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SUMMARY 
Increases in intracellular free Ca2+ play a 
major role in many cellular processes. The 
deregulation of Ca2+ signaling is a feature of a 
variety of diseases and modulators of Ca2+ 
signaling are used to treat conditions as 
diverse as hypertension to pain. The Ca2+ 
signal also plays a role in processes important 
in cancer such as proliferation and migration. 
Many studies in cancer have identified 
alterations in the expression of proteins 
involved in the movement of Ca2+ across the 
plasma membrane and sub-cellular 
organelles. In some cases these Ca2+ channels 
or pumps are potential therapeutic targets for 
specific cancer subtypes or correlate with 
prognosis.  
 
Our understanding of calcium signaling and its 
intersection with specific processes important in 
tumor progression is only recent. We now 
appreciate that altered expression of specific 
Ca2+ channels and pumps is a characterizing 
feature of some cancers. By comparison, the link 
between calcium signaling and other conditions 
such as cardiovascular and neurological diseases 
was made many years ago. The direct link 
between Ca2+ and processes linked to a specific 
pathology, such as vascular tone and 
neurotoxicity, meant that these conditions 
attracted the initial focus of researchers devoted 
to defining the role of Ca2+ in disease.  
 
In their seminal review “The hallmarks of 
cancer” Hanahan and Weinberg (1) described six 
acquired characteristics of cancers: the ability to 
evade apoptosis, self-sufficiency in growth 

signaling, insensitivity to anti-growth signals, 
the capacity to invade and metastasize, 
“limitless” replication potential and the 
promotion of angiogenesis. Calcium signaling is 
linked either directly or indirectly to each of 
these processes and this has been reviewed 
elsewhere (2-6). A remodeling of calcium 
homeostasis can occur in cancer cells. Although 
alterations in Ca2+ signaling may not be a 
requirement for the initiation of cancer, the 
consequences of altered calcium transport in 
cancer cells may be significant and contribute to 
tumor progression. Characterizing such changes 
may help to identify new therapeutic targets. In 
this review we will discuss how remodeling of 
Ca2+ signaling is a feature of some cancers and 
provide examples of how this remodeling is 
often achieved through the differential 
expression of specific Ca2+ pumps and channels. 
Examples of this remodeling are discussed, 
particularly those that illustrate the complexities 
of expression changes and their contribution to 
tumor progression.  
 
Ca2+ transport in cancer cells 
 
Cancer cells use the same calcium channels, 
pumps and exchangers as non-malignant cells. 
However, there are often key alterations in 
calcium channels and pumps in cancer cells. 
Such changes in cancer cells may include:  the 
expression of calcium channels or pumps (or 
their specific isoforms) not normally present in 
non-malignant cells of the same cell type, 
pronounced changes in the level of expression 
(as outlined in Table 1), altered cellular 
localization, altered activity through changes in 
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post-translational modification, gene mutations 
and changes in activity or expression associated 
with specific cancer-relevant processes (e.g. 
migration). These changes are often reflected in 
alterations in Ca2+ flux across the plasma 
membrane or across intracellular organelles. 
 
Ca2+ influx in cancer 
 
The influx of calcium across the plasma 
membrane into the cell is a key trigger or 
regulator of cellular process relevant to tumor 
progression including proliferation, migration 
and apoptosis. Ca2+ permeable ion channels of 
almost every class have now been associated 
with aspects of tumor progression. This review 
will particularly focus on transient receptor 
potential (TRP) channels and ORAI-mediated 
store-operated Ca2+ influx as examples of Ca2+ 
influx pathways altered in some cancers. 
 
1. TRP channels 
 
TRP ion channels consist of six subfamilies, 
with most members permeable to Ca2+, many of 
which have a role in distinguishing sensations 
including pain, temperature, taste and pressure 
(7). This family is arguably the most studied ion 
channel class in cancer. The key early work on 
calcium signaling in cancer was focused on 
cancers of the prostate gland and more 
specifically the calcium permeable ion channel 
TRPM8 (8). Although now predominately 
studied in the context of its role as a cold 
receptor (9,10), TRPM8 was first identified by 
its overexpression in some prostate cancers (8). 
Early work by Zhang and Barritt (11) 
demonstrated that both the silencing of TRPM8 
and menthol-mediated activation of TRPM8 
reduced the viability of LNCaP prostate cancer 
cells. That both activators and inhibitors are 
proposed as potential therapeutic agents for 
prostate cancer cells that overexpress TRPM8 is 
reflective of the duality of the calcium signal 
(12), whereby Ca2+ is both a key regulator of 
proliferation and in the case of Ca2+ overload an 
initiator of cell death. The ability of TRPM8 
activation by prostate-specific antigen to inhibit 
the migration of PC3 prostate cancer cells now 
extends the applicability of channel activators as 
therapeutics beyond just inducers of cancer cell 
death (13). Further detailed work on TRPM8 in 
prostate cancer shows androgen-mediated 
increases in TRPM8 in LNCaP prostate cancer 
cells (11,14). This finding provides one of the 

first examples of hormone-mediated changes in 
the expression of a calcium permeable ion 
channel in a cancer cell line. As discussed later 
in this review, this has now been seen with other 
calcium channels and pumps in breast cancers. 
 
The contribution of TRPM8 to cancer 
progression, as we will see for other Ca2+ 
channels and pumps, may not always involve its 
classic role (in this case as a plasmalemmal ion 
channel). As opposed to the usual plasma 
membrane localization, endoplasmic reticulum 
localization of TRPM8 is observed in some 
prostate cancer cells (11,15) with the 
consequence being reduced levels of 
endoplasmic reticulum Ca2+ and increased 
resistance to apoptosis (15). Aside from prostate 
cancer, overexpression of TRPM8 is also 
associated with other cancer types including 
melanoma and cancers of the pancreas, breast, 
colon and lung (see Table 1). However, the 
utility of TRPM8 as a target for cancer therapy 
might be limited and require knowledge of the 
individual tumor expression of the channel. For 
example, TRPM8 expression actually appears to 
reduce as prostate cancer cells transition to 
androgen independence and increased 
aggressiveness (16,17).  
 
TRPV6 is another TRP channel linked to 
prostate cancer. TRPV6 levels correlate with 
tumor progression and have been proposed as a 
predictor of invasiveness (18,19). TRPV6 is 
highly Ca2+ selective and is constitutively active 
(20). When TRPV6 expression is silenced in 
LNCaP prostate cancer cells there is inhibition 
of Ca2+ influx and consequently reduced 
activation of NFAT. Crucially this illustrates the 
importance of calcium dependent transcription 
pathways as a mechanism for tumor promotion 
(19).  
 
Like TRPM8, alterations in TRPV6 expression 
are not confined to cancers of the prostate, with 
increased expression levels reported in thyroid, 
colon, ovarian and breast cancers (Table 1). In 
breast cancers the expression of TRPV6 varies 
widely between tumors (21). The consequences 
of TRPV6 overexpression in tumors may relate 
to effects on cancer cell survival, as TRPV6 
silencing in T47D breast cancer cells reduces 
cell viability (21). Further studies are needed to 
address the mechanisms leading to TRPV6 
overexpression in cancers and the association 
between TRPV6 levels and breast cancer 
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prognosis. Analogous to the androgen 
dependence of TRPM8 expression in LNCaP 
prostate cancer cells, TRPV6 levels also appear 
to be hormonally regulated with estradiol 
increasing TRPV6 mRNA in T47D breast cancer 
cells (21).  
 
