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Synopsis 

Hand methods of calculating buckling loads of inelastic moment 
gradient beams are developed. An inelastic parameter, the stiffness 
modification factor, j, is used to estimate equivalent uniform tangent 
modulus rigidities for partially yielded simply supported beams. From 
this is developed a buckling moment equation. For laterally continuous 
beams, a step-by-step procedure which allows for interaction between 
adjacent segments is proposed. The structure is reduced to a critical 
subassemblage of beam segments. The stiffness modification factor is 
used to quantify segment end interaction and an effective length factor, 
k, is found for the critical segment. The buckling moment equation is 
used to estimate the beam capacity. A worked example and comparisons 
with theoretical and exper1:mental results show that the proposals are 
accurate and simple to apply. 
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1. INTRODUCTION 
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Elastic and inelastic buckling of single span beams with a variety 

of support and loading conditions has been widely researched. From well 

documented solutions a number of approximate inelastic buckling formulae 

has been developed. Among these are several equations for simply-supported 

inelastic I-beams under end moments (8,14). In this paper a new inelastic 

buckling equation for such beams is developed from an approximate bucklinq 

theory. An approximate analysis for braced, determinate, inelastic beams 

with loads at braced points is also presented. The braces are assumed to 

prevent lateral movement and twisting. 

The critical loads of beams continuous in the lateral plane are 

greatly influenced by interaction between adjacent segments. t!ethercot 

and Trahair (13,14) first proposed approximate analyses for both elastic 

and inelastic beams, which attempted to account for this interaction. They 

introduced the concept of the critical segment and adjacent restraininq 

segments. The end restraint offered to the critical segment was allowed 

for in an effective length factor, k. Their method for elastic laterally 

continuous beams has been refined by Dux and Kitipornchai (5,7) and has been 

extended to elastic beam-grids (9). The new method proposed in this paper 

extends the refined elastic analysis to inelastic laterally continuous 

beams. It incorporates the new equation for sinole span beams and includes 

multiple effective length charts for the critical segment. The method also 

introduces a more rigorous appraisal of the effects of yielding on segment 

interaction. 
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2. BUCKLING OF SIMPLY-SUPPORTED INELASTIC 
I-BEAMS UNDER END MOMENTS 

2.1 Rigidities of Yielded Cross-Sections 

Figure l(a) shows a simply supported !-beam under end moments. 

1-Jhile the beam remains elastic its buckling moment is given by (20), 

(1) 

where El
y 

is the minor axis bending rigidity, GJ is the torsional rigidity, 

L is the beam length and m and K are the moment modification factor and 

beam parameter respectively. The beam parameter is 

K ; 
z EI 

'IT w 

[!GJ 
(2) 

where El
w 

is the warping rigidity. The moment modification factor is given 

by 

with S 

m ;  1.75 + 1.05S + 0. 3 S 2 l 2.56 (3) 

In Equation 3 the moment gradient, B, 1 ies in the range - 1.0 .-;: S< 1.0 

1.0 for uniform bending. At elastic buckling the larger major 

axis moment, f·1, occurring at end A of the beam in Figure 1 has the value 

f'IE. Throughout the paper end A of a beam or beam segment always has the 

larger end moment. 

As the in-plane loading increases, the combination of residual and 

applied stress causes partial yielding at more highly loaded cross-sections. 

Rigidities alter and the elastic buckling moment becomes unattainable. 
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The reduced capacity is given by the inelastic buckling moment, HI. 

Many proposals have been made for assessing the rigidity variations 

of a cross-section under increasing major axis moment. Trahair and 

Kitipornchai (21) have examined the research in depth and have suggested 

a theoretical model comprising what they consider the best of the proposals. 

Their model features the tangent modulus theory and Lay's equation for 

the strain-hardening shear modulus (11). 

