0. SoR ≥ 1
2+Pd

andPd ≥ 0,330

in other words, R ≥ 1/2. Considering it may be collaborated331

again, the dominant strategy is choosing to response honestly.332

If R ≥ 1/2. Otherwise, a fake response would be provided by333

the secondary user.334

Compared situation (a) with situation (d), if Ux > Uπ ,335

since 2 ∗A+ 2 ∗A ∗ R
1−Pd∗R

> 2 ∗A+ 3 ∗A ∗R, so R > 1
3Pd

336

and 0 ≤ Pd ≤ 1 that R > 1
3 . Therefore, honest response is337

a dominant strategy, if R > 1
3 . Otherwise, the secondary user338

will provide a fake response.339

To summarize what has been mentioned above, consider-340

ing the long-term benefit, all secondary users expect to get341

cooperative spectrum sensing. If R ≥ 1/2, both sides provide342

honest response is Nash Equilibrium.343

After the secondary user moved, if the secondary user344

SUb doesn’t receive the collaborative report by its neighbor345

secondary user SUa, SUb will broadcast the reputation value346

of SUa to all other neighbor secondary users, in order to347

generate the corresponding reputation history information348

for SUa in the network. The safety of cooperative spectrum349

sensing in the network would be improved if keeping the350

value of reputation R ≥ 1/2. Using (2) to pass the value351

of reputation, it can effectively accelerate convergence for352

reputation value of SUa, which will provide incentive partici-353

pant for moved secondary users in cooperation and reduce the354

selfish behavior which only receive other’s cooperation and355

not voluntarily contribute to desired cooperative sensing.356

B. TRANSFERRING REPUTATION MECHANISM357

In distributed CRN based CPS, the proposed transferring rep-358

utation mechanism is run at each SU who stores its historical359

opinion towards the others in the relevant local database.360

And it consists of three components: direct reputation evalu-361

ation, recommend reputation evaluation and final reputation362

evaluation.363

When a SU wants to request (or provide) a service from 364

(or to) another SU (including unknown SUs), it will send 365

a request message to all neighboring SUs. Each neighbor- 366

ing SU receiving the request will first verify whether the 367

requestor’s security level (sl) satisfies the security require- 368

ment. If it is, the neighboring SU will execute the direct 369

reputation evaluation to judge whether the requestor is a 370

malicious SU. Otherwise, the neighboring SU will ignore 371

the request. The security level computation and assignment 372

please refer to our previous work [31], [32]. 373

If the direct reputation evaluation cannot lead to a decision, 374

the neighboring SU will further execute the recommended 375

reputation query using Algorithm 2 to query requestor’s rep- 376

utation from its neighbors. Afterwards, the neighboring SU 377

will evaluate the integrated recommended reputation combin- 378

ing the received replies of recommended reputations to the 379

query. Finally, it will evaluate the final reputation and decide 380

whether the requestor is a malicious SU or not. 381

Suppose SUx and SUy represent the requester and service 382

provider respectively. The final reputation of SUx and SUy, 383

denoted as RFinal , includes two components: One is the direct 384

reputation RDirect and the other is the recommendation repu- 385

tation RRec. The final evaluation results will be stored in the 386

local database of final reputation. 387

1) EVALUATION OF DIRECT REPUTATION 388

The direct reputation of SUx toward SUy is evaluated as 389

follows. 390

(1) If SUx is an unknown user, SUy will start the DGRIS 391

in 4.1 to ask for SUx’s reputation from its neighbors. 392

(2) Otherwise, the direct reputation evaluation between 393

SUx and SUy depends on the historical interaction and 394

dynamic real-time sensing information of the network, and 395

can be computed as (6). 396

RDirectTn = (IAs/IAtotal) ∗ϕTn
∗(1− ϕlocation) (6) 397

where IAs and IAtotal denote the successful interaction num- 398

