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Abstract: Cloud computing and the mobile Internet have been the two most influential 
information technology revolutions, which intersect in mobile cloud computing (MCC). The 
burgeoning MCC enables the large-scale collection and processing of big data, which demand 
trusted, authentic, and accurate data to ensure an important but often overlooked aspect of big 
data -- data veracity. Troublesome internal attacks launched by internal malicious users is one 
key problem that reduces data veracity and remains difficult to handle. To enhance data 
veracity and thus improve the performance of big data computing in MCC, this paper 
proposes a Data Trustworthiness enhanced Reputation Mechanism (DTRM) which can be 
used to defend against internal attacks. In the DTRM, the sensitivity-level based data category, 
Metagraph theory based user group division, and reputation transferring methods are 
integrated into the reputation query and evaluation process. The extensive simulation results 
based on real datasets show that the DTRM outperforms existing classic reputation 
mechanisms under bad mouthing attacks and mobile attacks. 
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1. Introduction  

Mobile Cloud Computing (MCC) combines cloud computing and mobile computing to 

provide mobile users with data storage and processing services in clouds that perform 

resource-intensive computing [1, 2]. The MCC infrastructure involves a set of cloud resources 

accessed remotely by the users equipped with different devices through the Internet [3]. A 

typical MCC architecture as shown in Fig. 1 [3], consists of a mobile client network and a 

cloud service platform. The mobile client network includes mobile devices, base transceiver 

station (BTS) and a mobile network. The cloud service platform includes cloud application 

servers, cloud controllers, data centres etc., to offer data-rich services such as queries of 

electronic medical records. As a highly promising information technology trend, MCC 

enables the large-scale collection and processing of big data for emerging applications [4]. 
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Fig. 1. Mobile Cloud Computing Infrastructure 

 In the era of big data, data can be produced by online and offline transactions, social 

networks, sensors and through our daily life activities [5, 6]. The proper processing of big 

data can result in informative, intelligent and relevant decision making to influence our daily 

behaviors, scientific developments, and the planning and policies [7]. In order to avoid 

making decisions based on the analysis of uncertain and imprecise ‘dirty’ data, it is crucial to 

verify and clean the data, which leads to the designation of a fourth V in big data: Veracity [8]. 

Data veracity refers to the quality or trustworthiness of the data and addresses the 

confidentiality, integrity, and availability of the data [9]. Data veracity includes two aspects: 

data certainty defined by their statistical reliability; and data trustworthiness defined by a 

number of factors including data origin, collection and processing methods such as 

infrastructure and facility [10, 11]. 

With the ubiquitous access to the Internet enabled by MCC, it is not uncommon that big 

data contains biases, noises, and abnormalities, which pose a big threat to data veracity. 

Moreover, there are many security issues that can affect data veracity such as external 

denial-of-service, credential stealing, remote code injection, data integrity attacks, internal 

attacks, and supply chain attacks [8]. Consequently, the availability, confidentiality, and 

integrity of both the original data and the data analytics results are threatened by these attacks, 



e.g., the degraded availability of a big data system, the compromised confidentiality of the 

data and analytics, and the violated integrity of the data and analytic results. 

High-quality and trustworthy data can not only ensure the veracity of information but also 

improve the performance of big data computing. It is highly desirable to clean data before 

analyzing it and using it to make decisions. As an effort to tackle the aforementioned 

challenges, this paper focuses on enhancing the data veracity in MCC by designing a new 

reputation mechanism. The major contributions of this work include the following: 

• We propose a new Data Trustworthiness enhanced Reputation Mechanism (DTRM) to 

defend against the bad mouthing attacks and internal mobile attacks for enhancing data 

veracity in MCC. 

• The DTRM develops three key security schemes including a sensitivity-level based data 

category scheme, a metagraph based user group division strategy, and a reputation 

transferring method. 

• Simulation experiments based on real datasets demonstrate that the DTRM improves the 

performance of the reputation mechanism compared to the state-of-the-art including the 

ATrust [12] and TSCM [13] mechanisms. 

The remainder of this paper is organized as follows. Section 2 presents a brief review of the 

related work. Section 3 describes the adversary models. Section 4 presents the implementation 

details of the DTRM. Section 5 analyzes the cost and evaluates the performance of the 

DTRM. Finally, Section 6 concludes this paper.  