Figure 2 shows typical rigidity variations for a 10UB29 cross­

section (1) with residual stresses having a fourth order polynomial 

distribution and a flange tip compressive stress of 0.5 Fy (10). It is 

seen that the section remains elastic until Wt1P = 0.45 and is fully strain­

hardened when M/Mp = 1.0. The minor axis bending and warping rigidity 

curves are similar and are reasonably well approximated by the straight 

line found from Equation 4. The .line departs from the elastic property 

line at an equivalent first yield moment MFY and extends to the strain­

hardened ratio of 0.03 at M/MP = 1.0. The equivalent first yield moment 

is 

where Frc is the peak flange residual compressive stress. In the absence 

of other information, Frc' can be estimated from the empirical formula of 

Young (22). 

MPa (5) 

where A
w 

is the beam web area and AF is the total flange area. Equation 4 

has been developed from a number of comparisons of straight line approximations 
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with theoretical rigidity curves (3,4). 

The torsional rigidity curves in Figure 2 differ markedly from 

the other curves. However, Trahair and Kitipornchai (21) have shown that 

the assumption (GJ)T 
= GJ and the consequent significant change to the 

effective torsional rigidity, GJeff 
= (GJ)T 

- GJ, do not lead to substantial 

changes in inelastic buckling moments. In the development of the approximate 

inelastic buckling formula it will be assumed that some freedom can be 

exercised when approximating the effective torsional rigidity. 

2. 2 Stiffness t�odi fica ti on Factors 

For a given moment magnitude and residual stress distribution, the 

longitudinal distribution of tangent modulus rigidities can be determined 

(see Figure 1). The straight line approximation results in linear 

variations of (Ei
y

)T 
and (Ei

w
)

T as indicated by the equivalent non-uniform 

beam in Figure 1(b). 

Timoshenko and Gere (19) suggest using the minimum tangent modulus 

rigidities with the elastic buckling formula to obtain lower bound estimates 

of the inelastic buckling moment, M1. This leads to gross overestimations 

except when the in-plane moment distribution is near uniform (S = - 1.0) 

A number of studies has shown that the longitudinal distribution of yielding 

is a significant factor (e.g. References 12,14). In moment gradient beams, 

yielding is most pronounced at the maximum moment end. It is proposed here 

that approximate uniform rigidities can be found from the increased 

flexibility at the maximum moment or critical end of the partially yielded 

beam. Specifically, it is proposed that the equivalent uniform minor axis 

bending rigidity be found from the critical end response to a uniform 

minor axis moment. This loading has been chosen to take some account of 
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Figure 3: Beam under uniform minor axis moment 

the yielding distribution. The out-of-plane components of major axis 

loading are omitted from the analysis. 

Figure 3 shows a partially yielded beam under uniform minor axis 

moment. Through yielding, the minor axis bending stiffness, MyA;eyA' at 

the critical end changes from its elastic value of 2EI
Y

/L to become 

"EI � 
2 L (6) 

The factor, j, is called the stiffness modification factor (4) and jEI
Y 

is 

taken as the equivalent uniform bending rigidity. 

Similarly, it is assumed that the warping response of the beam at 

the critical end to a uniform bimoment indicates the effective uniform 

warping rigidity. If the bimoment is assumed to produce equal flange bending 

within the plane of each flange, the warping displacements at the critical 

end can be measured in terms of flange end rotations. The assumption that 

the distributions of (Elw)T and (El
y

)T along the beam are identical leads 

to an equivalent uniform warping rigidity of jElw. 

As discussed by Trahair and Kitipornchai (21), the choice of GJ
eff 

is relatively unimportant for inelastic beams. For simplicity, the 

equivalent uniform torsional rigidity will be taken as jGJ. Hhen the 

effective rigidities are substituted for elastic rigidities in Equation 1, 

the following approximate inelastic buckling equation emerges 
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jEI 
w 

jGJ (7) 

1�hi ch simplifies to 

(8) 

where M1 is the inelastic buckling moment. 

The lateral bending stiffness at the critical end of a beam with 

linearly varying rigidities can be calculated using a simple moment-area 

integration method. The values of j for a number of end moment ratios, B. 

are plotted against M/t·1p in Figure 4 with Frc = 0.29 Fy. This residual 

stress matches that used by Nethercot and Trahair (14) for a 254xl46UB31 (2) 

section having a yield stress of 300 MPa. The residual stress is a little 

less than that predicted by Equation 5. 