Other examples of TRP channels that are 
overexpressed in multiple cancer types include 
TRPC3 and TRPC6. TRPC3 is elevated in some 
breast (22) and ovarian epithelial tumors, and its 
silencing reduces ovarian cancer cell line 
proliferation in vitro and tumor formation in vivo 
(23). TRPC6 is elevated in cancers of the breast, 
liver, stomach and esophageous, and in gliomas 
(22,24,25), and its silencing reduces the 
proliferation of some esophageal and breast 
cancer cell lines and glioma cell lines (22,24,25). 
For esophageal and glioma cell lines these 
effects are due to G2/M cell cycle arrest (24,25). 
 
The importance of some TRP channels in tumor 
progression appears to extend beyond the 
primary tumor. Fiorio Pla et al. (26) showed that 
migrating endothelial cells have a greater 
[Ca2+]CYT response to the TRPV4 activator 
4αPDD than non-migrating cells. Furthermore 
they showed increased expression of TRPV4 in 
endothelial cells derived from breast cancers 
compared to those derived from normal tissue, 
implicating TRPV4 as a possible key component 
in angiogenesis associated with breast cancers. 
Other Ca2+ channels have also been associated 
with angiogenesis as recently reviewed (4).  
 
Calcium entry into the cell via some TRP 
channels may result in localized Ca2+ signals that 
contribute to cancer cell migration (3). One 
example of such a localized event is referred to 
as Ca2+ flickers (27), which are highly localized 
(~ 5 µm diameter) and transient (10 ms – 4 s) 
increases in Ca2+ that control the direction of 
migration as lung fibroblasts move towards a 
growth factor. Ca2+ flickers during migration are 
regulated by TRPM7 (27), which may act as a 
stretch or mechanical sensing channel (28). With 
TRPM7 inhibition there is a reduction in 
migration of a number of cancer cell types 
including those of the pancreas, lung and 
nasopharynx (29-31). 
 

The examples above highlight some studies 
where cancer cells are associated with a 
remodeling of TRP channel expression or where 
TRP channels have been linked to specific 
processes important in tumor progression. The 
interest and understanding of TRP channels in 
cancer is likely to expand in the coming years 
and these channels may represent the first class 
of ion channel targeted for the treatment of a 
specific cancer.  
 
2. Store-operated Ca2+ influx 
 
Store-operated Ca2+ entry is a critical Ca2+ influx 
pathway and represents the major Ca2+ influx 
mechanism in non-excitable cells (32), such as 
those of the epithelia from where most cancers 
originate. The pathway involves the activation of 
Ca2+ influx upon intracellular Ca2+ store 
depletion (32-34). The canonical components of 
store-operated Ca2+ entry are the calcium influx 
channel ORAI1 and the endoplasmic Ca2+ 
depletion sensor STIM1 (35,36). While this 
pathway has rapidly become one of the Ca2+-
influx pathways most studied in breast cancer, it 
also appears to be an important Ca2+ influx route 
during lactation (37), suggesting an important 
role in normal breast function.  
 
ORAI1 and STIM1 silencing in MDA-MB-231 
breast cancer cells reduces migration, invasion 
through Matrigel and the establishment of lung 
metastasis after tail vein injection in NOD/SCID 
mice (38), the later of which can be mimicked 
by the pharmacological store-operated Ca2+ 
influx inhibitor SKF96365 (38). The anti-
metastasis effects of ORAI1 and STIM1 
silencing appear in part due to alterations in 
focal adhesion turn over (38). The effects of 
ORAI1 silencing on breast cancer cells are not 
restricted to inhibition of processes important in 
migration, ORAI1 silencing has anti-
proliferative properties in MCF-7 breast cancer 
cells in culture and in vivo. These changes may 
in part be due to reductions in basal Ca2+ influx 
leading to reduced ERK1/2 phosphorylation and 
cyclin D1 expression (39). 
 
Alterations in the expression of specific 
components of store-operated Ca2+ entry are also 
a feature of some breast cancer cells. ORAI1 
mRNA levels are higher in some breast cancer 
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cell lines compared to non-malignant breast cell 
lines (37). When breast cancer subtypes are 
stratified by gene expression, basal breast 
cancers (associated with a poor prognosis and a 
lack of effective therapies) are characterized by 
an elevated STIM1/STIM2 ratio. 
Correspondingly those patients with breast 
cancers with a high STIM1/STIM2 ratio and 
high STIM1 levels have significantly reduced 
survival (37), placing STIM proteins as either 
potential key regulators or biomarkers of breast 
cancer progression. The significance of STIM1 
may extend beyond breast cancers given its role 
in the migration of cervical cancer cells (40). 
The mechanisms responsible for enhanced 
ORAI1-mediated Ca2+ influx in breast cancer 
appear to be complex and related to cancer 
subtypes. As discussed later in this review, in 
addition to STIM1-mediated activation of 
ORAI1, some breast cancers that overexpress 
the secretory pathway Ca2+-ATPase 2 (SPCA2) 
isoform may be characterized by elevated 
ORAI1 mediated Ca2+ influx. 
 
The ORAI1 isoform is not the only ORAI 
protein with a cancer association. ORAI3 protein 
levels and ORAI3-dependent store-operated Ca2+ 
influx are both elevated in estrogen receptor 
positive breast cancer cell lines (41) compared to 
estrogen receptor negative cell lines where store-
operated Ca2+ influx is predominately mediated 
by ORAI1. A strengthening of the causative link 
with cancer was provided by a study in estrogen 
receptor positive MCF-7 breast cancer cells 
where ORAI3 silencing inhibited proliferation 
through G1 arrest (42). Although the examples 
above point to an upregulation of ORAI-
mediated influx, some cancer types might be 
associated with a down regulation of this 
pathway that may in turn help in the acquisition 
of apoptotic resistance (6). Indeed, reduced 
ORAI1-mediated Ca2+ influx and expression is a 
feature of androgen independent prostate cancer 
cells, and silencing of ORAI1 reduces apoptosis 
in LNCaP cells (43).  
 
This review has given examples of how ORAI1 
may regulate processes important for 
carcinogenesis, including cell proliferation, 
migration and apoptosis sensitivity, and this may 
occur in a store-dependent or -independent 
manner. Examples of how ORAI1 regulates 
these key cancer processes are shown 
schematically in Figure 1. 
 

Although not a focus of this review voltage-
gated calcium channels are increasingly studied 
in cancer and in many cases the studies have 
examined the reasons for changes in expression 
levels in cancer. This is particularly illustrated in 
studies assessing mechanisms of altered 
expression of voltage-gated ion channels. For 
example, higher relapse in Wilms’ tumors is 
associated with higher DNA copy numbers of 
the α1 subunit of the voltage-gated Ca2+ channel 
CACNA1E (44) and reduced expression of 
CACNA2D3 via promotor hypermethylation is 
associated with poor prognosis in gastric cancer 
(45). These methodological approaches will be 
applied to other channels and pumps and other 
cancers in the future.  
 
Ca2+ efflux in cancer 
 
Ca2+ efflux across the plasma membrane can be 
mediated by both Na+/Ca2+ exchangers and 
primary active transport via plasma membrane 
Ca2+-ATPases (PMCAs). However, most studies 
of Ca2+ efflux pathways in cancer cells have 
focused on the latter mechanism. PMCAs are 
encoded by 4 genes (PMCA1-4), which are 
alternatively spliced to generate a suite of Ca2+ 
efflux pumps responsible for maintaining resting 
cytosolic free Ca2+ at low (~ 100 nM) levels 
(46,47). PMCAs also contribute to specific cell 
functions, such as the transport of Ca2+ into milk 
through PMCA2 (48). 
 