2. Related Work  

As an important aspect of big data, data veracity has been investigated in some related 

papers in the literature [8,9,14-19]. For example, Kepner et al. [8] introduced a technique 

called Computing on Masked Data (CMD) to improve data veracity while allowing a wide 

range of computations and queries to be performed with low overhead. The CMD combines 

efficient cryptographic encryption methods with an associative array representation of big 

data. Lozano et al. [9] identified the challenges and proposed an approach and a 

corresponding framework for automated veracity assessment of Open Source Information. 

The framework describes necessary components and shows how a veracity assessment 

network is gradually built up and expanded from direct and transitive veracity assessments. 



Bodnar et al. [14] proposed a veracity assessment model for information dissemination on 

social media networks that combines natural language processing and machine learning 

algorithms to mine textual content generated by users. Agarwal et al. [15] proposed a 

crowdsourcing based solution to solve the big data veracity problem that uses the sentiment 

analysis method to deal with identifying the sentiment expressed in a piece of text. Ashwin et 

al. [16] proposed three indices named as topic diffusion, geographic dispersion, and spam 

index to measure the veracity of Twitter topics from tweets themselves. These measures are 

tested using tweets about oil companies as validators. Debattista et al. [17] defined the 

veracity of Big Data as “conformity with truth or facts”, and described eight Linked Data 

quality metrics and two techniques to improve and maintain quality and address Big Data’s 

veracity challenge. 

Since this paper focuses on using a high-performance reputation mechanism to enhance the 

data veracity in MCC, in the following, we mainly review the existing research results 

regarding reputation mechanisms in MCC. Kim et al. [20] proposed a trust management 

mechanism for reliable data integration, management and applications in MCC. The 

mechanism suggested a method to quantify a one-dimensional trusting relationship based on 

the analysis of telephone call data from mobile devices. Shen et al. [21] developed an 

integrated reputation management platform, Harmony, for collaborative cloud computing. 

Harmony incorporates an integrated reputation management component, a 

multi-QoS-oriented resource selection component and a price-assisted resource control 

component to enhance their mutual interactions for efficient and trustworthy resource sharing 

among clouds. Zhang et al. [22] presented a general framework to jointly design incentive 

mechanisms and reputation schemes in social cloud systems. The proposed framework 

combined a repeated game framework-based incentive mechanism with a differential 

reputation-based reward/punishment scheme to incentivize users to contribute their resources. 

Chang et al. [23] studied the MCS network trustworthiness problem, and proposed a cloud 

based trust management scheme (CbTMS) that combines Characteristics Checking Scheme 

(PCS) and Trust Credit Assessment (TCA) to detect suspicious Sybil nodes, reduce the 

negatively influence on the effectiveness of sensing data in MCS network and enhance entire 

MCS network performance. Kantarci et al. [13] proposed a reputation-based 



Sensing-as-a-Service scheme, namely, Trustworthy Sensing for Crowd Management (TSCM) 

to ensure trustworthiness in crowd sensing management for MCS systems. Palaghias et al. [24] 

presented opportunistic sensing system MobTrust to reliably derive and quantify trust 

relationships for MCS systems by combining the extracted real-world social graph, the 

estimated social relations with the contextual information provided by the detected social 

interactions. Lin et al. [25] proposed a reliable recommendation and privacy preserving based 

cross-layer reputation mechanism that integrates the cross-layer design with recommendation 

reputation reliability evaluation mechanism and the privacy preserving scheme to protect the 

security and privacy against internal attacks. 

3. The Adversary Model 

In the MCC architecture, the application cloud server informs all mobile clients about their 

assigned data tasks and distributes tasks to mobile clients who meet the requirements of 

applications. This paper focuses on the internal security threats [25-27] that can affect data 

trustworthiness. The internal threats are launched by an inside attacker who is a legal and 

certified mobile client. The internal attacks may compromise certain users and gain full 

control of them. Once mobile clients are compromised, the attacker can gain access to all 

stored information, including public keys and private keys. The attacker could also reprogram 

the captured mobile clients to behave in a malicious manner. Therefore, the traditional 

encryption and authentication techniques may no longer be effective. The specific internal 

attacks considered in this paper are as follows [18, 28-30]: 

Mobile attacks: Malicious mobile client can move position to disguise as a normal client to 

start a new round of interactions with others. 

Bad mouthing attacks: MCC openness can allow any participant to contribute data, which 

means that attackers can provide erroneous and malicious sensing data as well as 

recommended opinions for their own benefit.  