Figure 4 shows that the reduction in stiffness is most pronounced 

for uniform moment (B = - 1.0). As B increases so does the value of j 

at any particular moment level. The inelastic buckling moment equation 

can be solved directly by plotting the 1 i ne M/t·1p = jME/I�
P 

as shown on 

Figure 4 where the corresponding modified slendernesses, A1p/ME are given. 

The intersection point with the relevant j curve gives tVf1 = 111;r1 , a . p p 
solution for which the yield pattern is correct. 

Good approximations of the stiffness modification factors for other 

values of Frc can be obtained by superimposing on Figure 4 the new 

S = - 1.0 line from Equation 4. At each j value, an amount equal to j times 

the abscissa separation of the S 1.0 lines is then either added to or 

subtracted from the abscissas of the curves to form a new set. For 

- 1.0 � S < 0.5, the full separation should be added or subtracted. 
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Equation 9 approximates the stiffness modification factors from 

Figure 4 by a set of parallel lines. 

. 03 "' ( 1.0 (9) 

From Figure 4 it is seen that Equation 9 will give inelastic capacities 

within a few percent of those from the true j curves. 

The combination of Equations 8 and 9 gives the following inelastic 

buckling formula, 

(10) 

11here X is the modified slenderness, IM
P

/M
E

. Capacities from Equation 10 

are plotted with theoretical capacities (14) and experimental results (3,6) 

in Figure 5. The formula gives reasonable accuracy over the moment range 

from first yield to McfMp = 1.1. The approximations are conservative and 

are generally well within 10%. It is suggested that Equation 10 is suitable 

for use in the design office as a general inelastic buckling formula. If 

required, formulae corresponding to other Frc values can be derived easily 

from the appropriate modification factors found by using the transformation 

described in the previous section. 



t 1.0 
� 

0 
.... �0.8 
s:::: 
.Q 0.6 
.... 

tV 
() 
;;: 
� 0.4 
� 
Ul � 0.2 
s:::: 

.... 
..... 

-9-

(75 0 0.7 0.8 0.9 1.0 1.1 

1.1 

1.0 

t 0.9 
Me 
Mp 

o.a 

0.7 

06 

M_ 
Mp 

Figure 4: Stiffness modification factors 
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2. 4 Comparison I'Jith Other Buckling Formulae 

Several buckling formulae which approximate the theoretical 

capacity curves of Reference (14) have been proposed. The original formulae 

in References (14) and (15) are 

M
1 (1 - 0.7 M /M

E) 

M = o. 7 + o. 3 -------"----'=----

P (0.61 - 0.3 B + 0.07 S2) 

for the range 0. 7 .:;: r'1I/t1P < 1. 0 and 

M
I 

1.2- 0.2xj- 0.7 
M

P o.39 + o.3 s - o.o1 s2 

(lla) 

( llb) 

when 1.0 � MI/Mp ( 1.1. Both Equations 10 and 11 closely predict the 

experimental results from Reference 6 with Equation 10 being perhaps the 

easier to apply. Equation 10 also offers some formula flexibility to the 

designer. Through the stiffness modi f'i cation factor transformation, other 

formulae corresponding to a larger or a smaller characteristic imperfection, 

Frc' can be developed by hand. 

In References 8 and 17 the theoretical curves are approximated by 

series of straight lines. In Reference 8 it is observed that in beams 

under higher moment gradients, initial yielding is limited to portions near 

the supports and linear approximations are proposed which depart from the 

elastic buckling line at 

M
I 

M = 0.7 + 0.2 !T"+li" 
p 

to intersect the line Me =  M
P 

at a modified slenderness of 

X= 0.17 + 0.55 ;r-+iS 

(12a) 

(12b) 
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The proposal in Reference 17 closely matches Equations 12a and b 

and extends the approximation beyond t\ = r�p· The equation to the 

approximation is 

M
I -

M
- (1.06 + 1.16 ,.I[""+S)- 0.3 X 

p 
(13) 

Although Equations 12 and 13 are simple to apply, Reference 3 shows 

that they tend to be unconservative as beam slenderness increases. 
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3. BUCKLING OF INELASTIC LATERALLY CONTINUOUS BEAt!jS 

3.1 General 

This section extends the method of estimating buckling loads of 

laterally continuous elastic beams (5,7) to determinate inelastic beams. 