An area where PMCAs may be critically 
important in cancer is the regulation of cell 
death, as reflected in early work assessing the 
consequences of PMCA overexpression. 
Overexpression of some PMCA isoforms in 
CHO cells reduces Ca2+ levels within the 
endoplasmic reticulum and also attenuates 
mitochondrial Ca2+ accumulation after cell 
activation (49), a consequence which would be 
hypothesized to result in anti-apoptotic effects. 
Indeed, the overexpression of PMCA in HeLa 
cells increases their resistance to cell death 
induced by ceramide (50). Recent studies in 
T47D breast cancer cells shows that the 
overexpression of PMCA2 reduces the degree of 
cell death induced by ionomycin and this is 
associated with a reduction in the duration and 
magnitude of increases in [Ca2+]CYT mediated by 
this Ca2+ ionophore (51). PMCA2 is an isoform 
with reported overexpression in some breast 
cancer cell lines (52) and in clinical human 
samples, where high levels appear to be 
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associated with a poor prognosis in some patient 
groups (51). Collectively these studies suggest 
that the remodeling of calcium efflux associated 
with increases in PMCA expression contributes 
to the acquisition of an anti-apoptotic phenotype 
in cancer cells. 
 
Studies assessing the expression of PMCA 
isoforms during the differentiation of colon 
cancer cells suggest that a remodeling of PMCA 
isoform expression is not confined to cancers of 
the breast. PMCA1 expression remains fairly 
constant during differentiation of human colon 
cancer cell lines, whereas PMCA4 undergoes a 
pronounced increase in expression with 
differentiation (53,54). PMCA4 overexpression 
studies in HT29 colon cancer cells suggests that 
the down regulation of PMCA4 in colon cancer 
may help to augment [Ca2+]CYT responses to 
proliferative stimuli without sufficiently 
increasing [Ca2+]CYT to levels that promote 
apoptosis (55). The changes in PMCA4 
expression seen in the differentiation models 
correlate well with human colon cancer clinical 
samples, where PMCA4 mRNA is reduced in 
colon adenocarcinomas compared to normal 
colon (55). The upregulation of PMCA2 
expression in breast cancer and the down 
regulation of PMCA4 in colon cancer may seem 
conflicting, however, in both cases the changes 
in PMCA expression appear to bestow an 
advantage to the cancer cell, in the case of 
PMCA2 in breast cancer cells this appears to be 
related to the acquisition of greater resistance to 
cell death, and in colon cancer cells augmented 
responses to proliferative signals.  
 
Intracellular organelle Ca2+ channels and 
pumps and cancer 
 
Intracellular organelles play critical roles in 
Ca2+-regulated processes either through the 
regulation of cytosolic free Ca2+ or through 
modulation of Ca2+ regulated proteins that reside 
within the organelle. This review will outline 
examples of Ca2+ channels and pumps of the 
endoplasmic reticulum and Golgi as these have 
been the most studied in cancer. However, the 
recent identification of proteins that play major 
roles in mitochondrial Ca2+ influx and efflux 
(56-58) and the recently identified two pore 
channel proteins present in endosomes (TPC1) 

and lysosomes (TPC2) (59) represent new 
opportunities to improve our understanding of 
the remodeling of Ca2+ signaling in some 
cancers and will no doubt be the focus of 
research in the future (60).  
 
Regulators of endoplasmic reticulum Ca2+ 
levels 
 
One of the earliest links between the regulation 
of endoplasmic reticulum Ca2+ and cancer comes 
from studies of the anti-apoptotic protein Bcl-2 
(B cell lymphoma-2). In addition to its early and 
now well-established role in inhibiting the 
release of the pro-apoptotic factor cytochrome c 
(61-63), Bcl-2 decreases the Ca2+ content of the 
endoplasmic reticulum (50,64,65). 
Mechanistically this occurs at least in part 
through interaction with the IP3 receptor (66), 
likely reducing the ability to achieve the high 
Ca2+ loads required for mitochondria to 
accumulate Ca2+ sufficiently to trigger apoptotic 
cell death (67). Some examples of alterations in 
the expression of key calcium channels and 
pumps of the endoplasmic reticulum are 
highlighted in Table 1. Similar to increases in 
the expression of PMCA4 during colon cancer 
cell line differentiation and the down regulation 
of PMCA4 expression in some colon cancers, 
SERCA3 pump expression increases with the 
differentiation of colon cell lines, and is down 
regulated in colon cancer (68), implicating a 
major remodeling of active Ca2+ transport in 
colon cancer. The significance of the down 
regulation of SERCA3 is not restricted to colon 
cancer, given the more recent report of a 
significant down regulation of SERCA3 in 
breast cancers, an event that is even seen in 
benign lesions (69).  Further evidence of the 
potential significance of SERCA down 
regulation in cancer is reflected in studies of 
mice haplodeficient for SERCA2 (70,71). These 
mice are characterized by increased incidence of 
squamous cell tumors, the mechanism of which 
likely involves altered Ca2+ signaling and a 
subsequent change in the microenvironment of 
skin epithelia (70).  
 
Regulators of Golgi Ca2+ levels 
 
Although more recently identified and less 
widely studied in the context of contributions to 
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cellular processes than SERCAs, secretory 
pathway Ca2+-ATPases (SPCAs), both the 
ubiquitously expressed SPCA1 isoform and the 
more restricted SPCA2 isoform (72,73), are 
beginning to be assessed in cancer cells.  
 
In MDA-MB-231 basal-like breast cancer cells 
(that do not express the SPCA2 isoform), 
SPCA1 silencing inhibits proliferation without 
changes in global [Ca2+]CYT, consistent with the 
minor role of SPCAs (c.f. PMCAs and SERCAs) 
in contributing to [Ca2+]CYT recovery in most cell 
types (74). Instead, as may be the case for other 
Ca2+ channels and pumps located on the 
membranes of intracellular organelles, the 
mechanism by which SPCA1 silencing inhibits 
proliferation may involve alterations in the Ca2+ 
levels within the Golgi lumen where Ca2+ 
regulated enzymes reside. Indeed, one 
consequence of SPCA1 silencing in MDA-MB-
231 breast cancer cells is the inhibition of 
cleavage of pro-IGF1R likely through reduced 
activity of the Ca2+-sensitive pro-protein 
convertase Furin (74). The consequences of 
reduced SPCA1-mediated Ca2+ sequestration 
may be cell type and context dependent as 
shown by the increased susceptibility of Spca1+/- 

mice to develop squamous skin tumors (75). 
 
One of the proposed roles for the other secretory 
pathway Ca2+ ATPase isoform, SPCA2, has been 
the sequestration of Ca2+ during lactation (76), 
however, this pump also appears to play a role in 
the pathophysiology of breast cancer. SPCA2 
levels are increased in luminal-like breast cancer 
cell lines and clinical breast cancers belonging to 
the Luminal B and ERBB2 molecular subtypes 
(39). This may be related to hormonal factors 
given that in MCF-7 breast cancer cells SPCA2 
mRNA levels increase with prolactin (77).   
Silencing of SPCA2 in breast cancer cell lines 
that overexpress this Ca2+ pump, such as MCF-7 
cells, reduces their proliferation, anchorage 
independent growth and growth in vivo (39).  
However, in contrast to SPCA1 in breast cancer 
cells, SPCA2 does not appear to contribute to 
tumor progression through alterations in Ca2+ 
levels within the Golgi. In a result which was 
initially counter intuitive, SPCA2 
overexpression increases basal [Ca2+]CYT, rather 
than decreasing it as might be expected for a 
calcium pump that sequesters Ca2+ from the 
cytoplasm into the Golgi. Overexpression of 
SPCA2 leads to its localization at the plasma 
membrane where it activates ORAI1 channels, 

the consequence of which is activation of the 
transcription factor NFAT (shown in Figure 1A) 
(39). SPCA2 overexpression-induced increases 
in Ca2+ influx across the plasma membrane 
represents an example where the contribution 
that a calcium pump makes to tumor progression 
is not directly related to its own Ca2+ 
transporting ability. The ability of SPCA2 to 
contribute to tumor growth independently of its 
own Ca2+ transporting ability suggests that 
pharmacological inhibitors of SPCA2 Ca2+ 
transport function may be ineffective in breast 
cancers where SPCA2 solely contributes to 
tumor growth through this ORAI1-dependent 
mechanism and demonstrates the importance of 
mechanistic studies assessing the contribution of 
Ca2+ channels and pumps to tumorigenic 
pathways. 
 