For example, when a participant intends to request (or provide) a service from (or to) 

another participant (including unknown participant) or to query a participant’s reputation 

from other participants, it will send a request message to its neighbors. When an adversary 

receives the request, it will launch bad mouthing attacks to provide disinformation for their 

own benefit. The adversary may also launch mobile attacks by moving to a new position, 



where the adversary will be identified as a new participant, enabling it to launch another 

round of attacks. 

4.  A Data Trustworthiness enhanced Reputation Mechanism (DTRM) 

In this section, we elaborate on the proposed Data Trustworthiness enhanced Reputation 

Mechanism (DTRM), which integrates the reputation mechanisms [18, 25, 27] with the 

mobile crowd sensing (MCS) [15], metagraph theory [31], data category and user group 

division technologies [32] to enhance data trustworthiness, defend against the insider threat 

and enhance the big data veracity in MCC. The DTRM is implemented in mobile sensing 

devices and cloud service providers to perform bidirectional reputation evaluation. In the rest 

of the paper, the terms “participant”, “mobile client”, and “user” are used interchangeably. 

In DTRM, the big data to be processed are collected by the mobile sensing devices and are 

classified into different categories based on the sensitivity level (SL) of data. The data 

sensitivity level reflects the confidentiality and the privacy of the data. The higher is the 

sensitivity level of data, the greater is the need for the confidentiality and privacy protection. 

Therefore, a high reputation is required for a device to access the data in a category with a 

high sensitivity level. In this work, the sensitivity level of sensing data is decided by the data 

owner, fixed and divided into five grades from 1 to 5. Also, we use the Metagraph theory [31], 

a graphical data structure for representing a collection of directed set-to-set mappings, to 

divide all users into different groups according to the relevancy and familiarity between them. 

We assume that the users or groups belong to the same trust domains. The proposed scheme 

could also be adapted to other communications networks and computing systems [33-35]. The 

relevancy and familiarity are computed through the received sensing information [36] such as 

services, networks and applications and so on from the mobile sensing devices. The details of 

the DTRM are described as follows.  

4.1 Metagraph based User Group Division 

In DTRM, we use Metagraph theory [31] for representation and calculation of different 

possible kinds of trust relations between persons and groups and the transition of trust from 

group to person and vice versa. In this paper, we focus on how to represent and evaluate the 

trust relationship between users and groups through the Metagraph.  
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Fig. 2. Trust Relationship in DTRM  

In DTRM, trust relations are assumed as person-person, person-group, group-person, and 

group-group which are shown in Figure 2. At the same time, since persons might possess 

different positions within a group, they will have different membership degrees. The higher a 

degree in the group, the more likely the behavior of the person will be based on the standards 

and norms of the group. Therefore, in order to calculate the reputation value of a person based 

on group membership, this criterion should also be considered. The membership degree is 

defined as the following function [31]:  

fm: (Person, Group, Motivation, Attraction, Position) → [0,1]          (1) 

where fm is the function which returns the numerical value of the person’s membership degree 

in the group. Person and Group are the given person and group. Motivation shows the level of 

the person’s participation in group interactions and responsibilities. Attraction represents the 

amount of the person’s connection to the group. A person with low attraction value may easily 

leave the group. Position represents the power and influence of the person in the group which 

is dependent on social relations created in the group by that person as well as the amount of 

his capability and expertise in performing tasks in group.  

Definition 1. The generating set of a metagraph is the set of elements { }1 2, , , nX x x x= , 

which represents variables of interest occurring in the edges of the metagraph. 

Definition 2. An edge e in a metagraph is a pair e=<Ve,We>∈ E (where E is the set of edges) 

consisting of an invertex Ve ⊂ X and an outvertex We ⊂ X, each of which may contain any 

number of elements. The different elements in the invertex (outvertex) are co-inputs 

(co-outputs) of each other. 

Definition 3. A metagraph S = , ,X X E< > is then a graphical construct specified by its 



generating set X and a set of edges E defined on the generating set. X is characterized by its 

membership function fX: X → [0, 1]. For each x∈X , f(x) illustrates the truth value of the 

statement of “x belongs to X”. E is defined as a function fE : E → [0, 1], where E is an edge 

set and the membership value of an edge is also called certainty factor (CF) of the edge. For 

simplicity, assign ix denoting ( , ( ))i X ix f x and e denoting ( e ,CF e), i.e.,( e , fE (e)). 

 The metagraph based trust concepts in DTRM are considered as follows: 

(1) Trust values among groups are represented using metagraph. 