ber of times and the total interaction number of times during 399

T time periods, respectively. ϕTn is the weight factor, which 400

determines how much the distribution of the interactions 401

affects the direct reputation evaluation at time Tn, which is 402

given by 403

ϕTn =
[
1− e ∧ (−NIATn/(m

∗n))
]
∗

n∑
l=1

(
NIAl
m
∗
l
n
) (7) 404

where m is the number of cycles in a time period, and n is 405

the number of time period. NIATn is the number of the cycles 406

that the interaction happens between SUx and SUy. NIAl is 407

the number of interaction in the l-st time period. ϕlocation 408

denotes how the real-time position change between SUx and 409

SUy affects the direct reputation evaluation at time Tn. The 410

larger the distance, the more untrusted the SUx . 411

ϕlocation = e−Elocation∗βlocation ∗ (1− e−|L−L
′
|∗βlocation) (8) 412

In (8), the real-time position and the most recent position 413

is denoted as L and L’, respectively. We define |L-L’| as the 414

VOLUME 5, 2017 5
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distance between them. We also define Elocation as the error415

of location sensing and βlocation is the parameter that controls416

the weight of the location factor’s influence on the reputation.417

The details of the unidirectional direct reputation evalua-418

tion are shown in Algorithm 1.419

Algorithm 1 Direct Reputation Evaluation
Input: Requester SU ′xs information
Output: Whether SUx is a malicious node or not
1. Begin
2. Requester SUx sends a Request message;
3. SU ′xs neighbor SU such as SUy receives the Request

message;
4. If

(
SU ′xsl > Securitylevelrequirement

)
then

5. SUy executes the Direct Reputation Evaluation and
returns the result as:

6. RDirect=Direct_reputation (SUx);
7. Else
8. SUy drops the Request message;
9. End if
10. If (RDirect > THupper

direct ) then
11. RFinal = RDirect ;
12. Else if (THdown

direct < RDirect < THupper
direct ) then

13. SUy executes the Recommendation Reputation
Query;

14. SUy executes the Recommendation Reputation
Evaluation;

15. SUy executes the Final Reputation Evaluation and
gets the RFinal ;

16. Else
17. RFinal = −1;
18. End if
19. If (RFinal < THdown

final ) then
20. SUx is considered as a malicious node and will be

isolated;
21. Else if (THdown

final < RFinal < THupper
final ) then

22. SUx will be punished by decreasing its reputation
value;

23. Else
24. SUx is considered as a trustworthy node;
25. SUy sends Accept message to SUx ;
26. End if
27. End

2) EVALUATION OF RECOMMENDATION REPUTATION420

If the direct reputation computation cannot lead to a decision,421

SUy will first execute the recommended reputation query422

using Algorithm 2 to query SUx’s reputation and security423

level from its neighbors. Afterwards, SUy will compute the424

integrated recommended reputation combining the received425

replies of recommended reputations to the query, which will426

be described in the following.427

Suppose SUy receives n (n>1) direct recommendation428

opinions and m (m>1) transferring path based recommenda-429

tion opinions, then the integrated recommendation reputation,430

Algorithm 2 Recommendation Opinion Query
Input: Requester SU ′xs mac address, ID
Output: SU ′xs reputation and security level
1. Begin
2. SUy broadcasts a query message;
3. Wait (3-5seconds);
4. SU ′ys neighbor SUk receives the query message;

5. If
(
SU ′ysl > Securitylevelrequirement

)
then

6. {
7. If (there has the direct reputation and security level

opinions about SUx) then
8. SUk evaluates the direct recommend reputation

RDir-RecTn ;
9. Else
10. {
11. SUk ask neighbor s to provide the reputation

and security level
12. opinions about SUx ;
13. SUk evaluates the transferring path based

recommendation
14. reputation RPath-RecTn ;
15. }
16. SUk evaluates the integrated recommendation

reputation RRecTn ;
17. SUk executes the DGRIS and returns the RRecTn and

security level
18. opinions to SUy;
19. }
20. Else
21. SUk drops the query message;
22. End

