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Synopsis 

In many cases the analysis of the consolidation 

of axi-symmetric bodies subjected to non axi-symmetric 

loading may be carried out without recourse to a full 

three-dimensional treatment. Advantage may be taken 

of the axi-symmetric nature of the body and field 

quantities such as displacement and pore pressure can 

be given a Fourier representation. The problem is 

then reduced from one in three spatial dimensions (r, 

6, z) and the time domain to one in two spatial 

dimensions (r, z) and the time domain. The method is 

illustrated with two examples; one is a tunnelling 

problem, the other involves consolidation due to 

lateral loading of a pile. 

. ...... 
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1. INTRODUCTION 

The consolidation of a saturated, elastic soil under 

one-dimensional conditions was investigated by Terzaghi (1943) 

Biot (194la, 194lb) later extended the theory to three­

dimensional situations and the governing equations he developed 

are quite complicated. They combine the complexities of an 

elastic problem coupled with those of a diffusion process. For 

this reason it has been possible to devise analytic solutions 

to only the simplest of problems (e.g. Gibson and McNamee, 1957; 

Mandel, 1953; McNamee and Gibson, 1960) and for more complicated 

situations it has been necessary to devise numerical techniques. 

Several investigators have used a finite element 

approach (e.g. Booker, 1973; Christain and Boehmer, 1970; 

Hwang et al., 1971; Sandhu and Wilson, 1969) in which a 

marching technique is used to solve the finite element equations. 

In principle, it is possible to employ these numerical techniques 

for problems in one, two and even three spatial dimensions. 

In practice, however, solutions to three-dimensional problems 

can be costly in computer time and often require a large amount 

of data preparation. 

There exists a certain class of problems where the 

loading may be three-dimensional in nature but the geometry 

of the consolidating body is axi-syrometric. Some practical 

situations where these conditions arise include the lateral 

loading of piles and caissons and some problems in tunnelling. 

In such cases it may be more economical to take into account 

the axi-symmetric nature of the body when investigating its 

three-dimensional deformation and loading. A method for doing 

so is presented in this paper. The method is illustrated with 

several example problems. 

There have been earlier attempts to analyse the three­

dimensional deformations of axi-symmetric elastic bodies 

(Wilson, 1965; Randolph, 1977) and there has been a recent 

application of the technique to non-linear problems (Winnicki 

and Zienkiewicz, 1979), but none of these has included a treat­

ment of time dependent consolidation. 



2. GOVERNING EQUATIONS 
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2.1 Fourier Representation 

A cylindrical coordinate system (r, 6 , z) is adopted 

and the symbol t is used to represent time. 

The analysis is based on the assumption that field 

quantities such as displacement and pore pressure can be given 

a Fourier representation. In general, each of these quantities 

is a function of (r, 6 , z, t) but because of the axi-symmetric 

nature of these problems it is possible to write 

N 

u
<nl 

u (r, e' z,t) I (r, z,t) cos (ne + E
n

) 
r 

n=O 
r 

(la) 

N 

u
<nl 

u
e 

(r, e, z ,t) I (r, z,t) sin (ne + E
n

) 
n=O 

e (lb) 

N 

u
<nl 

u (r, e' z' t) I (r,z,t) cos (ne + E
n) 

z n=O 
z 

(lc) 

N 

P
(n) 

p (r, e, z,t) I (r, z,t) cos (ne + E
n

) 
n=O 

(ld) 

where (u
r

' u
6

, u
2

) are the (r, 6, z) components of displacement, 

respectively, p is the excess pore pressure, n = 0, l, 2, . . . .  N, 

where N may be finite or infinite and E
n 

is used to establish 

a reference point for the measurement of e. 