(2) Generating set X represents users and their membership degrees in their corresponding 

groups. 

(3) Edges between two groups indicate the existence of trust between them. For example 

the edge e=<Ve,We>∈E represents the trust of group Ve toward group We. 

(4) The label of edge e=<Ve,We>∈E is a couple of values <t;c>: the first component is the 

reputation value of group Ve toward group We, while the second component is the quality of 

the reputation value assignment (i.e. a confidence value), both of these components are in the 

range [0, 1]. 

(5) A high reputation value means that the trustee has gained a good feedback, whereas a 

confidence value close to 1 indicates that the trustor estimates the correlated reputation value 

with precision. 

As an example, consider the metagraph S = , ,X X E< > in Figure 3. The sets X and X are 

{ }1 2 3 4 5 6 7, , , , , ,X x x x x x x x=  and { }1 2 3 4 5 6 7, , , , , ,X x x x x x x x= , respectively.  

Where, 1 1 1 2 2 2 7 7 7( , ( )), ( , ( )), , ( , ( ))X X Xf fx x x x x fx x x x= = =  and 

{ }1 1 2G ,x x= , 1( ) 0.8X xf = , 2( ) 0.9X xf =  

{ }2 2 3G ,x x= , 2( ) 0.9X xf = , 3( ) 0.7X xf =  

{ }3 4 5G ,x x= , 4( ) 0.8X xf = , 5( ) 0.6X xf =  

{ }4 6 7G ,x x= , 6( ) 0.7X xf = , 7( ) 0.6X xf =  

The set of edges is { }1 2 3 4, , ,E e e e e= . Where, { } { } { } { }1 1 2 4 2 2 3 5, , , , , ,e x x x e x x x=< > =< >  

{ } { } { } { }3 4 5 6 7 4 5 7, , , , ,e x x x x e x x=< > =< > . The edge 1e between groups G1 and G2 is labeled 

as < 0.7; 0.6>. It shows that there exist a trust relationship between group G1 and group G2 

and the reputation value of group G1 to group G2 is 0.7, and it is estimated with precision 0.6. 
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Fig. 3.  Metagraph Based Trust Relationship Example  

4.2. Direct Reputation Computation 

The direct reputation computation is run at each user that stores its historical opinion 

towards the others in the relevant local database. When a user wants to request (or provide) a 

service from (or to) another user (including unknown user), it will send a request message to 

those trustworthy neighboring users or groups built by the method proposed in subsection 4.1. 

Each user receiving the request will first execute the direct reputation computation function to 

evaluate the requestor’s direct reputation and judge whether it is a malicious user and whether 

to provide the service.  

Suppose x and y are two users that want to interact presently, and x wants y to provide 

service. Let G={G1,G2, . . ., Gn} and SL={sl1,sl2, . . ., slm} (sli∈[0,1], i=1,…,m) be the users 

group set and data sensitivity level set, respectively. The detailed process of the direct 

reputation computation is described as follows. 

(1) The user x who want y to provide service sends a REQUEST message to y; 

(2) User y receives the REQUEST message, and then judges whether x belong to the same 

group;  

a) If x and y belong to a same group, then the direct reputation of x toward y, Direct
y:xR , 

can be computed as:  

      
SL

Direct 1( )
|SL |

j
cur s

y:x m jj
j i total

IAR f x
IA

ϕ
=

⎡ ⎤⎛ ⎞
= ∗ ∗ ∗⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑                (2) 

where ( )cur
mf x is the current membership degree of x in the group computed 

according to Eq. (1). j
sIA , j

totalIA denote the number of successful and total access 

or gain attempts to the data with sensitivity level j, respectively.ϕ is the weight 



factor that determine how much the accessed data sensitivity of the interaction 

affect Direct
y:xR . In DTRM, the historical records of accessed data sensitivity level 

will also influence the direct reputation computation. High and low sensitive data 

are the data with high data sensitivity level and low data sensitivity level, 

respectively. For a user used to access the low sensitive data, its sudden access to 

a higher sensitive data is noteworthy. Therefore, we define and compute the 

accessed data sensitivity factorϕ as:   

                       

| SL|

| SL|

1

( )

