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Abstract: Voltage instability is considered as one of the main threats to secure 
operation of power systems around the world. Grid connected renewable energy-based 
generation are deploying in recent years for many economic and environmental reasons. 
This type of generation could have significant impact on power system voltage stability 
given the nature of the primary source for generation and the technology used for 
energy conversion. This paper presents the results of an investigation of static voltage 
stability in heavily stressed IEEE-14 bus test system with large-scale PV integration. 
The study focused on the impact of large-scale PV penetrations and dynamic VAr 
placements on voltage stability of the sub-transmission system. For this study, the test 
system loads are modeled as the summer peak load of a realistic system. The 
comparison of STATCOM and SVC performance with large-scale PV is also discussed. 
 
Keywords: PV generator, STATCOM, SVC, trajectory sensitivity index, voltage 
stability. 
 

1. Introduction 
  Utilization of renewable energy comes from the perspective of environmental conservation 
and fossil fuel shortage. Recent studies suggest that in medium and long terms, photovoltaic 
(PV) generator will become commercially so attractive that large-scale implementation of this 
type can be seen in many parts of the world [1], [2]. A large-scale PV generation system 
includes photovoltaic array, maximum power point tracking (MPPT), DC/AC converter and 
the associated controllers. It is a multivariable and non-linear system, and its performance 
depends on environmental conditions. Recently, the increasing penetration levels of PV plants 
are raising concerns to utilities due to possible negative impacts on power system stability as 
speculated by a number of studies [3]-[5]. Thus, the thorough investigation of power system 
stability with large-scale PV is an urgent task.        
    Among stability issues, voltage instability has been a major concern for power system. 
Several major power interruptions have been linked to power system voltage instability in 
recent past [6], [7]. It has been proved that inadequate reactive power compensation during 
stressed operating condition can lead to voltage instability. Although large-scale PV is capable 
of generating reactive power, however, the operation of PV in terminal voltage mode has the 
potential for adverse interaction with other voltage controllers [8]. Therefore, grid code 
requires operation at power factors equal or greater than 0.95 for PV generators [9], [10]. 
Moreover, the size and position of large-scale PV generator can introduce detrimental effect on 
power system voltage stability as the level of PV penetration increased.  
    Furthermore, the technical regulations or specific standards are trying to shape the 
conventional control strategies to allow the flawless integration of renewable energy based 
distributed generation (DG) in main grid. According to technical regulations or standards the 
post fault voltage recovery time at DG bus is crucial as it requires DG to trip, if recovery time 
exceeds  certain  limits [9],  [10].  With  increased  penetration  of  renewable energy DG, early  
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tripping of DG due to local disturbance can further risk the stability of the system. Hence 
system operator becomes responsible to maintain the voltage profile under all operating 
conditions. As a result, fault tolerant control algorithm based on dynamic VAr planning (e.g. 
placement of FACTS) is applied in DG integrated system. The most common, or preferred, 
dynamic VAr planning with multiple DGs is the placement of dynamic VAr device at the point 
of common coupling of DG. 
      In this paper, the result of static voltage stability with large-scale PV penetrations on sub-
transmission system for realistic load composition is presented. Three dynamic VAr 
placements algorithms are compared in terms of long-term voltage stability with large-scale PV 
penetrations. The impact of SVC and STATCOM placement on static voltage stability is 
studied, and their performances are compared. 
     The rest of the paper is organised as follows. Section II presents the methodologies used for 
static voltage stability analysis followed by the underlying concept of trajectory sensitivity 
index. Modelling of PV and dynamic VAr compensators are illustrated in Section III. Section 
IV briefly introduces the test system and its composition. Study results based on IEEE-14 bus 
test system are presented in Section V. Section VI gives the relevant conclusions. 
 