It is possible also to express the boundary loading 

in a form similar to that given in Equation l. Hence the solution 

to any general problem thus reduces to one of finding the Fourier 

coefficients u
{n) etc. 
r 
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2. 2 Constraints at r 0 

At the centreline (r = 0 ) of the axi-symmetric body 
all field quantities must be single valued. By considering 
the Cartesian components of these field quantities it may be 
shown that certain conditions at r = 0 need to be met. These 
conditions are: 

For n = 0 , u<ol 
r u<ol 

e 

For n = 1, u<'l + u ( l) 

r 8 

p ( 1) u<'l 
z 

For n > 1, u(n) 
r 

u<nl 
8 

u<nl 
z 

P (n) 

2.3 Effective Stress Concept 

0 (2a) 

0 (2b) 

0 (2c) 

0 (2d) 

0 (2e) 

0 (2f) 

0 (2g) 

It is assumed that the total normal stress transmitted 
across any surface can be thought of as the resultant of an 
effective stress and a pore pressure. This can be expressed as 

a =  a' - p i ( 3) 



where 
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a 

a' 

i (1, 1, 1, 0, 0, O)
T 

and tensile stress is taken as positive. 

2.4 Stain Components and Hooke's Law 

In a cylindrical coordinate system the strain -

displacement relations are 

E
rr 

see 

E 
zz 

au 
r 

ar 

u 
r 
r 

au 
z 

+ 

----az 

Y r8 

1 au8 y 
r ae ·  ez 

Yzr 

1 
au au8 r 

+ 
r ae ar -

au8 1 au 
z 

+ 
----az r ae 

au ()u 
z r 

ar + ----az 

u
s 
r 

(4) 

The increment of effective stress is related to the 

increment of strain E by Hooke's law, viz. 

a' D E 

For an isotropic elastic material 

D >. + 2G A 

A + 2G 

A 

A 

A + 2G 

0 

0 

0 

G 

0 

0 

0 

0 

0 

0 

0 

0 

G 0 

symmetric G 

(5) 
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\ and G are the Lame parameters for the soil under fully 

drained contions, 

and o' is given above. However,the analysis is easily extended 

to cover the case where the soil is transversely isotropic. 

2.5 Fluid Flow and Darcy's Law 

It is assumed that the movement of pore fluid through 

the saturated elastic soil is governed by Darcy's law, viz. 

v 
k I/ 
y - p 

w 
(6) 

where v (v , v8, v )
T

, are the components of the superficial 
r z 

velocity of the pore fluid. 

k isotropic permeability coefficient 

yw 
unit weight of pore fluid 

[a 1 a a )T 
. . I/ 

or' r aB' az ' lS the gradlent operator. 

Equation 6 is valid for an isotropic material but the 

analysis would also hold for a soil which had different vertical 

and horizontal permeabilities. 

It is also assumed that the pore water is incompressible 

when compared to the soil mixture and thus the rate of volume 

decrease of a soil element equals the rate at which water is 

expelled. This condition is expressed as 

v (7) 
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where 

2.6 Equilibrium, Boundary Conditions and 

Initial Condition 

At any time during the consolidation process the total 

stresses are in equilibrium with the loads applied at the 

boundaries and with any body forces. 

The governing equations must be integrated subject to 

the stress, pore pressure and displacement boundary conditions 

and also subject to the initial condition. 

0 when t (8) 

This last equation follows from the assumption that 

the pore pressure is incompressible relative to the soil skeleton. 

Thus there can be no instantaneous volume change even though 

a load is applied suddenly. 

2.7 Virtual Work 

Let the soil body occupy a region V bounded by a 

surface S. Further, let u and u + du be displacement fields 

which satisfy the boundary conditions of the problem. Then it 

is well known that the equilibrium equations and the stress 

boundary conditions are satisfied if and only if 

I 
T T 

I 
T 

{d� . a + du . F} dV + du . T dS 0 (Sa) 

v s 

where F vector body forces 

T vector of surface tractions, 

for all virtual displacement fields d�. 

On inserting Hooke's law this equation becomes 
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0 (Bb) 

v v s 

Similarly, let p and p + dp be two sets of pore pressures 

which satisfy the pore pressure boundary conditions, then 

Equation 7 is satisfied if and only if 

dE 

v - at
v_dp} dV 0 

On inserting Darcy's law this becomes 

v 

where k 

dE 

dp. k. �p + 
at

v dp} dV 

[: : :] 

(Be) 

0 (Bd) 

It is also possible to incorporate different coefficients for 

vertical and horizontal permeability into the matrix k. 

3. FINITE ELEMENT EQUATIONS 

The governing equations for the consolidation of a 

soil with an elastic skeleton have been set out above - Equations 

Bb and Bd. An approximate solution of these equations may be 

obtained by an application of the finite element technique of 

spatial discretisation. 