, ( 1 )

t

j
slotj i

t

j
j

E

N
t N

N

ϕ µ

µ =

=

=⎧
⎪
⎪⎪

=⎨
=⎪

⎪
⎪⎩

∑

∑

                       (3) 

where tµ is the rate between the number of accesses to the data sensitivity level 

higher than the current required level i and the total number of accesses to all 

levels. jN represents the number of times that x’s historical accessed data 

sensitivity level is confirmed as j, and slotN denotes the number of the time slots. 

b)  If x and y belong to a different group, suppose x∈G1 and y∈G2 ,then the direct 

reputation of x toward y, Direct
y:xR , can be computed as:  

SL
Direct 1( , )

|SL |

j
s

y:x jj
j i total

IAR Trust x y
IA

τ ϕ
=

⎡ ⎤⎛ ⎞
= ∗ ∗ ∗ ∗⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑          (4) 

where ( , )Trust x y is the reputation value of x toward y and it can be computed as  

1 2( , ) ( ) (G ,G ) ( )cur cur
m mTrust x y f x trust f y= ∗ ∗              (5) 

In equation (5), 1 2(G ,G )trust is the reputation value of group G1 toward group G2, 

and we assume that the reputation values between groups are pre-computed and 

stored in the local database.τ is the time factor that determine how much the 

interaction time affect Direct
y:xR . We then formally define theτ as: 

: , *n ny x T Tτ τ β=                               (6) 

where
nT

β is the density of the historical interaction until time Tn and : , ny x Tτ is the 



weight factor, which determines how much the distribution of the interactions 

affects the Direct
y:xR  at time Tn. : , ny x Tτ  and 

nT
β  can be computed as follows. 

       

SL

1=1 ^( )
n

i

T
i

N
e

m n
β =− −

∗

∑
                          (7) 

          : ,
1

( )
n

n
l

y x T
l

T l
m n

τ
=

= ∗∑                           (8) 

where iN is the number of times the historical accessing behaviors or interactions 

are confirmed on the sensitivity level i. m and n are the number of time slots and 

cycle T respectively, e.g., in this paper, T is equal to 10 seconds, m is 5, so one 

time slot equals 2 seconds.  

(3) When y gets the direct reputation computation result it will identify whether x is 

trustworthy by comparing the direct reputation result with the threshold as follows. 

Here, we assume ( )isl x  be the ith sensitivity level of data that user x want to access 

currently, and Thmin, Thmax be lower and upper bound for the reputation. 

a)  If Direct ( )y:x i maxR sl x Th≥ ∗  then x is considered as a trustworthy node and y sends 

Accept message to x; 

b)  If Direct ( )y:x i minR sl x Th< ∗  then x is considered as a malicious user and y will notify 

all other groups and other users in the same group. 

c)  If Direct( ) ( )i min y:x i maxsl x Th R sl x Th∗ < < ∗ then y executes the recommended reputation 

query, recommended reputation computation and final reputation computation. 

4. 3. Recommended Reputation Computation 

If the direct reputation computation in section 4.2 cannot lead to a decision, y will first 

execute the recommended reputation query using Algorithm 1 to query x’s reputation from 

other users.  
___________________________________________________________________________  
Algorithm 1: Recommended Reputation Query 
___________________________________________________________________________ 
Input: Users x and y’s information 
Output: x’s reputation 
1. Begin 
2.   Do  
3.     Y firstly select those users and groups that have registered and stored in the local database to         

end the Query message; 



4.     Wait (3-5 seconds); 
5.     Any user k in group G receives the Query message, k computes y’s direct reputation ;  
6.     If y’s direct reputation > Threshold then  
7.        k retrieves its direct opinion about x on local reputation database and sends Reply 

message to y as Reply (k,G, Direct
:k xR , time, location); 

8.     Else  
9.        k drops the Query message; 
10.     End if  
11.     If y doesn’t receive any return opinions then  
12.        Y broadcasts the Query message to other users and groups don’t registered and stored in 

the local database; 
13.        Wait (3-5 seconds); 
14.        Repeat steps 5-10; 
15.     End if 
16.   While (received return opinions < Threshold) 
17. End 
___________________________________________________________________________ 

Afterwards, y will compute the integrated recommended reputation combining the received 

replies of recommended reputations to the query, which will be described in the following. 