RRecTn , can be computed as follows. 431{
RRecTn = η1 ∗ R

Dir-Rec
Tn + η2 ∗ RPath-RecTn

η1 + η2 = 1, η1, η2 ∈ [0, 1]
(9) 432

where η1, η2 are the weight factors, which determine how 433

much the direct recommendation opinions RDir-RecTn and trans- 434

ferring path based recommendation opinions RPath-RecTn affect 435

the final recommendation reputation evaluation, respec- 436

tively. The RDir-RecTn is from the direct recommenders 437

who has the reputation opinion about the SUx on its 438

local reputation database, and the RPath-RecTn is provided 439

by the transferring recommenders who provide the repu- 440

tation opinion about the SUx with the opinion from their 441

neighbors. 442

Let DirR = {dir − reci |i = 1 . . . n } and PathR = 443{
path− recj |j = 1 . . .m

}
be the direct recommenders set 444

and the transferring recommenders set, respectively. The 445

RDir-RecTn can be given by 446

RDir-RecTn =
1
n
∗

n∑
j=1,j∈DirR

(
slj
slmax

∗ RDirectj:x

)
(10) 447
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where slmax is the maximal security level. RDirectj:x is the direct448

recommend opinion about SUx provided by SUj.449

For a transferring recommender SUk , SUk ∈ PathR, if450

there are many recommend opinion about SUx coming from451

different paths, the most reliable path denoted as Rk:path452

is chosen based on the rules below. Here, we assume L(i),453

(i = 1, . . . , n) is the set of the recommend paths and each454

path includes j SUs.455

Rk:path = Max (ζ1 ∗ RL(i) + ζ2 ∗ SLL(i)), i = 1..n456

s.t. ζ1 + ζ2 = 1457

Th1 < EL(i) < Th2 (11)458

where ζ1 and ζ2 are the weight factors corresponding to459

the opinion and security level of path L(i) respectively. Th1460

and Th2 are the thresholds of EL(i). RL(i) and SLL(i) are the461

opinion and security level of path L(i) respectively. EL(i) is the462

energy consumption of path L(i). RL(i), SLL(i) and EL(i) can be463

computed as:464 

RL(i) = Min(
m∑
j=1

Rij/m,min(Rij))

SLL(i) = Min(SL ij )

EL(i) = m ∗Max(
m∑
j=1

E ij/m,max(E ij ))

(12)465

where Rij and SL
i
j are the opinion and security level of SUi466

in the j-th path, respectively. E ij is the energy consumption of467

SUi in the j-th path. SL ij is the security level assigned to the468

SUi in the j-th path according to the SU’s reputation value.469

And then, the RPath-RecTn can be computed as470

RPath-RecTn =
1
m
∗

m∑
k=1,k∈PathR

471

×

[
Rk:path ∗ RDirectk:x ∗ (1− ϕy:k,location)

]
(13)472

where ϕy:k,location ∈ [0, 1] is the influence factor of473

the location between the SUy and the recommender SUk .474

Algorithm 3 gives the details of the integrated recommended475

reputation computation.476

3) EVALUATION OF FINAL REPUTATION477

After getting the direct and recommended reputation, the final478

reputation can be computed as:479 {
RFinaly:x = α1 ∗ R

Direc
Tn + α2 ∗ RRecTn

α1 + α2 = 1, α1, α2 ∈ [0, 1]
(14)480

where α1, α2 are the weight factors for the direct reputation481

and integrated recommended reputation, respectively.482

C. SECURE COLLABORATIVE SPECTRUM SENSING483

STRATEGY (TRDG)484

CSS implements spectrum sensing through the SUs in a485

wide area. In CSS, each SU obtains a local measurement486

Algorithm 3 Integrated Recommended Reputation Evalua-
tion
Input: N direct recommendation information andM trans-
ferring recommendation information
Output: Integrated recommended reputation value
1. Begin
2. SUy receives n+ m Reply messages with the direct

and transferring recommendation information about
SUx ;

3. SUy executes the recommenders selection process;
4. For (i = 1; i <= n+ m; i++)
5. {
6. If

(
SU ′i sl > Securitylevelrequirement

)
then

7. {
8. If (SUi is a direct recommender) then
9. Put SUi into the recommenders set DirR;
10. Else
11. Put SUi into the recommenders set PathR;
12. }
13. Else
14. SUy drops the Reply message;
15. End if
16. }
17. SUy computes the RDir-RecTn , Rk:path and RPath-RecTn with