Calcium signaling and cancer – new horizons 
 
Major advances have occurred in the last decade 
in our understanding of how calcium signaling is 
remodeled in some cancer cells and how specific 
calcium channels or pumps represent potential 
new therapeutic targets in oncology. However, 
there are areas of cancer research where the link 
between calcium signaling is still relatively 
unexplored, such as the “emerging hallmarks of 
cancer” recently described by Hanahan and 
Weinberg (78). These include cellular energy 
metabolism reprogramming, whereby cancer 
cells shift their energy metabolism to glycolysis, 
a phenomenon first described by Otto Warburg 
almost a century ago (78-80). Further studies on 
the possible role of Ca2+ signaling in the 
regulation of glycolysis, the switch to glycolysis 
and the use of glycolysis generated ATP to fuel 
Ca2+ pumps in cancer cells is required (81,82). 
Another aspect of cancer biology where Ca2+ 
signaling is clearly going to be critical but has 
not been fully explored is the tumor 
microenvironment (78). Due to the depth of 
work in the area of tumor microenvironment 
readers are encouraged to consult the numerous 
reviews on this topic (83-85). An aspect of the 
tumor microenvironment where signaling is 
likely to be particularly significant is cancer 
associated fibroblasts, which are in an 
“activated” state and are in a dynamic signaling 
interplay with cancer cells (78,86). Ca2+ may be 
critical to this signaling as reflected by the 
importance of PDGF in the signaling between 
cervical cancer cells and cancer associated 
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fibroblasts (87) and the ability of PDGF to 
elevate [Ca2+]CYT in other cell types (88). 
 
Conclusions 
Many processes contribute to cancer 
development and Ca2+ signaling seems to play a 
role in many of them. Numerous studies have 
now established that some cancers are associated 

with major changes in the expression of specific 
Ca2+ channels and pumps, and that inhibition of 
some of these proteins inhibits the proliferation 
and/or metastasis of cancer cells. The next 
decade will see the role of Ca2+ in cancer further 
defined and may see agents that specifically 
target Ca2+ channels or pumps used in cancer 
therapy. 

	  
REFERENCES. 
 
1. Hanahan, D., and Weinberg, R. A. (2000) The hallmarks of cancer. Cell 100, 57-70 
2. Roderick, H. L., and Cook, S. J. (2008) Ca2+ signalling checkpoints in cancer: remodelling 

Ca2+ for cancer cell proliferation and survival. Nat. Rev. Cancer 8, 361-375 
3. Prevarskaya, N., Skryma, R., and Shuba, Y. (2011) Calcium in tumour metastasis: new roles 

for known actors. Nat. Rev. Cancer 11, 609-618 
4. Fiorio Pla, A., Avanzato, D., Munaron, L., and Ambudkar, I. S. (2012) Ion channels and 

transporters in cancer. 6. Vascularizing the tumor: TRP channels as molecular targets. Am. J. 
Physiol. Cell Physiol. 302, C9-C15 

5. Rizzuto, R., Pinton, P., Ferrari, D., Chami, M., Szabadkai, G., Magalhaes, P. J., Di Virgilio, 
F., and Pozzan, T. (2003) Calcium and apoptosis: facts and hypotheses. Oncogene 22, 8619-
8627 

6. Lehen'kyi, V., Shapovalov, G., Skryma, R., and Prevarskaya, N. (2011) Ion channnels and 
transporters in cancer. 5. Ion channels in control of cancer and cell apoptosis. Am. J. Physiol. 
Cell Physiol. 301, C1281-1289 

7. Ramsey, I. S., Delling, M., and Clapham, D. E. (2006) An introduction to TRP channels. 
Annu. Rev. Physiol. 68, 619-647 

8. Tsavaler, L., Shapero, M. H., Morkowski, S., and Laus, R. (2001) Trp-p8, a novel prostate-
specific gene, is up-regulated in prostate cancer and other malignancies and shares high 
homology with transient receptor potential calcium channel proteins. Cancer Res. 61, 3760-
3769 

9. McKemy, D. D., Neuhausser, W. M., and Julius, D. (2002) Identification of a cold receptor 
reveals a general role for TRP channels in thermosensation. Nature 416, 52-58 

10. Knowlton, W. M., Daniels, R. L., Palkar, R., McCoy, D. D., and McKemy, D. D. (2011) 
Pharmacological blockade of TRPM8 ion channels alters cold and cold pain responses in 
mice. PLoS One 6, e25894 

11. Zhang, L., and Barritt, G. J. (2004) Evidence that TRPM8 is an androgen-dependent Ca2+ 
channel required for the survival of prostate cancer cells. Cancer Res. 64, 8365-8373 

12. Monteith, G. R., McAndrew, D., Faddy, H. M., and Roberts-Thomson, S. J. (2007) Calcium 
and cancer: targeting Ca2+ transport. Nat. Rev. Cancer 7, 519-530 

13. Gkika, D., Flourakis, M., Lemonnier, L., and Prevarskaya, N. (2010) PSA reduces prostate 
cancer cell motility by stimulating TRPM8 activity and plasma membrane expression. 
Oncogene 29, 4611-4616 

14. Bidaux, G., Roudbaraki, M., Merle, C., Crepin, A., Delcourt, P., Slomianny, C., Thebault, S., 
Bonnal, J. L., Benahmed, M., Cabon, F., Mauroy, B., and Prevarskaya, N. (2005) Evidence 
for specific TRPM8 expression in human prostate secretory epithelial cells: functional 
androgen receptor requirement. Endocr. Relat. Cancer 12, 367-382 

15. Bidaux, G., Flourakis, M., Thebault, S., Zholos, A., Beck, B., Gkika, D., Roudbaraki, M., 
Bonnal, J. L., Mauroy, B., Shuba, Y., Skryma, R., and Prevarskaya, N. (2007) Prostate cell 
differentiation status determines transient receptor potential melastatin member 8 channel 
subcellular localization and function. J. Clin. Invest. 117, 1647-1657 



8	   [Type	  text]	  
	  

	   8	  

16. Henshall, S. M., Afar, D. E., Hiller, J., Horvath, L. G., Quinn, D. I., Rasiah, K. K., Gish, K., 
Willhite, D., Kench, J. G., Gardiner-Garden, M., Stricker, P. D., Scher, H. I., Grygiel, J. J., 
Agus, D. B., Mack, D. H., and Sutherland, R. L. (2003) Survival analysis of genome-wide 
gene expression profiles of prostate cancers identifies new prognostic targets of disease 
relapse. Cancer Res. 63, 4196-4203 

17. Prevarskaya, N., Skryma, R., Bidaux, G., Flourakis, M., and Shuba, Y. (2007) Ion channels in 
death and differentiation of prostate cancer cells. Cell Death Differ. 14, 1295-1304 

18. Fixemer, T., Wissenbach, U., Flockerzi, V., and Bonkhoff, H. (2003) Expression of the Ca2+-
selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for 
tumor progression. Oncogene 22, 7858-7861 