First, y will choose the trustworthy and reliable recommenders from those have returned the 

opinion by computing the familiarity and relevancy between y and the recommender u FR(u,y) 

as: 

(1) If the candidate recommenders u, named direct recommender, x and y belong to a same 

group, but u is a new group member and never interacts with y. FR(u,y) is given by: 

( , ) ( )cur
mFR u y f u=                           (9) 

(2) If the candidate recommenders u, named transferring recommender, belong to a different 

group G1 and y belongs to group G2, and there has not the direct history trust relationship 

between two groups. We assume the recommended reputation transferring path 

is { }RPath 1ppr p P= = , and compute the FR(u,y) as:  

1
, 1 , 1

1

( , ) ( ) ( ) ( )
1( )
P-1 2

cur cur
m m

P
i i i i

i

FR u y f u Trust RPath f y
c t

Trust RPath
−

+ +

=

⎧ = ∗ ∗
⎪

+⎨
= ∗⎪

⎩
∏

                 (10) 

where ( )Trust RPath  is the reputation value of the transferring path RPath. , 1i ic +  and 

, 1i it +  are the reputation value and confidence value of group Gi∈ RPath toward group 

Gi+1∈ RPath respectively, as defined in subsection 4.1.  

(3) Y finds out the trustworthy and reliable recommenders and builds a recommender set R 

by comparing each recommender u’s FR(u,y) with a threshold, one by one.  

(4) For a transferring recommender, if there are many recommend opinion coming from 



different paths, the most reliable path denoted as MRPath is chosen based on the rules 

below. Here, we assume ( ),( 1, , )RP i i n=  is the set of the recommend paths and each 

path includes j groups. 

1 2 ( )

1 2 1 2

( ( ) ),
1, , [0,1]

RP iMax Trust RP(i) SLMRPath ζ ζ

ζ ζ ζ ζ

= ∗ + ∗⎧
⎨

+ = ∈⎩
      (11) 

where 1ζ  and 2ζ  are the weight factors corresponding to the reputation and data 

sensitivity level of path ( )RP i  respectively. Then we define and compute the ( )RP iSL  as: 

( ) ( ), (1 )i
RP i jSL Min SL j n= ≤ ≤                      (12) 

where i
jSL  is the data sensitivity level of group Gi in the j-th path in ( )RP i . 

Second, suppose y receives m (m>1) direct recommended opinions and n (n>1) transferring 

recommended opinions, then the final integrated recommended reputation, Rec
:y xR , can be 

defined and computed as follows. 

( )

Rec
: 1 2

Direct
:

1

Direct
:

1

1 2 1 2

1 ( , )*

1 ( , )*MRPath( )

1, , [0,1]

Dir-Rec Tran-Rec
y x

m
Dir-Rec

j x
j

n
Tran-Rec

k x
k

R R R

R FR j y R
m

R FR k y k R
n

η η

η η η η

=

=

⎧ = ∗ + ∗
⎪
⎪ = ∗⎪⎪
⎨
⎪ ⎡ ⎤= ∗ ∗⎣ ⎦⎪
⎪

+ = ∈⎪⎩

∑

∑
                 (13) 

where Dir-RecR and Tran-RecR are the integrated direct recommended reputation and transferring 

recommended reputation, respectively. 1η , 2η  are the weight factors, which determine how 

much the integrated direct recommended reputation Dir-RecR and transferring recommended 

reputation Tran-RecR affect the final integrated recommended reputation evaluation, respectively. 

4.4. Final Reputation Computation 

After finding the direct and final integrated recommended reputation, the final reputation 

Final
y:xR can be computed as: 

Direct Rec
1 : 2 :

1 2 1 21, , [0,1]

Final
y:x y x y xR R Rα α

α α α α

⎧ = ∗ + ∗⎪
⎨

+ = ∈⎪⎩
                        (14) 

where 1α , 2α are the weight factors for the direct reputation and final integrated recommended 

reputation, respectively. 

5. Performance Evaluation 



The real Weibo-Net-Tweet dataset [37] was used in the simulation for evaluating the 

performance of the propoosed reputation mechanism in MCC. In the Weibo-Net-Tweet 

dataset, to begin with, 100 mobile clients were randomly selected as seed mobile clients, and 

then their followees and followees of followees were collected. The Weibo-Net-Tweet dataset 

includes in total 1.7 million mobile clients and 0.4 billion following relationships among them. 

For each mobile client, the dataset collected 1,000 most recent microblogs. The process 

inlcudes in total 1 billion microblogs. Each mobile client’s profile contains name, gender, 

verification, #bi-following, #followers, #followees, and #microblogs (# stands for “the 

number of”). We focus on the retweet behaviors and develop a Java-based simulator to 

implement our reputation mechanism and measure its performance and accuracy. We use a 

three-server cluster to deploy the mobile cloud platform; each server has 16 GB memory and 

12 XeonTM CPUs with 24 cores. We use three laptops as the mobile terminals, each with 

Intel(R) Core 2 Duo T5870 2.00GHz CPU. 