DirR and PathR;
18. SUy executes the integrated recommendation

reputation evaluation and returns the result as RRecTn ;
19. End

in a time interval. After a sensing session, a series of value 487

update sessions are executed by the secondary users. All 488

SUs exchange their local spectrum sensing results with their 489

neighbors within its communication range, and update their 490

own values based on the received values. Since CSS can 491

enhance sensing accuracy, while reducing the need for sen- 492

sitive and expensive sensing technology, it is proposed to 493

enhance the sensing performance [16], [18]. However, it is 494

vulnerable to the internal attacks threats, which will make the 495

performance of CSS degrade significantly. 496

To solve the above-mentioned problems, based on trans- 497

ferring reputation mechanism, dynamic game based recom- 498

mendation incentive strategy (DGRIS) and combining with 499

the characteristics of CRN, a secure collaborative spectrum 500

sensing strategy TRDG is proposed to improve the accuracy 501

and reliability of the sensing results, and defend against the 502

internal SSDF and Mobile attacks. In TRDG, a secondary 503

user combines its sensing results with the results of collabora- 504

tive group members to evaluate the true state of the channel to 505

improve the accuracy of sensing. Moreover, TRDG can also 506

punish the untrustworthy user to reduce the influence of the 507

false information to the network. 508

During the sensing data fusion and decision process, the 509

final reputation is put into (15) to compute the sensing data 510
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fusion result.511

8s
d = (

γ∑
i=1,i6=d

RFinald :i ×9i)/
γ∑

i=1,i6=d

RFinald :i (15)512

where8s
d is the sensing data fusion result when SUd requests513

the channel s. γ is the total number of the sensing result fed514

back by the other SUs. 9i is the state of the channel s sensed515

by the SUi, which is defined as516

9i =

{
0, s is busy
1, s is idle

(16)517

Then, the decision Osd can be made by518

Osd =

{
1 s is idle, 8s

d ≥ λ

0 s is busy, otherwise
(17)519

where λ is the threshold of the channel being idle.520

The details of the TRDG are described in Algorithm 4. It is521

worth noting that DBlocalX is SU’s local reputation table. The522

size of the table is 1Mb-10 Mb depending on the number of523

cycles in the simulation, so the memory overhead is not much524

considering the memory size of modern devices.525

V. PERFORMANCE EVALUATION526

In this section, we implement our strategy and conduct simu-527

lation experiments usingMATLAB and compare TRDGwith528

RCSS in [21], JSSRA in [22], and ICS in [33].529

For evaluating our proposed framework for defending530

against aforementioned SSDF attacks andMobile attacks, we531

have considered an CRN of size 1000 m x 1000 m and the PU532

and the SUs whether honest or malicious, are mobile with533

their speed varying between 0 and 4 m/s which represents a534

CRN user moving around on foot. The maximum transmis-535

sion range s for both the PU and the SUs is 200 m. We have536

carried out simulations for both dense (100 secondary users)537

network configurations and the number of detectable chan-538

nels of each secondary user is 6. The parameters η1, η2, α1,539

α2, ζ1, ζ2, Ethreshold , are 0.4, 0.6, 0.3, 0.7, 0.5, 0.5, 0.5, which540

are empirical values obtained frommultiple experiments. The541

number of time period is 6, the number of cycle in a time542

period is 10, and the time period is 1s. All the graphs represent543

results that are averaged over 100 simulation runs.544

Because the Attack Ratio (AR) and Malicious SU Detec-545

tion Accuracy (MDA) are the common metrics to evaluate546

the performance of the reputation mechanism and incentive547

strategy, while the Spectrum Decision Accuracy Ratio (SDA)548

and False Spectrum Decision Ratio (FSDR) are the important549

and frequently used metrics to evaluate the feasibility and550

availability of the spectrum sensing strategy, they are chosen551

as the metrics in the performance evaluation when internal552

SSDF attacks and Mobile attacks are present. These perfor-553

mance metrics are defined as follows.554

â Attack Ratio (AR): The rate of the number of malicious555

users who launch attacks to the total number of mali-556

cious users.557

Algorithm 4 Secure Collaborative Spectrum Sensing Strat-
egy (TRDG)
Input: Wireless channel set C, detectable channel set CX ,
Output: Most trustworthy secondary users set, TSU
untrustworthy secondary users set UTSU and the sensing
data fusion result
1. Begin
2. The SUs wanting to transfer data setups the spectrum