19. Lehen'kyi, V., Flourakis, M., Skryma, R., and Prevarskaya, N. (2007) TRPV6 channel 
controls prostate cancer cell proliferation via Ca(2+)/NFAT-dependent pathways. Oncogene 
26, 7380-7385 

20. Wissenbach, U., and Niemeyer, B. A. (2007) Trpv6. Handb. Exp. Pharmacol., 221-234 
21. Bolanz, K. A., Hediger, M. A., and Landowski, C. P. (2008) The role of TRPV6 in breast 

carcinogenesis. Mol. Cancer Ther. 7, 271-279 
22. Aydar, E., Yeo, S., Djamgoz, M., and Palmer, C. (2009) Abnormal expression, localization 

and interaction of canonical transient receptor potential ion channels in human breast cancer 
cell lines and tissues: a potential target for breast cancer diagnosis and therapy. Cancer Cell 
Int. 9, 23 

23. Yang, S. L., Cao, Q., Zhou, K. C., Feng, Y. J., and Wang, Y. Z. (2009) Transient receptor 
potential channel C3 contributes to the progression of human ovarian cancer. Oncogene 28, 
1320-1328 

24. Shi, Y., Ding, X., He, Z. H., Zhou, K. C., Wang, Q., and Wang, Y. Z. (2009) Critical role of 
TRPC6 channels in G2 phase transition and the development of human oesophageal cancer. 
Gut 58, 1443-1450 

25. Ding, X., He, Z., Zhou, K., Cheng, J., Yao, H., Lu, D., Cai, R., Jin, Y., Dong, B., Xu, Y., and 
Wang, Y. (2010) Essential role of TRPC6 channels in G2/M phase transition and 
development of human glioma. J. Natl. Cancer Inst. 102, 1052-1068 

26. Fiorio Pla, A., Ong, H. L., Cheng, K. T., Brossa, A., Bussolati, B., Lockwich, T., Paria, B., 
Munaron, L., and Ambudkar, I. S. (2011) TRPV4 mediates tumor-derived endothelial cell 
migration via arachidonic acid-activated actin remodeling. Oncogene  

27. Wei, C., Wang, X., Chen, M., Ouyang, K., Song, L. S., and Cheng, H. (2009) Calcium 
flickers steer cell migration. Nature 457, 901-905 

28. Numata, T., Shimizu, T., and Okada, Y. (2007) TRPM7 is a stretch- and swelling-activated 
cation channel involved in volume regulation in human epithelial cells. Am. J. Physiol. Cell 
Physiol. 292, C460-467 

29. Rybarczyk, P., Gautier, M., Hague, F., Dhennin-Duthille, I., Chatelain, D., Kerr-Conte, J., 
Pattou, F., Regimbeau, J. M., Sevestre, H., and Ouadid-Ahidouch, H. (2012) Transient 
receptor potential melastatin-related 7 channel is overexpressed in human pancreatic ductal 
adenocarcinomas and regulates human pancreatic cancer cell migration. Int. J. Cancer  

30. Gao, H., Chen, X., Du, X., Guan, B., Liu, Y., and Zhang, H. (2011) EGF enhances the 
migration of cancer cells by up-regulation of TRPM7. Cell Calcium 50, 559-568 

31. Chen, J. P., Luan, Y., You, C. X., Chen, X. H., Luo, R. C., and Li, R. (2010) TRPM7 
regulates the migration of human nasopharyngeal carcinoma cell by mediating Ca(2+) influx. 
Cell Calcium 47, 425-432 

32. Parekh, A. B., and Putney, J. W., Jr. (2005) Store-operated calcium channels. Physiol. Rev. 
85, 757-810 

33. Roberts-Thomson, S. J., Peters, A. A., Grice, D. M., and Monteith, G. R. (2010) ORAI-
mediated calcium entry: mechanism and roles, diseases and pharmacology. Pharmacol. Ther. 
127, 121-130 

34. Hogan, P. G., and Rao, A. (2007) Dissecting ICRAC, a store-operated calcium current. 
Trends Biochem. Sci. 32, 235-245 



This	  research	  was	  originally	  published	  in	  the	  Journal	  of	  Biological	  Chemistry.	  Monteith	  
GR,	  Davis	  FM,	  Roberts-‐Thomson	  SJ.	  Calcium	  channels	  and	  pumps	  in	  cancer:	  changes	  and	  
consequences.	  2012	  287(38):31666-‐73.	  ©	  The	  American	  Society	  for	  Biochemistry	  and	  
Molecular	  Biology.	  
	  

	   9 

35. Feske, S., Gwack, Y., Prakriya, M., Srikanth, S., Puppel, S. H., Tanasa, B., Hogan, P. G., 
Lewis, R. S., Daly, M., and Rao, A. (2006) A mutation in Orai1 causes immune deficiency by 
abrogating CRAC channel function. Nature 441, 179-185 

36. Roos, J., DiGregorio, P. J., Yeromin, A. V., Ohlsen, K., Lioudyno, M., Zhang, S., Safrina, O., 
Kozak, J. A., Wagner, S. L., Cahalan, M. D., Velicelebi, G., and Stauderman, K. A. (2005) 
STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. 
Cell Biol. 169, 435-445 

37. McAndrew, D., Grice, D. M., Peters, A. A., Davis, F. M., Stewart, T., Rice, M., Smart, C. E., 
Brown, M. A., Kenny, P. A., Roberts-Thomson, S. J., and Monteith, G. R. (2011) ORAI1-
mediated calcium influx in lactation and in breast cancer. Mol. Cancer Ther. 10, 448-460 

38. Yang, S., Zhang, J. J., and Huang, X. Y. (2009) Orai1 and STIM1 are critical for breast tumor 
cell migration and metastasis. Cancer Cell 15, 124-134 

39. Feng, M., Grice, D. M., Faddy, H. M., Nguyen, N., Leitch, S., Wang, Y., Muend, S., Kenny, 
P. A., Sukumar, S., Roberts-Thomson, S. J., Monteith, G. R., and Rao, R. (2010) Store-
independent activation of Orai1 by SPCA2 in mammary tumors. Cell 143, 84-98 

40. Chen, Y. F., Chiu, W. T., Chen, Y. T., Lin, P. Y., Huang, H. J., Chou, C. Y., Chang, H. C., 
Tang, M. J., and Shen, M. R. (2011) Calcium store sensor stromal-interaction molecule 1-
dependent signaling plays an important role in cervical cancer growth, migration, and 
angiogenesis. Proc. Natl. Acad. Sci. U.S.A. 108, 15225-15230 

41. Motiani, R. K., Abdullaev, I. F., and Trebak, M. (2010) A novel native store-operated calcium 
channel encoded by Orai3: selective requirement of Orai3 versus Orai1 in estrogen receptor-
positive versus estrogen receptor-negative breast cancer cells. J. Biol. Chem. 285, 19173-
19183 

42. Faouzi, M., Hague, F., Potier, M., Ahidouch, A., Sevestre, H., and Ouadid-Ahidouch, H. 
(2011) Down-regulation of Orai3 arrests cell-cycle progression and induces apoptosis in 
breast cancer cells but not in normal breast epithelial cells. J. Cell. Physiol. 226, 542-551 

43. Flourakis, M., Lehen'kyi, V., Beck, B., Raphael, M., Vandenberghe, M., Abeele, F. V., 
Roudbaraki, M., Lepage, G., Mauroy, B., Romanin, C., Shuba, Y., Skryma, R., and 
Prevarskaya, N. (2010) Orai1 contributes to the establishment of an apoptosis-resistant 
phenotype in prostate cancer cells. Cell Death Dis. 1, e75 