In the simualtion, we define a good participant as a participant who always sends genuine 

sensing reports. However, an adversary does not necessarily send false sensing reports each 

time. They may launch on-off attacks by sending correct reports in order to gain reputation 

and then only send false reports randomly or at a specific time.  

The values for security parameters 1ζ , 2ζ , 1η , 2η , 1α , 2α  are 0.6, 0.4, 0.5, 0.5, 0.6, 0.4, 

which are empirical values obtained from multiple experiments. Of which, 1ζ , 2ζ  are the 

weight factors in Eq. (11) associated with the reputation value and data sensitivity level of a 

path. 1η and 2η are the weight factors in Eq. (13) used to determine how much the direct 

recommended reputation and transferring recommended reputation affect the final integrated 

recommended reputation, respectively. 1α , 2α are the weight factors in Eq. (14) used to 

determine how much the direct reputation and final integrated recommended reputation affect 

the final reputation, respectively. Each data point depicted in the following figures is the 

average of the results obtained from 100 runs of simulation experiments with a simulation 

time of 100 s each. 

  The performance of the proposed DTRM is compared to the ATrust [12] and	
  TSCM [13] 

because they are the similar and latest related mechanisms. The following performance 



metrics are evaluated when internal bad mouthing attacks and mobile attacks are present:  

� Data Trustworthiness Rate (DTR): The rate of the trustworthy report data to the total 

amount of report data provided by the mobile clients. 

� Malicious client Detection Rate (MDR): The accuracy of detecting and identifying 

malicious mobile clients. 

� False Positive Rate (FPR): The ratio of the number of false reports on malicious mobile 

clients to the total number of reports on malicious mobile clients. 

� Reputation Evaluation Accuracy rate (REA): The accuracy of reputation evaluation of 

a mobile client. 

5.2.1 Data Trustworthiness Rate (DTR) 

First, we investigate how the DTRM performs in an honest network and a hostile network, 

respectively. In the honest network, all the mobile clients are good participants, while in the 

hostile network, the mobile clients may be adversaries who give false information with a 

random probability.  

The DTR of the DTRM in the honest network is shown in Fig. 4 (a). In this simulation, we 

compare the DTR of the DTRM with the W-DTRM. The results show that the adoption of the 

new data category, user group division and reputation transferring methods makes the DTR of 

the DTRM higher. First, in the DTRM, the data category scheme classifies the data into 

different categories based on the sensitivity level of the data, and only the opinions provided 

by the user having high enough reputation value may be accepted, which improves the DTR. 

Second, metagraph based user group division strategy divides all mobile clients into different 

groups according to the relevancy and familiarity between them, and only the opinions from 

the relevant and familiar mobile clients may be adopted, which makes the source of the 

opinions more trustworthy and enhances the DTR of the reputation mechanism. Third, the 

reputation transferring method can effectively solve the reputation loss problem caused by the 

mobile clients’ movement and defend against the internal mobile attacks, and thus will also 

make the sensing data more trustworthy. 

We also analyze the impact of the malicious attacks on the data trustworthiness, and 

compare the DTR of the DTRM with those of the ATrust and TSCM. Comparing to the 

results in Fig. 4 (a), in Fig. 4 (b) and (c) where the bad mouthing attacks and mobile attacks 



are present, the DTR of DTRM decreases by 10%, and 12%, respectively. In addition, Fig. 4 

(b) and (c) show that the DTR of the DTRM is higher than the other two mechanisms. The 

reason is that the ATrust and TSCM lack effective classification schemes for mobile clients’ 

relevancy and familiarity and data sensitivity level, therefore, some irrelevant, unfamiliar and 

unreliable mobile clients can also provide the sensing data or opinions, which decreases the 

effectiveness and credibility of the data and opinions. Furthermore, neither the ATrust or 

TSCM consider the reputation loss problem caused by the mobile clients’ movement, which 

also makes their DTRs worse than that of the DTRM. 

 

 
Fig. 4. Data Trustworthiness Rate (a) in an honest network, (b) with bad mouthing attacks, and (c) with 

mobile attacks 

5.2.2 Malicious client detection rate (MDR) 

Next, we analyze the malicious client detection rate under two hostile network 

environments with bad mouthing attacks and mobile attacks, respectively. 