2. Methodology 
A. Q-V Modal Analysis 
     The analytical description of a power system applicable to stability study is given by the 
following differential-algebraic equation [11] 

   ),,( λyxfx =
•

                                                          (1) 
      ),,(0 λyxg=                                                            (2) 
 

where, nx ℜ∈  is a vector of state variables; my ℜ∈  is a vector of algebraic variables (e.g., 

load voltage phasor magnitude and angles); lℜ∈λ is a set of uncontrollable phasor 
magnitude such as variation of active and reactive power of loads. The set of system algebraic 
equations can be expressed as follows: 
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where, ∆P, ∆Q are mismatch power vectors. ∆V, ∆θ are unknown voltage magnitude and angle 
correction vectors. 
For steady state voltage stability analysis, the change of active power is considered as constant 
(zero) in power flow Jacobian. After some manipulation, from eq. (3) we can get the reduced 
Jacobian )( RJ  as 
 

     nxnnxnnxnRJ ηξ Λ=                                                                (4)                           
 
where, ξ = matrix of right eigenvectors corresponding to all eigenvalue of the system , Λ = 
diagonal matrix of system eigenvalues  and η = matrix of left eigenvectors corresponding to all 
eigenvalues of the system. By using (4) expression for modal voltage and modal reactive 
power variations corresponding to ith eigenvalue can be obtained, 

    iii qv 1−= λ                                                                  (5) 
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where, vi  = modal voltage variation and qi = modal reactive power variation, λi = eigenvalue of 
ith mode obtained from JR system matrix. 
     Magnitude and sign of iλ  (Q-V modal eigenvalue) provides the information of system 
static voltage stability. As the system becomes stressed, one of the eigenvalues of JR becomes 
smaller and the modal voltage becomes weaker. If the magnitude of the eigenvalue is equal to 
zero, the corresponding modal voltage is at the point of collapse. A system is called as voltage 
stable if all the eigenvalues of JR matrix are positive, if any of the eigenvalue is negative, the 
system is unstable [11]. 

      
                                

 
B. Continuation Power Flow 
     Continuation power flow solution allows the solutions of multiple power flows to be found 
from a given starting point to the critical point. The stability information that can be obtained 
by the continuation power flow is typically associated with system loading margin. Algebraic 
equations of the system are taken into account for continuation power flow evaluation. For 
continuation power flow analysis, analytical description of a power system can be described as  
 
   ),(0 λyg=                                                                         (6) 
 
In continuation power flow analysis, PV generators are modeled as PQ or PV generator with 
reactive power limits as mentioned in [12].  
 
C. Trajectory Sensitivity Index 
      From DAE of power system, the flows of x and y can be defined as [13]: 
 
    ),,()( 0 λψ txtx x=                                                                (7) 

     ),,()( 0 λψ txty y=                                                                (8) 
 
Sensitivities of system flow regarding initial conditions and parameters are obtained by a 
Taylor’s series expansion of (7) and (8): 
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The sensitivities of λx and λy can be evaluated along the trajectory, known as trajectory 
sensitivities. Simple numerical procedure can be used to obtain these sensitivities from non-
linear simulations (time domain simulations): 
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In this paper, the trajectory sensitivities are used to decide the suitable placement of dynamic 
VAr device such as STATCOM for fast voltage recovery of multiple PV generators in the 
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system. Sensitivity of ith bus voltage (V) with respect to reactive power (Q) injection at jth bus 

can be calculated as
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where, biw  is the weighting factor to represent the importance of  ith bus on the sensitivity and 

biw  has been chosen to be 1 for all the load buses and the buses with PV generators. kw  is the 

weighting factor to designate the importance of time instant k. Higher value of kw  is selected 
for the time instants just after the fault. Bus with higher trajectory sensitivity index is the the 
best location for dynamic VAr placement with multiple PVs. 
 
3. PV Generator and Dynamic Var Compensator Modelling Overview 
A. PV Generator Modelling Overview 
     For large-scale operation of PV, modules are connected in series and parallel to form an 
array. The array output current equation can be derived from the basic solar cell output current 
equation and can be expressed as [16] 
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where, IPV = array current (A), VA = array voltage (V), q = electron charge ( C19106.1 −× ), k 
= Boltzmann’s constant  ( )1038.1 19−× , n = ideal factor, T = ambient temperature, I0 = diode 
reverse saturation current (A), Rs = array series resistance (Ω), ISCA (G) = NpISC (G), NS = 
NCSNSM, NP = NSP, NSM and NSP represent the number of modules connected in series and 
parallel in the photovoltaic array,  respectively, NCS = number of series connected cells in a 
module, ISC = cell short circuit current (A)  and G = solar insolation at any instant (W/m2).  
    DC power generated from PV array is considered to be the real power injected into the 
network. Real and reactive power generation from the PV system is controlled by voltage 
source converter. For proper analysis, three-phase inverter terminal voltage is converted into d-
q axis voltage component (Park’s voltages). Park’s voltages are related to the PV array 
terminal voltage by following relationship [17]: 
 