44. Natrajan, R., Little, S. E., Reis-Filho, J. S., Hing, L., Messahel, B., Grundy, P. E., Dome, J. 
S., Schneider, T., Vujanic, G. M., Pritchard-Jones, K., and Jones, C. (2006) Amplification and 
overexpression of CACNA1E correlates with relapse in favorable histology Wilms' tumors. 
Clin. Cancer Res. 12, 7284-7293 

45. Wanajo, A., Sasaki, A., Nagasaki, H., Shimada, S., Otsubo, T., Owaki, S., Shimizu, Y., Eishi, 
Y., Kojima, K., Nakajima, Y., Kawano, T., Yuasa, Y., and Akiyama, Y. (2008) Methylation 
of the calcium channel-related gene, CACNA2D3, is frequent and a poor prognostic factor in 
gastric cancer. Gastroenterology 135, 580-590 

46. Strehler, E. E., and Zacharias, D. A. (2001) Role of alternative splicing in generating isoform 
diversity among plasma membrane calcium pumps. Physiol. Rev. 81, 21-50 

47. Brini, M., and Carafoli, E. (2009) Calcium pumps in health and disease. Physiol. Rev. 89, 
1341-1378 

48. Reinhardt, T. A., Lippolis, J. D., Shull, G. E., and Horst, R. L. (2004) Null mutation in the 
gene encoding plasma membrane Ca2+-ATPase isoform 2 impairs calcium transport into 
milk. J. Biol. Chem. 279, 42369-42373 

49. Brini, M., Coletto, L., Pierobon, N., Kraev, N., Guerini, D., and Carafoli, E. (2003) A 
comparative functional analysis of plasma membrane Ca2+ pump isoforms in intact cells. J. 
Biol. Chem. 278, 24500-24508 

50. Pinton, P., Ferrari, D., Rapizzi, E., Di Virgilio, F., Pozzan, T., and Rizzuto, R. (2001) The 
Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced 
apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J. 20, 2690-2701 



10	   [Type	  text]	  
	  

	   10	  

51. VanHouten, J., Sullivan, C., Bazinet, C., Ryoo, T., Camp, R., Rimm, D. L., Chung, G., and 
Wysolmerski, J. (2010) PMCA2 regulates apoptosis during mammary gland involution and 
predicts outcome in breast cancer. Proc. Natl. Acad. Sci. U.S.A. 107, 11405-11410 

52. Lee, W. J., Roberts-Thomson, S. J., and Monteith, G. R. (2005) Plasma membrane calcium-
ATPase 2 and 4 in human breast cancer cell lines. Biochem. Biophys. Res. Commun. 337, 
779-783 

53. Ribiczey, P., Tordai, A., Andrikovics, H., Filoteo, A. G., Penniston, J. T., Enouf, J., Enyedi, 
A., Papp, B., and Kovacs, T. (2007) Isoform-specific up-regulation of plasma membrane 
Ca2+ATPase expression during colon and gastric cancer cell differentiation. Cell Calcium 42, 
590-605 

54. Aung, C. S., Kruger, W. A., Poronnik, P., Roberts-Thomson, S. J., and Monteith, G. R. 
(2007) Plasma membrane Ca2+-ATPase expression during colon cancer cell line 
differentiation. Biochem. Biophys. Res. Commun. 355, 932-936 

55. Aung, C. S., Ye, W., Plowman, G., Peters, A. A., Monteith, G. R., and Roberts-Thomson, S. 
J. (2009) Plasma membrane calcium ATPase 4 and the remodeling of calcium homeostasis in 
human colon cancer cells. Carcinogenesis 30, 1962-1969 

56. De Stefani, D., Raffaello, A., Teardo, E., Szabo, I., and Rizzuto, R. (2011) A forty-kilodalton 
protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476, 336-340 

57. Palty, R., Silverman, W. F., Hershfinkel, M., Caporale, T., Sensi, S. L., Parnis, J., Nolte, C., 
Fishman, D., Shoshan-Barmatz, V., Herrmann, S., Khananshvili, D., and Sekler, I. (2010) 
NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc. Natl. Acad. 
Sci. U.S.A. 107, 436-441 

58. Drago, I., Pizzo, P., and Pozzan, T. (2011) After half a century mitochondrial calcium in- and 
efflux machineries reveal themselves. EMBO J. 30, 4119-4125 

59. Zhu, M. X., Ma, J., Parrington, J., Calcraft, P. J., Galione, A., and Evans, A. M. (2010) 
Calcium signaling via two-pore channels: local or global, that is the question. Am. J. Physiol. 
Cell Physiol. 298, C430-441 

60. Wenner, C. E. (2012) Targeting mitochondria as a therapeutic target in cancer. J. Cell. 
Physiol. 227, 450-456 

61. Cotter, T. G. (2009) Apoptosis and cancer: the genesis of a research field. Nat. Rev. Cancer 9, 
501-507 

62. Cory, S., and Adams, J. M. (2002) The Bcl2 family: regulators of the cellular life-or-death 
switch. Nat. Rev. Cancer 2, 647-656 

63. Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T. I., Jones, D. P., and 
Wang, X. (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from 
mitochondria blocked. Science 275, 1129-1132 

64. Pinton, P., Ferrari, D., Magalhaes, P., Schulze-Osthoff, K., Di Virgilio, F., Pozzan, T., and 
Rizzuto, R. (2000) Reduced loading of intracellular Ca(2+) stores and downregulation of 
capacitative Ca(2+) influx in Bcl-2-overexpressing cells. J. Cell Biol. 148, 857-862 

65. Palmer, A. E., Jin, C., Reed, J. C., and Tsien, R. Y. (2004) Bcl-2-mediated alterations in 
endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent 
sensor. Proc. Natl. Acad. Sci. U.S.A. 101, 17404-17409 

66. Rong, Y. P., Aromolaran, A. S., Bultynck, G., Zhong, F., Li, X., McColl, K., Matsuyama, S., 
Herlitze, S., Roderick, H. L., Bootman, M. D., Mignery, G. A., Parys, J. B., De Smedt, H., 
and Distelhorst, C. W. (2008) Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2's 
inhibition of apoptotic calcium signals. Mol. Cell 31, 255-265 

67. Giacomello, M., Drago, I., Pizzo, P., and Pozzan, T. (2007) Mitochondrial Ca2+ as a key 
regulator of cell life and death. Cell Death Differ. 14, 1267-1274 

68. Gelebart, P., Kovacs, T., Brouland, J. P., van Gorp, R., Grossmann, J., Rivard, N., Panis, Y., 
Martin, V., Bredoux, R., Enouf, J., and Papp, B. (2002) Expression of endomembrane 
calcium pumps in colon and gastric cancer cells. Induction of SERCA3 expression during 
differentiation. J. Biol. Chem. 277, 26310-26320 

69. Papp, B., and Brouland, J. P. (2011) Altered Endoplasmic Reticulum Calcium Pump 
Expression during Breast Tumorigenesis. Breast Cancer (Auckl) 5, 163-174 



This	  research	  was	  originally	  published	  in	  the	  Journal	  of	  Biological	  Chemistry.	  Monteith	  
GR,	  Davis	  FM,	  Roberts-‐Thomson	  SJ.	  Calcium	  channels	  and	  pumps	  in	  cancer:	  changes	  and	  
consequences.	  2012	  287(38):31666-‐73.	  ©	  The	  American	  Society	  for	  Biochemistry	  and	  
Molecular	  Biology.	  
	  