 
Fig.5. Malicious client detection rate (a) with bad mouthing attacks and (b) with mobile attacks 

In Fig. 5 (a) and (b), as expected, the MDR increases with the simulation rounds. It is 

observed that the MDR of the DTRM is highest among the three mechanisms. This is because 

that the combination of data category, user group division and reputation transferring scheme 

improves the accuracy, efficiency, and reliability of the reputation evaluation and thus 

enhances the MDR. Although the other mechanisms also adopt related methods to improve 

the accuracy and reliability of the reputation evaluation, they either consider the improvement 

of the direct reputation evaluation or the improvement of the recommended reputation 

evaluation in isolation. Moreover, neither of the other two mechanisms consider the impact of 

the mobile clients’ movement on the accuracy and reliability of the reputation evaluation.  

5.2.3 False Positive Rate (FPR) 

 
Fig. 6. False Positive Rate (a) with bad mouthing attacks and (b) with mobile attacks 

We also evaluate the effectiveness and reliability of the three reputation mechanisms by 

comparing their FPR performances. The results in Fig. 6 (a) and (b) show that the FPR of all 

the three mechanisms are less than 40% and 55% respectively, and the FPR of the DTRM is 

higher than the other two mechanisms. The reason is that the user group division in DTRM 

can effectively enhance the reliability of the reputation opinion providers and thus improve 

the accuracy of the reputation evaluation. Meanwhile, the data category ensures that only 



those opinions with similar data sensitivity levels and related historical data access categories 

are accepted, which also improves the accuracy of the reputation evaluation. Moreover, the 

reputation transferring makes the mobile clients’ reputation be valid along with the mobile 

clients’ moving, which decreases the possibility of the malicious mobile clients’ reputation 

re-initialization and further raised the accuracy of the reputation evaluation. ATrust and 

TSCM did not consider improving the effectiveness and reliability of opinion providers and 

solving the reputation loss problem during the mobile clients’ moving. 

5.2.4 Reputation Evaluation Accuracy Rate (REA) 

 

 

Fig. 7. Reputation evaluation accuracy rate (a) in an honest network, (b) with bad mouthing attacks, 
and (c) with mobile attacks 

Finally, we analyze the reputation evaluation accuracy rate in an honest network and a 

hostile network, respectively. The results in Fig. 7 (a) show that under the honest network 

environment, the mobile clients’ reputation of the W-DTRM increases faster than the DTRM. 

The DTRM implements fine-grained reputation evaluation where only the mobile clients that 

have high relevancy and familiarity with the request can provide their opinions and update 

their reputation. For W-DTRM, it adopts a coarse-grained reputation evaluation that allows 

any mobile clients to provide opinions and update their reputation if their opinions happen to 

be true, which makes the mobile clients’ reputation increase faster than under the DTRM 



mechanism.  

In Fig. 7 (b) and (c), we compare the REA of the three mechanisms with the adversaries 

present. The percentage of adversaries is set at 30%. In Fig. 5 (b) and (c), as expected, the 

REA of the DTRM is higher than the other two mechanisms. The reason is that the ATrust or 

TSCM lacks fine-grained reputation evaluation scheme, therefore, some irrelevant, unfamiliar 

and unreliable mobile clients’ opinions may be accepted and then their reputation will be 

evaluated or updated, which makes their REAs worse than that of the DTRM. Furthermore, 

neither the ATrust or TSCM considers the reputation loss problem and they re-initialize the 

reputation of the adversary moving to a new area as a new client, which also makes their 

REAs worse than the DTRM. 

6. Conclusions  

This paper investigated the challenging and important problem of enhancing data 

trustworthiness for enhancing the veracity of big data, and thus improving the performance of 

the big data computing. A novel Data Trustworthiness enhanced Reputation Mechanism 

(DTRM) was proposed to defend against internal attacks, which combines sensitivity-level 

based data category scheme, metagraph theory based user group division and reputation 

transferring methods. The real dataset based simulation experiments have demonstrated that 

the proposed DTRM performs better than those of the existing ATrust and TSCM schemes in 

terms of the data trustworthiness rate, the malicious client detection rate, the false positive 

rate, and the reputation evaluation accuracy rate under bad mouthing attacks and mobile 

attacks. The proposed DTRM scheme can be used as an effective tool to enhance big data 

veracity for high-performance cloud computing.  
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