Dux and Kiti por·nchai mode 1 the structure as a subassemb 1 age comprising a 

critical segment and restraining segments. The restraining segments 

provide equal warping and minor axis bending restraints which are expressed 

in non-dimensional restraint parameters G
A 

and G8. The dimensionless 

elastic buckling moment of a simply supported segment with end restraints 

can be expressed in the form, 

{14) 

(15) 

The parameters G
A

,G
B 

measure the minor axis bending and warping end stiffnesses 

of the adjacent segments relative to an initial end stiffness of the critical 

segment. For any given set of values of G
A

, G8,K and S, the effective 

length factor, k, may be obtained from charts presented in References (5) 

and (7). Some of the charts are reproduced in Appendix A. Because yielding 

alters segment stiffness it is proposed to modify the elastic analysis to 

include the effects of yielding for inelastic analysis. 

3.2 Effect of Yielding 

It is proposed that a partially yielded critical segment behaves 

as a uniform beam with reduced rigidities jEI , jEI and jGJ as suggested 
y 

w 
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for single segment beams in the previous section. If end restraints are 

known, the effective length factor charts together with Equations 10 and 

14 can be used to give the inelastic capacity. The end stiffnesses of an 

inelastic restraining segment can be expressed as 

when j and MI are from Equations 9 and 10 respectively. The subscript, R, 

refers to a restraining segment and n = 2, 3 or 4 depending on the far end 

conditions (14, 7). The restraint parameters G
A

' G
B 

at the end of critical 

segment are 

(17) 

where the subscript c refers to the critical segment. The stiffness 

modification factor, j, in Equation 16 accounts for yielding excluding the 

enhanced out of plane effect of major axis moment distribution on the end 

stiffnesses as this i� included in the destabilising factor, 1 - (M/MI)2• 

The stiffness modification factors for a restraining segment are 

shown in Figure 6 for the full range of far end support conditions and for 

various end moment ratios. Straight line approximations (Equation 9) 

obtained from the previous section are compared. It can be seen that when 

the critical segment connects to end A of a restraining segment (see left 

side of Figure 6) the error in using Equation 9 is not great. The largest 

errors occur when S + 1.0 and end B of the restraining segment is fully 

fixed. However, under these circumstances Figure 6 shows that either the 
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Figure 6: Stiffnes s modification factor for restraining segments 
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moments, M/np, corresponding to a given factor, j, do not differ significantly 

or the factors for a given moment are close. In the cyclical 3pproach to 

solution which is outlined later, these two conditions should adequately 

contain unconservative errors resulting from the use of Equation 9. The 

equation generally underestimates modification factors at end B of a 

restraining segment. The effect is to increase G8, a conservative change. 

The inelastic buckling moment of the restraining segment, t1I, in 

the destabilising factor 1 - UV�1I)2 is calculated assuming simply supported 

conditions. Usually the moment in a restraining segment at subassemblage 

buckling is less than MI, and, as yielding is less severe, the term in the 

destabilising factor should be greater than t�I. However, it is not practical 

to introduce another buckling equation to predict capacities between �1E 
and t�I. It is recommended that �1I (Equation 10) be used. This reduces 

restraining segment stiffnesses which is conservative. 

3.3 Analysis Procedure and Worked Example 

The procedure for inelastic beam analysis is summarised below. 

(i) Determine the major axis moment distribution. 

(ii) Find Sand K for each segment. 

(iii) For each segment calculate Me where t\ is the lesser of ME and 

MI. Find the beam 1 oad factor to produce r1c. The segment with 

the lowest load factor Ac is the critical segment. The two (at 

most) adjacent segments have higher load factors, AR. 

(iv) Assume a trial value of AF the load factor at subassemblage 

buckling and calculate GA and G8 from Equation 17, noting that 

(18) 

---------- - ---------
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Stiffness modification factors appearing in GA and G8 correspond 

to the segment moments under load factor AF. 