	   11 

70. Prasad, V., Boivin, G. P., Miller, M. L., Liu, L. H., Erwin, C. R., Warner, B. W., and Shull, 
G. E. (2005) Haploinsufficiency of Atp2a2, encoding the sarco(endo)plasmic reticulum 
Ca2+-ATPase isoform 2 Ca2+ pump, predisposes mice to squamous cell tumors via a novel 
mode of cancer susceptibility. Cancer Res. 65, 8655-8661 

71. Liu, L. H., Boivin, G. P., Prasad, V., Periasamy, M., and Shull, G. E. (2001) Squamous cell 
tumors in mice heterozygous for a null allele of Atp2a2, encoding the sarco(endo)plasmic 
reticulum Ca2+-ATPase isoform 2 Ca2+ pump. J. Biol. Chem. 276, 26737-26740 

72. Xiang, M., Mohamalawari, D., and Rao, R. (2005) A novel isoform of the secretory pathway 
Ca2+,Mn(2+)-ATPase, hSPCA2, has unusual properties and is expressed in the brain. J. Biol. 
Chem. 280, 11608-11614 

73. Van Baelen, K., Dode, L., Vanoevelen, J., Callewaert, G., De Smedt, H., Missiaen, L., Parys, 
J. B., Raeymaekers, L., and Wuytack, F. (2004) The Ca2+/Mn2+ pumps in the Golgi 
apparatus. Biochim. Biophys. Acta 1742, 103-112 

74. Grice, D. M., Vetter, I., Faddy, H. M., Kenny, P. A., Roberts-Thomson, S. J., and Monteith, 
G. R. (2010) Golgi calcium pump secretory pathway calcium ATPase 1 (SPCA1) is a key 
regulator of insulin-like growth factor receptor (IGF1R) processing in the basal-like breast 
cancer cell line MDA-MB-231. J. Biol. Chem. 285, 37458-37466 

75. Okunade, G. W., Miller, M. L., Azhar, M., Andringa, A., Sanford, L. P., Doetschman, T., 
Prasad, V., and Shull, G. E. (2007) Loss of the Atp2c1 secretory pathway Ca(2+)-ATPase 
(SPCA1) in mice causes Golgi stress, apoptosis, and midgestational death in homozygous 
embryos and squamous cell tumors in adult heterozygotes. J. Biol. Chem. 282, 26517-26527 

76. Faddy, H. M., Smart, C. E., Xu, R., Lee, G. Y., Kenny, P. A., Feng, M., Rao, R., Brown, M. 
A., Bissell, M. J., Roberts-Thomson, S. J., and Monteith, G. R. (2008) Localization of plasma 
membrane and secretory calcium pumps in the mammary gland. Biochem. Biophys. Res. 
Commun. 369, 977-981 

77. Anantamongkol, U., Takemura, H., Suthiphongchai, T., Krishnamra, N., and Horio, Y. (2007) 
Regulation of Ca2+ mobilization by prolactin in mammary gland cells: possible role of 
secretory pathway Ca2+-ATPase type 2. Biochem. Biophys. Res. Commun. 352, 537-542 

78. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 
646-674 

79. Koppenol, W. H., Bounds, P. L., and Dang, C. V. (2011) Otto Warburg's contributions to 
current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325-337 

80. Gatenby, R. A., and Gillies, R. J. (2004) Why do cancers have high aerobic glycolysis? Nat. 
Rev. Cancer 4, 891-899 

81. Amuthan, G., Biswas, G., Ananadatheerthavarada, H. K., Vijayasarathy, C., Shephard, H. M., 
and Avadhani, N. G. (2002) Mitochondrial stress-induced calcium signaling, phenotypic 
changes and invasive behavior in human lung carcinoma A549 cells. Oncogene 21, 7839-
7849 

82. Mankad, P., James, A., Siriwardena, A. K., Elliott, A. C., and Bruce, J. I. (2011) Insulin 
protects pancreatic acinar cells from cytosolic calcium overload and inhibition of the plasma 
membrane calcium pump. J. Biol. Chem.  

83. Bissell, M. J., and Hines, W. C. (2011) Why don't we get more cancer? A proposed role of the 
microenvironment in restraining cancer progression. Nat. Med. 17, 320-329 

84. Bissell, M. J., and Labarge, M. A. (2005) Context, tissue plasticity, and cancer: are tumor 
stem cells also regulated by the microenvironment? Cancer Cell 7, 17-23 

85. Roskelley, C. D., and Bissell, M. J. (2002) The dominance of the microenvironment in breast 
and ovarian cancer. Semin. Cancer Biol. 12, 97-104 

86. Kalluri, R., and Zeisberg, M. (2006) Fibroblasts in cancer. Nat. Rev. Cancer 6, 392-401 
87. Murata, T., Mizushima, H., Chinen, I., Moribe, H., Yagi, S., Hoffman, R. M., Kimura, T., 

Yoshino, K., Ueda, Y., Enomoto, T., and Mekada, E. (2011) HB-EGF and PDGF mediate 
reciprocal interactions of carcinoma cells with cancer-associated fibroblasts to support 
progression of uterine cervical cancers. Cancer Res. 71, 6633-6642 



12	   [Type	  text]	  
	  

	   12	  

88. DeWald, D. B., Torabinejad, J., Samant, R. S., Johnston, D., Erin, N., Shope, J. C., Xie, Y., 
and Welch, D. R. (2005) Metastasis suppression by breast cancer metastasis suppressor 1 
involves reduction of phosphoinositide signaling in MDA-MB-435 breast carcinoma cells. 
Cancer Res. 65, 713-717 

89. Dhennin-Duthille, I., Gautier, M., Faouzi, M., Guilbert, A., Brevet, M., Vaudry, D., 
Ahidouch, A., Sevestre, H., and Ouadid-Ahidouch, H. (2011) High expression of transient 
receptor potential channels in human breast cancer epithelial cells and tissues: correlation 
with pathological parameters. Cell. Physiol. Biochem. 28, 813-822 

90. El Boustany, C., Bidaux, G., Enfissi, A., Delcourt, P., Prevarskaya, N., and Capiod, T. (2008) 
Capacitative calcium entry and transient receptor potential canonical 6 expression control 
human hepatoma cell proliferation. Hepatology 47, 2068-2077 

91. Yee, N. S., Zhou, W., and Lee, M. (2010) Transient receptor potential channel TRPM8 is 
over-expressed and required for cellular proliferation in pancreatic adenocarcinoma. Cancer 
Lett. 297, 49-55 

92. Schmidt, U., Fuessel, S., Koch, R., Baretton, G. B., Lohse, A., Tomasetti, S., Unversucht, S., 
Froehner, M., Wirth, M. P., and Meye, A. (2006) Quantitative multi-gene expression profiling 
of primary prostate cancer. Prostate 66, 1521-1534 

93. Kalogris, C., Caprodossi, S., Amantini, C., Lambertucci, F., Nabissi, M., Morelli, M. B., 
Farfariello, V., Filosa, A., Emiliozzi, M. C., Mammana, G., and Santoni, G. (2010) 
Expression of transient receptor potential vanilloid-1 (TRPV1) in urothelial cancers of human 
bladder: relation to clinicopathological and molecular parameters. Histopathology 57, 744-
752 

94. Czifra, G., Varga, A., Nyeste, K., Marincsak, R., Toth, B. I., Kovacs, I., Kovacs, L., and Biro, 
T. (2009) Increased expressions of cannabinoid receptor-1 and transient receptor potential 
vanilloid-1 in human prostate carcinoma. J. Cancer Res. Clin. Oncol. 135, 507-514 

95. Zhuang, L., Peng, J. B., Tou, L., Takanaga, H., Adam, R. M., Hediger, M. A., and Freeman, 
M. R. (2002) Calcium-selective ion channel, CaT1, is apically localized in gastrointestinal 
tract epithelia and is aberrantly expressed in human malignancies. Lab. Invest. 82, 1755-1764 