(a) Suppose that the continuous values of ur' u8, uz, p can be 

adequately represented by their values at selected nodes. 

Then it is also possible, for the axi-symmetric case, to 
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represent the continuous values of the Fourier coefficient 

u;n), u �n)
, u�n)

, p(n) 
by their values at these same nodes, 

i.e. by � ;n)
, � �n)

, � �n)
, g

(n)
. 

Hence we may write 

u
r 

N
T

. 0 
-r -r 

u8 
T 

�8· �8 

uz N
T

. 0 
-Z -Z 

p N
T

. -P '1 

For convenience the superscript (n) has been dropped in 

Equations 9 and in the following. 

(9a) 

(9b) 

(9c) 

(9d) 

(b) The vector of strain components E may be written in terms 
of the nodal values of Fourier c�efficients o

T 
( �r' �8, 

�z)' i.e. 

(10) 

where B 0 0 

n 
N

T 
0 r -8 

0 
aN

T 

0 -Z 

----az 

aN
T 

1 
N

T -8 
+ 0 ar r -8 

aNT 

N
T -8 n 

az- r z 
0 

3N
T 

0 -z 
ar 
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A diag (C, C, C, S, C, S) 

(c) The volume strain may be written as 

where 

and 
.T 
l 

E 
v 

(1, l, 1, 0, 0, 0) 

(ll) 

(d) The vector containing the gradients of excess pore pressure 

may be written as 

where 

r. E. � 

E 

r diag (C, S, C) 

( 12) 

If Equations 9 to 12 are substituted into Equation Sb then 

it is found that 

0 (13a) 

where the form of K, L, and m is discussed below. Equation 13a 

is true for arbitrary variations do and thus 

Ko m (l3b) 

In similar fashion if Equations 9 to 12 are substituted 

into Equation Sd then it is found that 

r 
r 

do 

f L ---=:. - <P q 
dt - 0 (l3c) 
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where � is also discussed below. Equation l3c is true for 
arbitrary variations dg and thus 

d6 
- L dt 

- � g 0 (l3d) 

For the special case where the displacements and the excess 

pore pressure can be given a Fourier representation, as in 

Equations 9, the matrices K, L, � and the vector m have the 

following forms. For the nth Fourier component 

K If I (A. B)T. D.(AB) rd6 dr dz 

fi BT. D. B r dr dz 

B D. ! 

I (Ic' Ic' Ic' Is' Ic' I ) 
T 

s 

27[ 

I J cos2 (ne + e:n) de 27f cos2e: , n 0 c n 

TI, n 1, 2. 

27[ 

I r sin2 (ne + En) d8 27f sin2£ , n 0 s n 
) 

7f' n 1, 2. 

L
T Iff d. N

T 

-P 
rd8 dr dz 

Ic If d. �� r dr dz 
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Jf ET. k. rdr dz 

k (y:)· diag (I
c

, I
s

' I
c

) for an isotropic material 

m vector of Fourier coefficients for applied nodal 

force. 

4. INTEGRATION OF THE FINITE ELEMENT EQUATIONS 

A solution is required to the finite element Equations 

13b and 13d. 

Suppose that the 

and it is required to 

t . Equation 13d can 
1 

solution ( �
0

, q
0

) at time t
0 

is known 

evaluate the solution (o , q ) at time 1 1 
be integrated approximately in the form 

where � 1 

- L�o - � {S�q + q } �t = 0 - - -0 

6 
-o 

and S defines the particular integration rule used. 

Equations 13b and 13d may now be written in the form 

(14) 

(15) 



where llm m 
- 1 

m 
0 
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A solution for the nodal displacement and pore pressure 
coefficients �r etc, may be obtained at a discrete number of 

times by solving Equations 15 and using a marching process. 

The whole process is repeated for the n Fourier terms which 

are of interest and the solution for the nodal displacements 

and excess pore pressure can then be assembled using Equations 

1 and 9. For stability of the marching process S ?- � (Booker 

and Small, 1975). 

There are some important problems where the complete 
solution can be found using only one Fourier component, i.e. 

only one value of n. In other problems only a few Fourier terms 

are necessary for an adequate approximation to the solution. 