       
⎪
⎪
⎩

⎪
⎪
⎨

⎧

−=

=

δ

δ

sin
22

3

cos
22

3

A
q

A
d

mVV

mVV
                                                                         (15)                         

 
where, m is modulation index (0,1),  δ is the phase angle (±π/2,0) and  VA represents PV array 
terminal voltage. Let us assume that the DC power generated by the PV array is delivered to 
the network, then 
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and, the reactive power equation of the PV generator can be represented as 
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where, Vs = grid bus voltage (V), and Xt = impedance  between inverter terminal and grid bus 
(Ω). 
 
B. Statcom Model 
     STATCOM is a voltage source converter (VSC) based system that injects or absorbs 
reactive current, independent to grid voltage. Basic structure and terminal characteristic of 
STATCOM is shown Figure 1 [18]. The STATCOM current is always kept in quadrature in 
relation to the bus voltage so that only reactive power is exchanged in between AC system and 
STATCOM bus. The current injected by STATCOM depends on pulse width modulation 
(PWM) method used along with operational limits and characteristics of Insulated Gate Bi-
poler Transistors (IGBTs) in use. Hence, current injected by STATCOM has appropriate limits, 
which are dynamic in nature [19]. 

 
Figure 1. (a) Basic Structure of STATCOM, (b) terminal characteristic of STATCOM. 

 
C. SVC Model 
      Static VAr Compensator (SVC) is the most extensively used dynamic VAr compensator 
whose output is adjusted to exchange capacitive and inductive current so as to maintain or 
control specific system variables, the bus voltage. For maximum or minimum susecptance 
limit, SVC behaves like a fixed capacitor or an inductor. Figure2 shows the basic structure and 
terminal characteristic of a SVC [18].  

 
Figure 2. (a) Basic structure of SVC, (b) terminal characteristic of SVC. 
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4. Test System and its Composition 
A. Test System 
       On-line diagram of IEEE-14 bus test system is depicted in Figure 3. In original test 
system, there are five synchronous generators among which three of them are synchronous 
compensators used only for reactive power support, and two generators are located at buses 1 
and 2 [18]. There are twenty branches and fourteen buses with eleven load buses. For this 
study, a slightly modified IEEE-14 bus system is considered. The modification from original 
IEEE-14 bus system is that generators located at buses 3 and 6 are changed from synchronous 
compensators to synchronous generators and the loading of the system are increased to 362.5 
MW and 108.5 MVAr, respectively. Results included in this paper are obtained by using 
MATLAB and MATLAB based power system analysis software known as PSAT [20]. 
 
B. Load Composition 
     Proper modelling of loads for power system static voltage stability study is important as 
they have profound impact on voltage stability. Utilities break their loads into various 
compositions with presence of different percentages of loads. For this study, loads are modeled 
as the summer peak load of a realistic system. The active part of the load is modeled as 100 % 
constant current and reactive part of the load is modeled as 100 % constant impedance load 
[21]. 
PV Generation and It Size 
    An aggregated PV generator depicted in Figure 4 is used for the analysis. A 10 MVA PV 
generator is considered for the initial analysis; while for the investigation of the penetration 
effect of PV on static voltage stability, PV generator size is increased by 10 MVA step size. 
Aggregated PV generator data are taken from [12].  

 
Figure 3.  Single-line diagram of IEEE-14 bus test system. 

 

 
Figure 4. Schematic diagram of an aggregated PV generator. 
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5. Results and Analysis 
A. Effect of PV Penetration on Static Voltage Stability 
    First, Q-V modal analysis has been performed for the system with and without PV. Table I 
summarises the critical eigenvalue of the system with and without PV. PV generator is 
integrated at the midpoint in between bus 14 and 9 of the test system. The analysis has been 
carried out with constant power factor (0.95 lead-lags) and voltage control mode operation of 
PV. Results in Table I indicate that integration of PV to the system with constant power factor 
operation reduces the degree of system voltage stability (from 2.6855 to 1.5706). However, if 
the same integrated PV operates at voltage control mode, degree of system voltage stability 
improves (from 2.6855 to 3.6155).  
 