(v) Find the critical segment effective length factor using the 

appropriate chart (see Appendix A). 

(vi) Revise the critical segment buckling moment from Equation 14 (for 

M
E

) and from Equation 10 (for Mr)· Obtain the beam load factor 

A
F(new) 

corresponding to the revised critical segment capacity. 

(vii) Compare the new load factor with the value assumed at Step (iv) 

and repeat Steps (iv) to (vii) until good agreement is obtained. 

Iteration (Step (vii)) ensures consistency between assumed and calculated 

yielding patterns, at least as far as the simple model permits. Often a 

close guess can be made at Step (iv) and only one or two cycles are required. 

The procedure is applied to the beam in Figure 7. 

Beam properties and loading are those of Experiment 8 described by 

Dux and Kitipornchai (6). t,1uch of the data necessary for analysis is 

provided in Table 1. 

Step (i) 

Step (ii) 

Calculate bending moments (see Figure 7). 

FindS and K for each segment (see Table 1). 

L/4 
A.kN 

L/2 
.478AkN 

Figure 7: Test beam No. 8 (Reference 6) 
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TABLE 1. - Analysis Data 

Segment 1-2 2-3 3-4 

i3 0.0 0.7 0.0 

K 1. 91 0.96 0.91 

ME 
(kN.rn) 717.3 152.8 717.3 

r11 (kN.m) 150.7 119.6 150.7 

>. 86.8 68.9 123.9 

Step (iii) Calculate t\ for each segment (in this instance t\ = t11 for 

all segments). Segment 2-3 indicates the lowest load factor 

(>. = 68.9) and hence is the critical segment. 

Step (iv) 

Step (v) 

Step (vi) 

Assume a value of "F' say, >.F = 76 and calculate GA and GB. 

End 2 of the cri tical segment is end A. Hhen >.F = 76, H/t1P = 

0.932 at end A and !>1/f>1p = 0.652 at end B. From Equation 10, 

j1_2 = 0.68, j = 0.40, and j _ = 1.0. Hence 
2-3 3 4 

1.01 

and since segment 3-4 has no yielding, 

From Appendix A, effective lengths for s= -LO and 8 = - 0.5, 

may be interpolated to give 

k = 0.675. 

From Equa ti ens 9 and 10, t1E = 284.4 kNm, and M1 132.3 kNm. 

The new load factor is 

"F(new) 
= 132.3 = 76 2 

.217 X 8 
. 
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Step ( vii ) Since calculated and assumed values of A
R 

are close, the 

average value, AF = 76.1 will be taken as the solution. This 

underestimates the experimental value, AF = 78.2, by 2.7%. 

The method has been applied to experimental results in Table 2 ( 6 ) . 

It can be seen that predictions obtained are within 6% of the experimental 

values. 

TABLE 2. - Comparison with Experiment 

Experiment 
Load Factor A 

Percentage 
No. 

s Expe(i mental Predicted Difference 
6 ) 

1 0.0 47.1 45.2 - 4.0% 

2 0.0 62.6 58.9 - 5.9% 

3 0.0 71.0 67.3 - 5.2% 

4 - 1.0 8g.8 85.2 - 5.1% 

5 - 1.0 107.7 105.9 - 1.7% 

6 - 1.0 71.6 71.4 - 0.3% 

7 - 0.7 92.8 89.1 - 4.0% 

8 - 0.7 78.2 76.2 - 2.7% 

g - 0.7 67.2 65.5 - 2.5% 



4. C0�1PARISON lHTH ALTERNATIVE APPROXI�1ATE riETHODS 

The simplest approximate analysis ignores lateral continuity. 

This is consistent with the general lower bound approach of Salvadori ( 18) 

which neglects interaction between segments. Inelastic buckling moments, 

M
I

' in Table 1 indicate a lower bound buckling load factor for the beam 

in Figure 7 of A
F 

� 68.9. This underestimates the experimental value by 

12%. This approach is often overconservative particularly as slendernesses 

increase ( see Figures 8 to 11 ) . However, yielding reduces the differences 

in capacity between beams under different moment gradients and the tendency 

in laterally continuous beams is for segment interaction to reduce as 

yielding becomes more extensive. The accuracy of the lower bound solution 

is therefore likely to improve. 