In both cases the present analysis is much more economical than 

a full three-dimensional finite element analysis of consolidation. 

5. EXAMPLES 

In order to illustrate the theory presented above, two 

example problems are considered. The first deals with the 

excavation of a long tunnel in saturated elastic soil, while 

the second investigates the behaviour of a pile subjected to 

lateral loading. 

5.1 Tunnel Problem 

The problem of determining the displacement, stress 

and pore pressure changes in an elastic medium, due to the 

removal of material to form a long tunnel, has been studied 

by the present authors (Carter and Booker, 1981). For this 

problem it has been assumed that tunnel cutting occurs instan­

taneously under conditions of plane strain (Ez = 0), and that 

the in situ stress state, before cutting, can be completely 

described by vertical and horizontal components of total and 

effective stress. It is also assumed that the tunnel is at 

large depth so that, to sufficient accuracy, the in situ stress 

in the region of the tunnel is homogeneous and given by 
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v 

o' H 
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vertical effective stress 

horizontal effective stress 

pore pressure. 

The following set of boundary conditions at the tunnel 

wall (r r
0

) are used to model the removal of material 

!!.0 
rr 

flare 

flp 

where o
m 

and 8 

0 
+ 

o
d 

cos 2 8  

� 
m 

- o
d 

sin 28 

-
Po ) 

! (o' + oH') + P 2 v 0 

1 
2 (o� - a�) 

when r r 
0 

the anticlockwise angle measured from the 

horizontal (see Fig. la). 

(16) 

For an elastic soil the principle of superposition may 

be used to separate out the following components of the problem. 

Case 1: 

flo - 0 
1 rr m 

flare 
0 

� 
when r r

o 

flp 0 
J 

(17a) 

Case II: ----

flo 
rr 

0 

flare 
0 when r r 

0 
(17b) 

flp -
Po 
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Case III: 

6o " - o
d

coo '} 
rr 

6o
re 

(l7c) o
d 

s�n 26 when r r 
0 

6p 0 

In what follows only Case III is considered. Physically 

this component of the overall problem arises only when the in 

situ stress state is anisotropic, i.e. a� t oH. It is only 

in such circumstances that there will be a variation with 8 
of the displacements and stress changes. 

Case III has been analysed using the finite element 

technique described above; the mesh used is shown in Fig. 1. 
Quadrilateral elements with eight nodes were employed. Each 

node was assigned four degrees of freedom, corresponding to the 

Fourier coefficients U
r

' u6, U
2 

and P. In the general case, the 

Fourier coefficients are assumed to vary within each element 

as quadratic functions of the coordinates r and z. In this 

particular problem, however, there is no variation of the field 

quantities in the z coordinate direction and, indeed, at all 

points and at all times U
2 

= 0. It is also obvious that for 

Case III only one Fourier term, corresponding to n = 2, is 

required. 

Finite element solutions for this problem have been 

plotted in non-dimensional form in Figs 2-4. Time t is measured 

from the instant that the material within the tunnel is removed, 

and it has been non-dimensionalised according to the following 

expression 

T 2G. (1 - v•) 
(1 - 2v') • 

t 
2 

r 
0 

( 18) 

Also shown in Figs. 2 to 4 are the solutions for U
r

' u6 and P 

obtained using the analytical method. In all cases the agreement 

between the analytic and finite element solutions is good. At 

any time t, and at any location (r, e, z) the displacement 

components and the excess pore pressure may be recovered from 
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- Analytical solutions 
x F.E. solution for T=0·1 
o F.E. solution for T= 1 
o F.E. solution for T = 10 

T _ i.2G. (1-v') .1. 
- Yw (1-2v') rf 

v'= 0 

Comparison of analytical and finite element 
solutions for isochrones of radial desplacement 
co-efficient 



2-5 

2-0 
(.2G Ue) 
\ CTd ro 

1-5 

1-0 

o.5 

FIGURE 3 

17 

- Analytical solutions 

x F.E. solution for T=0·1 

o F. E. solution for T = 1 

c F. E. solution for T = 10 

T = i.2G. (1-v'). i 
Yw (1-2v') r� 

v'= 0 

Comparison of analytical and finite element 
solutions for isochrones of circumferential 
displacement co-efficient 



-o.a 

-o.6 T=O 

( :crd) 

-oA 

-o.2 

18 

- Analytical solutions 
x F.E. solution T=0·1 
o F. E. solution T = 1 

T = k. 2G. (1-v') .!_ 
Yw (1 -2v') r02 

v'= 0 

0 ������----� 

FIGURE 4 

1 2 4 6 a 

( �.) 