Table 1. Critical Eigenvalue 
 

Mode 
Eigenvalue of the system with PV Eigenvalue of the system 

without PV Power factor 
operation 

Voltage control mode 
operation 

Most critical 
mode 1.5706 3.6155 2.6855 

 
 Integration of PV generator to the grid depends on various factors like solar insolation; land 
availability, transmission line right-of-way, etc. So, it may not be possible to integrate the PV 
generator at the weakest bus or the weak area of the system. However, the loading of the 
system is not constant at all time. Therefore, the effect of load increase and PV location on 
system voltage stability has been analyzed next. Normally, for static voltage stability analysis 
load at each bus is increased at the same rate, referred as conventional loading direction in this 
paper. But in reality load at different bus can be changed in different direction, for any instant 
load of some buses may increase while load in other buses remain unchanged or decreased. For 
this study we have considered both the conventional loading direction and realistic loading 
direction proposed in [6] to find the loading margin of the system with PV generator. For 
realistic load direction, IEEE-14 bus system is split into two areas, namely area-1 and area-2. 
Buses 1-3, 5 and 6 are in area-1 and buses 4, 7-14 are in area-2. Table II summarizes the 
percentage of load increase and the area factor for realistic loading direction. For this analysis, 
PVs are placed at different system buses based on bus weakness. An aggregated PV of 10 
MVA rating is considered for the analysis. Figure 5 shows the system loading margin for two 
different loading directions and PV generator locations. From the figure it can be seen that PV 
locations and loading directions have significant effect on system loading margin. From the 
results shown in Figure 5 it is worthwhile to note that for conventional and realistic loading 
direction, system loading margins with power factor operated PV are less than the base case 
(without PV). However, system loading margins are improved from the base case with the 
integration of voltage control mode operated PV for both loading directions. It is interesting to 
note that the realistic loading direction provides lower loading margin than the conventional 
one at base case, and with PV generator. 
 

Table 2. The Percent of Load Increase and Area Factor for Realistic Loading Direction 
Area % load change Area factor 

1 20.00 0.2944 
2 80.00 1.0000 
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Figure 5. Loading margins for different loading directions (with and without PV). 

 
 In case of contingencies, the system characteristics have changed. Effect of PV generator 
penetration on system voltage stability during contingency is analyzed by the outage of line 1-
5. Table III illustrates the effect of PV locations on system critical eigenvalue for normal and 
N-1 contingency. Critical eigenvalue of the system at the base case for this particular N-1 
contingency is 2.5658. From Table III it can be observed that for all PV locations critical 
eigenvalue of the system is higher than the base case at normal operating condition, while 
during N-1 contingency degree of stability is less than the base case for voltage control mode 
operated PV at bus 12. From the table it is also noticeable that for all PV locations critical 
eigenvalue of the system for normal and N-1 contingency is lower than the system base case 
when integrated PV operated at power factor control mode. From the table, it is worthwhile to 
note that for voltage control mode operation in most of the cases dispersed PV location 
improves the degree of voltage stability. 
 

Table 3. Impact of PV Locations on Critical Eigenvalue 

PV 
location 

bus 

Critical eigenvalue  
(Voltage control mode 

operation of PV) 

Critical eigenvalue  
(Power factor operation of PV) 

Normal N-1 
contingency Normal N-1 

contingency 
12 2.6697 2.4025 1.5756 1.5669 
13 2.6898 2.6091 2.2618 2.2516 
14 3.9398 3.6791 2.3525 2.3315 

10,12 4.5266 4.4966 1.775 1.7572 
9,13 6.4356 6.4346 1.8595 1.8376 
5,14 3.9046 3.8876 1.5683 1.555 

 
B. Effect of PV Penetration 
    To study the impact of increased PV penetration on voltage stability, the following scenarios 
are considered, 
1.  Concentrated PV penetration. 
2.  Dispersed PV penetration. 
 Figure 6 shows the effect of concentrated PV penetration on the degree of system stability. 
From the figure it can be seen that for all the buses increased PV penetration does not have 
positive impact on system stability. At some location (e.g., bus 12), penetration of PV does not 
appear to contribute to the voltage stability of the system; meanwhile other position (bus 9) has 
both positive and negative impact on voltage stability with incremental penetration. It can be 
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noted that at bus 9, size up to 20 MVA improves the degree of voltage stability, and beyond 20 
MVA the degree of voltage stability has been reduced. 
 Figure 7 shows the impact of dispersed PV penetration on the degree of system stability. 
For this study PV generators are placed as follows: 
1.  All PVs are in the weak area of the system. 
2.  All PVs are in the strong area of the system. 
3.  PV penetrations at weak and strong area of the system. 
 