The approximate method developed in previous sections follows closely 

in concept that of Nethercot and Trahair ( 14,16 ) . There are several differences 

some of which are similar to those between elastic analyses discussed in 

References 5 and 7. Nethercot and Trahair use a destabilising factor of 

( 1 - M/r-11) for restraining segments and take effective length factors, k, 

from the S 1.0 chart for all critical segments. Iteration is not 

suggested. 

Additional differences are found in the inelastic moment equations 

and in the estimation of yielding effects. The moment equations have been 

discussed in Section 2 where those of Nethercot and Trahair appear as 

Equations 12a and 12b. Nethercot and Trahair ( 14 ) propose that yielding be 

allowed for by multiplying the segment end stiffnesses by a yielding factor, 

F, where 

( 19 ) 
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In Equation 19, Me is the smaller of the inelastic and the elastic 

buckling moments of the segment when simply su pported. The simple form of 

the yielding factor can be compared with Equation 9 which gives the equivalent, 

the stiffness modification factor, j. However, the simplicity of Equation 19 

is at the expense of accuracy. The equation predicts some reduction in 

stiffness except for slender segments for which Me = ME. If t·l
c 

= M
I

, the 

yielding factor, F, is less than unity whether or not the segment carries 

moments sufficient to cause yielding. Furthermore, the factor is often 

smaller for a restraining segment than for the critical segment. The 

elastic buckling moment, t·1E, of a restraining segment tends to be relatively 

large. As discussed earlier in this section, inelastic moment differences 

tend to be less than differences in elastic buckling moments. The combination 

of these two features through Equation 19 can lead to excessive reductions 

in restraining segment end stiffnesses. In Figures 8 to 11 Nethercot and 

Trahair's predictions ( 14 ) vary from being within a few percent of theoretical 

capacities to underestimating these capacities by up to 30%. Because of 

this inconsistency they have revised the yielding factor, F, for restraining 

segments to ( 16 ) 

where 

0.21 t� 
M

ER 
= ______ _J:__ ______ _ 

o.3 - [�����- o.7] (o.61 - .3s + .97s2) 

The quantity, MER' is the elastic buckling moment of a segment with 

t·1r = 
M

c
"

c
/:\R" 

Equation 21 is derived by making this substitution in 

( 20 ) 

( 21 ) 

Equation 12a. If M :\ /:\R M > 1.0 substitution into Equation 12b would 
c c p 

be required for the appropriate expression. This empirical revision 
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eliminates the possibility of F being less than unity in elastic segments 

as permitted by Equation 19. Equations 20 and 21 give F = 1.0 where 

M
c

\
c/\

R 
-� 0.7 M

p
. Figures 10 and 11 show that the new factor results 

in higher restraining segment stiffnesses and improved accuracy. 

In Figures 8 to 11 the beam analysed is taken to be a 254x146UB31 (2 ) 

with a yield stress of 280 �1Pa. Unfortunately Reference ( 14 ) , from which 

the Finite Element results in Figures 8 to 11 have been taken, does not 

identify the beam. However a 254 x 146UB31 with a yi e 1 d stress of 300 f1Pa 

was used in that reference to obtain capacity curves for simply supported 

moment gradient beams. It has been assumed that a similar section was used 

for the other theoretical analyses. A yield stress of 280 MPa was needed 

in order to reproduce the approximate solutions given in Refererence 14. 

It can be seen that results using the proposed method ( see Figures 

8 to 11 ) are consistently accurate. The largest discrepancy occurs in 

Figure 11 ( critical segment 13=+1.0 ) where theory is underestimated by 

around 8%. This accuracy is consistent with that of Equation 10 which is 

in error by a similar amount as S approaches + 1.0. As the critical segment 

moment gradient reduces, the approximate solutions improve. This trend 

can be seen also in Table 2. The accuracy of the new proposal supports 

the use of multiple effective length factor charts and the attempt to 

account more rigorously for the effects of yielding through the stiffness 

modification factor, j. 