collaborative detection secondary users set �N by
broadcasts the REQestablish message on the common
control channel (CCC);

3. Any SU who receives the message and wants to
collaboration feeds back a RESPestablish and joins
the �N ;

4. SUs and all members in the �N initialize the
parameters of reputationmechanism, DGRIS, TRDG,
the reputation threshold (Ethreshold ), and detection
period of (T );

5. SUs broadcasts the collaborative request to the
members in �N ;

6. The member in �N receiving the request executes
the DGRIS and makes a decision whether to
participate in the collaboration and provide the honest
sensing results;

7. SUs monitors the CCC during [tstart , tstart + T ];
8. After receives the feedback messages, SUs executes

the following steps:
9. SUs selects the collaborative SUswhose security level

satisfies the security requirement and setup a new
collaborative SUs set �′N ;

10. SUs executes transferring reputation mechanism to

evaluate the reputation of the members in �′N ;
11. SUs sets up the most trustworthy secondary users set

TSU;
12. SUs sets up the untrustworthy secondary users set

UTSU;
13. SUs executes the TRDG to compute the sensing data

fusion result;
14. SUs executes the channel search scheme(CSS):

CSS(TSU);
15. SUs update the reputation of the member in TSU and

UTSU and broadcasts it on the CCC;
16. SUs punishes(UTSU);
17. SUs transfers the reputation of those members in

�N that do not feedback any sensing information

to the neighbors within one-hop communication

distance;
18. End

â Malicious SU Detection Accuracy (MDA): The per- 558

cent of malicious SUs that is correctly identified by the 559

reputation management system. 560
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FIGURE 5. Attack ratio of TRDG with DGRIS and TRDG without DGRIS.

â Spectrum Decision Accuracy Ratio (SDA): The per-561

cent of decision made by the proposed spectrum sensing562

strategy is the same as the actual state of the channel.563

â False Spectrum Decision Ratio (FSDR): Percent of564

state of the channel misidentified by the proposed spec-565

trum sensing strategy.566

1) ATTACK RATIO (AR)567

First, we compare the AR of TRDG with DGRIS with the568

TRDGwithout DGRIS and theAR performance of the TRDG569

with that of the ICS to investigate the influence of the incen-570

tive mechanism on the attacks defense. In the simulation,571

we set a hostile network environment with 50 percent of572

the malicious SUs, and the estimated value is converged to573

constant values after applying almost 100 rounds of sensing.574

In Fig. 5, the simulation results show that the AR of575

the TRDG without DGRIS is higher than the TRDG with576

DGRIS. For the TRDG with DGRIS, the incentive mech-577

anism DGRIS makes the attacks utility below cost, which578

effectively decreases the attack wishes of the malicious SUs579

and leads to the AR of TRDG with DGRIS decreases with580

the simulation rounds increases. But for the TRDG without581

DGRIS, there has no incentive mechanism to incentive SUs582

to provide true information and punish the SUs who provide583

the false information, so the malicious SUs will continue584

launching attacks and its AR maintains a stable state.585

The AR comparison results between TRDG and ICS586

considering the SSDF and Mobile attacks are shown587

in Fig. 6(a) and (b), respectively. In Fig. 6(a), we consider588

the SSDF attacks, as expected, the AR of both ICS and TRDG589

decreases with the simulation round increases, which demon-590

strate that both the ICS and TRDG can effectively defend591

against the SSDF attacks. Because both ICS and TRDG adopt592

reputation mechanism to judge whether a SU is a malicious593

user according to its reputation, and also adopt incentive594

mechanism to decreases the attack wishes of the rational595

malicious adversaries, so the rational malicious attackers will596

give up attacks to avoid being punished and costing more, and597

leading to the AR decrease.598

In Fig. 6(b), we consider the Mobile attacks, from the599

results we can find that different from the SSDF attacks, the600

AR of TRDG is lower than that of the ICS, which means that601

the Mobile attacks affects the ICS more than for the TRDG.602

In ICS, it connects sensing participation to the reputation603

FIGURE 6. Attack ratio (a) with SSDF attacks (b) with mobile attacks.