96. Wang, X. T., Nagaba, Y., Cross, H. S., Wrba, F., Zhang, L., and Guggino, S. E. (2000) The 
mRNA of L-type calcium channel elevated in colon cancer: protein distribution in normal and 
cancerous colon. Am. J. Pathol. 157, 1549-1562 

97. Gackiere, F., Bidaux, G., Delcourt, P., Van Coppenolle, F., Katsogiannou, M., Dewailly, E., 
Bavencoffe, A., Van Chuoi-Mariot, M. T., Mauroy, B., Prevarskaya, N., and Mariot, P. 
(2008) CaV3.2 T-type calcium channels are involved in calcium-dependent secretion of 
neuroendocrine prostate cancer cells. J. Biol. Chem. 283, 10162-10173 

98. Kang, S. S., Han, K. S., Ku, B. M., Lee, Y. K., Hong, J., Shin, H. Y., Almonte, A. G., Woo, 
D. H., Brat, D. J., Hwang, E. M., Yoo, S. H., Chung, C. K., Park, S. H., Paek, S. H., Roh, E. 
J., Lee, S. J., Park, J. Y., Traynelis, S. F., and Lee, C. J. (2010) Caffeine-mediated inhibition 
of calcium release channel inositol 1,4,5-trisphosphate receptor subtype 3 blocks glioblastoma 
invasion and extends survival. Cancer Res. 70, 1173-1183 

99. Shibao, K., Fiedler, M. J., Nagata, J., Minagawa, N., Hirata, K., Nakayama, Y., Iwakiri, Y., 
Nathanson, M. H., and Yamaguchi, K. (2010) The type III inositol 1,4,5-trisphosphate 
receptor is associated with aggressiveness of colorectal carcinoma. Cell Calcium 48, 315-323 

100. Endo, Y., Uzawa, K., Mochida, Y., Shiiba, M., Bukawa, H., Yokoe, H., and Tanzawa, H. 
(2004) Sarcoendoplasmic reticulum Ca(2+) ATPase type 2 downregulated in human oral 
squamous cell carcinoma. Int. J. Cancer 110, 225-231 

 
 
	   	  



This	  research	  was	  originally	  published	  in	  the	  Journal	  of	  Biological	  Chemistry.	  Monteith	  
GR,	  Davis	  FM,	  Roberts-‐Thomson	  SJ.	  Calcium	  channels	  and	  pumps	  in	  cancer:	  changes	  and	  
consequences.	  2012	  287(38):31666-‐73.	  ©	  The	  American	  Society	  for	  Biochemistry	  and	  
Molecular	  Biology.	  
	  

	   13 

FOOTNOTES. 
 
This work was supported by the National Health and Medical Research Council (631347, 569645).  
 
Abbreviations: Bcl-2, B cell lymphoma-2; [Ca2+]CYT, cytosolic calcium; ERK, extracellular signal-
regulated kinase; IGF1R, insulin-like growth factor receptor; NFAT, nuclear factor of activated T 
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FIGURE LEGEND. 
 
Figure 1—ORAI1 regulates processes important for cancer cell proliferation, migration and 
apoptosis.  
A) In MCF7 human breast cancer cells SPCA2 partially localizes to the plasma membrane and 
interacts with ORAI1 to mediate store-independent Ca2+ influx. This is associated with 
phosphorylation of extracellular signal-regulated kinase-1/2, nuclear translocation of NFAT and 
increased cell proliferation (39). B) Silencing of ORAI1 or STIM1 in MDA-MB-231 human breast 
cancer cells reduces store-operated Ca2+ influx and is associated with reduced focal adhesion turnover, 
cell migration and metastasis formation in vivo. Expression of constitutively active Ras or Rac in 
these cells partially rescues impaired focal adhesion turnover and cell migration induced by inhibition 
of store-operated Ca2+ entry, implicating possible roles for these small GTPases in Ca2+-dependent 
cell migration (39). C) In LNCaP human prostate cancer cells ORAI1 expression is regulated by the 
androgen receptor (AR) and ORAI1 silencing is associated with resistance to thapsigargin (TG), 
tumor necrosis factor α (TNFα), cisplatin and oxaliplatin -induced apoptosis (43). In panel A and B 
(black) ORAI1 expression may promote carcinogenesis; in panel C (red) ORAI1 expression may 
inhibit carcinogenesis (i.e. promote apoptosis). 
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Table 1: Examples of altered expression of calcium channels and pumps in human cancers 
Ca2+ pump 
or channel   Cancer type Change with cancer 

Reference mRNA Protein 

Transient receptor potential channels 
TRPC1 Breast cancer: patient tissue samples ↑ ↑ (89) 
TRPC3 Ovarian cancer: patient tissue samples  ↑ (23) 

Breast cancer: patient tissue samples ↑  (22) 
TRPC6 Esophageal cancer: patient tissue samples ↑ ↑ (24) 

Glioma: patient tissue samples ↑ ↑ (25) 
Liver cancer: patient tissue samples ↑ ↑ (90) 
Breast cancer: patient tissue samples ↑ ↑ (22,89) 

TRPM7 Pancreatic cancer: patient tissue samples ↑ ↑ (29) 
Breast cancer: patient tissue samples ↑ ↑ (89) 

TRPM8 Pancreatic cancer: cell lines (mRNA) & patient tissue samples (protein) ↑ ↑ (91) 
Prostate cancer: cell lines & patient tissue samples ↑ ↑ (8,17,92) 
Breast cancer: patient tissue samples ↑ ↑ (8,89) 
Melanoma: patient tissue samples ↑  (8) 
Colorectal cancer: patient tissue samples ↑  (8) 
Lung cancer: patient tissue samples ↑  (8) 

TRPV1 Bladder cancer: patient tissue samples ↓ ↓ (93) 
Prostate cancer: patient tissue samples ↑ ↑ (94) 

TRPV6 Breast cancer: patient tissue samples ↑ ↑ (18,21,89,95) 
Prostate cancer: patient tissue samples ↑ ↑ (18,95) 
Thyroid cancer: patient tissue samples  ↑ (95) 
Colon cancer: patient tissue samples  ↑ (95) 
Ovarian cancer: patient tissue samples  ↑ (95) 

Voltage-gated calcium channels 
Cav1.2 Colon cancer: patient tissue samples ↑  (96) 
Cav3.2 Prostate cancer: patient tissue samples ↔ ↑ (97) 

Store-operated calcium channels 
ORAI1 Breast cancer: cell lines ↑ ↔ (37,41) 
ORAI3 Breast cancer: cell lines & patient tissue samples (mRNA only) ↑, ↔ ↑ (37,41,42) 

Plasma membrane calcium ATPases 
PMCA2 Breast cancer: cell lines (mRNA only) & patient tissue samples ↑ ↑ (51,52) 
PMCA4 Colon cancer: patient tissue samples ↓  (55) 

Store release channels 
IP3R1 Glioblastoma: patient tissue samples ↓  (98) 
IP3R3 Glioblastoma: patient tissue samples ↑  (98) 

Colorectal cancer: patient tissue samples  ↑ (99) 

Sarcoplasmic/endoplasmic reticulum calcium ATPases 
SERCA2 Oral cancer: cell lines (mRNA only) & patient tissue samples ↓ ↓ (100) 
SERCA3 Colon cancer: cell lines & patient tissue samples  ↓ (68) 

Breast cancer: patient tissue samples  ↓ (69) 

Secretory pathway calcium ATPases 
SPCA1 Breast cancer: basal-like clinical samples & cell lines ↑  (74) 
SPCA2 Breast cancer: cell lines & patient tissue samples (mRNA only) ↑ ↑* (39) 

↑: increase; ↓: decrease; ↔: no significant difference; *MCF-7 vs MCF-10A 
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