The alternative methods from References 14, 16 and 18 are less 

predictable as can be seen from the figures. Of these three, the method 

of Reference 16 seems preferable. However, the equations involved in its 

application are more complicated than Equations 9 and 10 of the new proposal. 

Furthermore, the yield factor, F, is of less obvious origin than is the 

stiffness modification factor. 
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An inelastic buckling equation for simply supported beams under 

end moments has been developed. The stiffness modification factor, j, is 

introduced and used to estimate the effects of yielding, thereby to provide 

equivalent reduced uniform rigidities for use with the elastic buckling 

equation. The resulting inelastic buckling equation is flexible, simple to 

apply and is of good accuracy. A hand method is suggested for altering 

factors, j, for varying levels of residual stresses. 

The analysis method for determinate inelastic laterally continuous 

beams is an extension of the elastic beam analysis previously proposed by 

the authors (4,6). The critical segment is assumed to have reduced uniform 

rigidities, the change being determined by a stiffness modification factor. 

Stiffness modification factors and a revised destabilisation factor are used 

to estimate restraining segment end stiffness reductions due to yielding. 

Inelastic restraint parameters GA, G8 are used with a range of effective 

length factor charts to obtain an effective length factor for the critical 

segment. 

The proposed method predicts the experimental results from Reference 5 

to an average accuracy of - 3.5%, the largest underestimation being - 5.9% 

(see Table 2). Predictions are compared against theory with those of 

other approximate methods. Only the new method is consistently accurate 

to the same order of accuracy as its simple inelastic beam equation. The 

method is easy to apply and is more rigorous in its modelnng of the effects 

of yielding than are the alternatives. 
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APPENDIX A - EFFECTIVE LENGTH FACTOR CHARTS 

MC£ hJPM 
L_h_j 

-- K·O.l 

·0.3 
•0.5 
·1.0 
·3.0 

f3:- .5 

1.2 

G6 1.0 

p : -1.0 

f3 = o.o 
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f3 : + .s 

f3 = + 1.0 
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APPENDIX B - NOMENCLATURE 

The following symbols are used in this paper: 

A beam end with larger axis end moment; or subscript referring 
to end A of beam 

A
F 

total flange area of beam 

A
H 

web area of beam 

B beam end with smaller major axis end moment or subscript referring 
to end B of beam 

c subscript referring to critical segment 

E Young's modulus of elasticity 

EI
Y 

= minor axis bending rigidity 

(Ei
y

)
T 

= tangent modulus minor axis bending rigidity 

Ei
w 

= warping rigidity 

(Ei
w

)
T 

= tangent modulus warping rigidity 

F 

GJ 

= yielding factor 

= compressive residual stress at flange tip 

= yield stress 

= shear modulus of elasticity 

= minor axis bending and warping end restraint parameters at 
ends A and B 

St Venant torsional rigidity 

effective torsional rigidity = (GJ)r - GJ 

reduction in torsional rigidity due to Hagner effect 

tangent modulus torsional rigidity 

= minor axis second moment of area 

warping section constant 

St Venant torsion constant 

j stiffness modification factors 

JAB stiffness modification factor at end A 

jBA 
stiffness modification factor at end B 



K 

k 

L 

t1 

�\ 

t1E 

t·1FY 

t·1r 

�1p 

�1y 

t1yA'�1yB 

m 

n 

R 

s 
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beam parameter = 

effective length factors 

length of beam or of beam segment 

major axis moment 

elastic or inelastic buckling moment 

elastic buckling moment 

equivalent first yield moment 

inelastic buckling moment 

plastic moment 

= minor axis moment 

= minor axis moments at ends A and B 

= moment modification factors 

end stiffness factor commonly 2, 3 or 4 

subscript referring to restraining segment 

ratio of major axis end moments 

dimensionless elastic buckling moment of restrained critical 
segment or substructure 

= minor axis end rotation at A 

1 oad factor 

beam load factor indicated by adjacent segment 

beam load factor indicated by unrestrained critical segment 

"F'"F(_new) = beam load factor indicated by restrained critical segment 
or subassemblage 

x = modified slenderness = � 
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