FIGURE 7. Malicious SU detection accuracy (a) with SSDF attacks (b) with
mobile attacks.

through a user-dependent pricing function to offer stronger 604

incentives for honest SUs to participate in the CSS. How- 605

ever, it ignores the Mobile attacks, and cannot transfer the 606

reputation of the mobile malicious SUs to the new interaction 607

area, which makes it cannot avoid the reputation loss problem 608

during the moving process of the SU. And then, the malicious 609

SUs in the new interaction area will be disguised as an initial 610

or normal SU and been design an initial reputation to execute 611

a new round interaction with the new neighbors. So, although 612

the AR of the ICS decreases with the simulation round 613

increases, it will finally maintain a relatively stable state and 614

it is much higher than the AR of the TRDG. In TRDG, a 615

transferring reputation mechanism is proposed to make the 616

reputation transmission possible, which makes the mobile

AQ:2

617
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malicious SUs cannot veil its previous malicious behaviors,618

and defend against the internal Mobile attacks effectively.619

Thus, the AR performance of the TRDG is better than the620

ICS.621

2) MALICIOUS SU DETECTION ACCURACY (MDA)622

Next, we will evaluate the effectiveness and reliability of the623

three strategies by comparing theirMDAperformance to each624

other in the presence of SSDF and Mobile attacks.625

The results in Fig. 7(a) and (b) show the MDA of the626

three strategies increase with the simulation rounds increase627

in the presence of the SSDF and Mobile attacks. This is628

because that all of the three strategies adopt the reputation629

model to evaluate the trustworthiness of a SU according to its630

reputation value. When a malicious SU launches attacks, its631

reputation value will be reduced, and if the reputation value of632

a SU is below a threshold, it will be identified as a malicious633

user. Since the more attacks the malicious SU launches, the634

lower its reputation value, which makes it more likely to be635

identified, so the MDA of the three strategies increase with636

more malicious users launch attacks.637

Moreover, it is also observed that the MDA of the TRDG638

is the highest among all the three strategies in the presence of639

the SSDF and Mobile attacks.640

The reason lies in that the integrated combination of the641

analysis of the distribution of interaction, real-time position642

information collection and multi-security scheme improves643

the accuracy, efficiency, and reliability of both the direct and644

recommendation reputation evaluation, and thus enhances the645

MDA of TRDG. Although the other strategies also adopt646

related technologies to improve the accuracy and reliability647

of reputation evaluation, they do not take all the above-648

mentioned influence factors into account. Meanwhile, they649

either consider only the improvement of the direct reputation650

evaluation, or just the improvement of the recommended rep-651

utation evaluation. Therefore, their MDA is lower than that of652

the TRDG.Moreover, both RCCS and JSSRAdo not consider653

the mobile attacks and cannot transfer malicious attackers’654

reputation value, which influence the MDA performance of655

them. Thus, the MDA performance of the TRDG is much656

better than of the RCCS and JSSRA.657

3) SPECTRUM DECISION ACCURACY RATIO (SDA)658

We also evaluate the effectiveness and reliability of the three659

spectrum sensing strategies by comparing their SDA perfor-660

mance to each other in the presence of SSDF and Mobile661

attacks.662

The results in Fig. 8(a) show that the SDA of the three663

strategies keep a relative stable high value in the presence664

of the SSDF attacks. This is because that all of the three665

strategies use the reputation and incentive mechanisms to666

incentive the user to provide true sensing information, and667

thus reduce the probability of the attack and increase the SDA668

of all the three strategies. For TRDG, the higher accuracy,669

efficiency, and reliability of the reputation mechanism leads670

to a better MDA performance than of the RCCS and JSSRA,671

FIGURE 8. Spectrum decision accuracy (a) with SSDF attacks (b) with
mobile attacks.