Comparison of analytical and finite element 
solutions for isochrones of pore pressure 
co-efficient 

10 



19 

the results of Figs. 2 to 4, together with the Fourier expressions 
I 

of Equations 1 where n = 2. 

5.2 Lateral Loading of a Pile 

In the second example the time dependent behaviour of 

a vertical pile, embedded in a saturated elastic soil and 

subjected to a lateral load applied at the mudline, has been 

studied. The problem is defined in Fig. 5, which also indicates 

the Finite Element mesh used in the computations. 

For piles subjected to lateral load it is necessary 
. {!) 

to find only one set of Fourier terms, l.e. U
r 

etc, corres-

ponding to a value of n = l. It may also be noted here that 

for a pile subjected to pure axial load, is also only necessary 

to find the one set of Fourier terms, i.e. U
{o) 

etc, corres-
r 

ponding to n = 0. 

In order to be specific, the following values were 

adopted for the example problem 

where 

9, 
20 

r 
0 

E 
_ll. 
G

s 
10 3 

H 
l 

G
s 

2 
r 

0 

V' 0.4 
s 

embedded pile length 

r
0 

radius of pile 

E
p 

Young's modulus of pile material 

G
s 

shear modulus of elastic soil 
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v' drained Poisson's ratio of elastic soil 
s 

H magnitude of applied lateral load. 

Predictions of the lateral displacement of the pile 

head p in the direction of the applied force H are plotted 

against time in Fig. 6. As before, a non-dimensional time is 

plotted as the abscissa, using Equation 18 with v' = v� . Fig. 6 

shows that p increases with time from some immediate (undrained) 

response p
u 

to a final (fully drained) response p
d

. The values 

of p
u 

and p
d 

obtained here are in good agreement with finite 

element solutions obtained, independently, by Randolph ( 1977). 

Fig. 7 shows a plot of contours of the pore pressure 
-2 

coefficient P at a time T =  10 i.e. 'early', when very 

little consolidation has occurred. It is clear that the 

significant values of excess pore pressure generated in the 

soil by the application of the horizontal load are mostly 

confined to a region close to the pile and close to the soil 

surface. Fig. 8 gives an indication of the distribution of 

excess pore pressure at an 'intermediate' time, T = 3, when 

some of the original excess pore pressures have dissipated. 

6. CONCLUSIONS 

A numerical technique has been presented which provides 

an efficient analysis of the consolidation of axi-symmetric 

bodies subjected to non-axi-symmetric loading. The technique 

is suitable for problems in which the field quantities such 

as displacement, pore pressure and stress and the applied 

boundary l oading can be expressed in the form of a Fourier 

series in the spatial coordinate e. The method may prove useful 

for the analysis of problems involved in tunnelling and piling. 
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APPENDIX 

Symbol 

r, 8, z 

u 
r' 

u8, u 
z 

p 

u 
r' 

u8, u 
z 

p 

0 , ?8' 6 
-r -Z 

� 

N , �8' N 
-r -z 

N 
-P 

E 

CJ, CJ' 

() 
v' 

CJ' 
v 

() 
m 

()
d 

r 
0 

9, 

H 

E 
p 

G, G 
s 

v', v' 
s 

T 

A 
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NOt·1ENCLATURE 

cylindrical coordinates 

cylindrical displacement components 

excess pore pressure 

Fourier coefficients for displacement 

Fourier coefficient for excess pore pressure 

vector of nodal displacements 

vector of nodal pore pressures 

vector of shape functions for Fourier displacement 
coefficients 

vector of shape functions for Fourier pore pressure coefficients 

vector of strain components 

vectors of total and effective stress components 

total and effective vertical stress 

mean total stress 

de via tor stress 

tunnel radius or pile radius 

pile length 

lateral load applied to pile 

Young's modulus of pile 

shear modulus of soil 

drained Poisson's ratio of soil 

time 

non-dimensional time 
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