 From the figure it can be observed that dispersed PV penetration at buses 4 and 5 enhanced 
the degree of stability. Whereas, degree of stability is reduced for PV penetration at buses 10 
and 14. Degree of system stability remains almost same as base case for PV penetration at 
buses 5 and 14. Thus, it is worthwhile to mention that for dispersed PV penetration, the degree 
of stability enhancement strongly depends on the locations of PV. 
 

 
Figure 6. Effect of concentrated PV penetration on the degree of stability 

 
 

 

 
Figure 7. Effect of dispersed PV penetration on the degree of stability. 

 
 System loading margins for concentrated and dispersed PV penetrations are depicted in 
Figure 8. From Figure 8 it is noticeable that concentrated PV penetrations provide higher 
loading margin than the dispersed PV penetrations for  almost all penetration scenarios, except 
dispersed penetration of 20 MVA PV at buses 4 and 5. At this scenario, system loading margin 
is higher than the concentrated penetration of same rated PV at buses 12 and 14. 

Influence of Large-scale PV on Voltage Stability of Sub-transmission System

156



 
 

 
 

 
Figure 8. Loading margins for concentrated and dispersed PV penetrations. 

 
C. Location of Dynamic VAr Compensator 
      For this study PV generators are integrated at buses 12 and 14, respectively. Three 
scenarios have been considered to study the effect of dynamic VAr compensator placement on 
system static voltage stability performance with large-scale PV. These are as follows; 
1.  Dynamic VAr compensator at each PV generator bus. 
2.  Dynamic compensator at the weakest bus of the system. 
3.  Dynamic compensator placed at the bus with highest TSI. 
 
 From bus participation factor analysis at stressed condition corresponding to critical 
eigenvalue reveals that bus 14 is the weakest bus of the system. Figure 9 displays the trajectory 
sensitivity index (TSI) of the buses in area-2. TSI is highest for bus 9, which is located in the 
zone where PV generators are integrated to the system. Comparison of system loading margins 
for STATCOM placements are shown in Figure 10. From Figure 10 it can be seen that system 
loading margin is highest for TSI based STATCOM placement as compared to STATCOM 
placement at the weakest bus, and at the point of common coupling of PV generator. 
 

 
Figure 9. Trajectory sensitivity index values for the buses in area-2. 

 
 From results in Figure 10 it can be observed that placement of STATCOM at the weakest 
bus of the system provides slightly better system loading margin than system without PV, with 
PV and STATCOM at each PV bus.  
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Figure 10. System loading margins for STATCOM placements. 

  
D. Comparison of STATCOM and SVC Performance 
       Figure 11 shows the comparison of the performance of same MVAr rated STATCOM and 
SVC on power system long-term voltage stability with large-scale PV penetration. The result in 
Figure 11 shows that STATCOM is more effective in enhancing system static voltage stability 
margin with large-scale PV integration. However, it is worthwhile to notice that system loading 
margin is better for SVC placement at each PV generator bus as compared to TSI based 
placement and the placement at the weakest bus of the system.  

 
 

Figure 11. System loading margins for STATCOM and SVC placements. 
 
Conclusions 
In this paper, the static voltage stability of the power system with large-scale PV penetration is 
presented. The main findings of this study are as follows: 

 PV location, size and the way they are integrated, i.e., concentrated or dispersed, have 
profound impact on system static voltage stability. 

 Degree of voltage stability deteriorates with the integration of power factor operated PV, 
whereas, in some cases degree of voltage stability improves with the integration of 
voltage control mode operated PV. 

 The results in this study indicate that the placement of STATCOM based on short term-
VAr support to mitigate low voltage ride through problem also provides higher system 
loading as compared to STATCOM placement at the weakest bus and at PV generator 
buses. 
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 STATCOM provides better option to enhance static voltage stability margin of the system 
with large-scale PVs. 

 Placement of SVCs in PV generator buses are found to be more effective in enhancing 
voltage stability margin rather than the weakest bus placement or the placement based on 
short term dynamic VAr support. 
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