which makes the sensing information more accuracy and 672

improve the SDA of the TRDG. So, the SDA of the TRDG is 673

the highest among all the three strategies. 674

Comparing to the results in Fig. 8(a), in Fig. 8(b) where the 675

Mobile attacks are present, the SDAs of TRDG, JSSRA and 676

RCCS decrease by 6%, 10% and 12%, respectively. The com- 677

parison results show that theMobile attacks have a big impact 678

on the effectiveness and reliability of the SDAs of JSSRA and 679

RCCS. The much less decline rate of TRDG makes TRDG 680

keeping the highest SDA among all the three strategies in the 681

presence of the Mobile attacks. The reason is that the JSSRA 682

and RCCS lack of effective Mobile attack defense scheme, so 683

the trustworthiness and reliability of the sensing information 684

they collected are less than that of the TRDG, which makes 685

their SDAs are worse than that of the TRDG. 686

4) FALSE SPECTRUM DECISION RATIO (FSDR) 687

Finally, we analyze the false spectrum decision ratio of the 688

three spectrum sensing strategies in the presence of SSDF and 689

Mobile attacks. 690

The results in Fig. 9(a) show that the FSDR of all the 691

three strategies are less than 40%, which demonstrates that 692

all of them have a good FSDR performance in the presence 693

of SSDF attacks. This is because the proposed reputation 694

and incentive mechanisms in all the three strategies improve 695

the accuracy and reliability of the collected spectrum sens- 696

ing information, enhance the ability of resistance to SSDF 697

attacks, and then reduce the false ratio of the spectrum 698

decision. For TRDG, the proposed reputation mechanism 699

has greater accuracy and reliability than those of the other 700

strategies, and the proposed incentive mechanism is dynamic 701

and tightly coupled with reputation, all of these leads to a 702
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FIGURE 9. False spectrum decision ratio (a) with SSDF attacks (b) with
mobile attacks.

better FSDR performance than of the RCCS and JSSRA. So,703

the FSDR of the TRDG is the lowest among all the three704

strategies.705

Comparing to the results in Fig. 9(a), in Fig. 9(b) where the706

Mobile attacks are present, the FSDR of TRDG, JSSRA and707

RCCS increase by 2%, 5% and 6%, respectively. The compar-708

ison results show that theMobile attacks have a big impact on709

accuracy of spectrum decision. However, the TRDG still have710

a best FSDR performance among all the three strategies. The711

reason is that the JSSRA and RCCS lack of effective Mobile712

attack defense scheme, so the accuracy, trustworthiness and713

reliability of the sensing information they collected are less714

than that of the TRDG, which makes their FSDRs are worse715

than that of the TRDG.716

VI. CONCLUSIONS717

In this paper, we investigated the challenging problem of718

protecting against internal SSDF and Mobile attacks for719

enhancing the security and accuracy of the collaborative720

spectrum sensing (CSS) in CRN based CPS (CRN-CPS).721

A new transferring reputation mechanism and dynamic game722

model based secure collaborative spectrum sensing strategy723

(TRDG) has been proposed, which incorporates innovative724

technologies in terms of the reputation value transferring,725

recommendation incentive and location sensing. The simula-726

tion experiments and performance analysis have verified that727

the TRDG is effective and efficient. More specifically, in the728

presence of SSDF attacks andMobile attacks, the attack ratio,729

the malicious SU detection accuracy, the spectrum decision730

accuracy ratio, and the false spectrum decision ratio of the731

proposed TRDG are better than those of the existing ICS,732

JSSRA and RCSS strategies. For the future work, we plan to733

introduce the encryption or signature based privacy preserv- 734

ing technology into the reputation mechanism and spectrum 735

collaborative sensing process to improve the performance of 736

privacy preserving. 737
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