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Synopsis

Hand methods of calculating buckling loads of inelastic moment
gradient beams are developed. An inelastic parameter, the stiffness
modification factor, J, is used to estimate equivalent uniform tangent
modulus rigidities for partially yielded simply supported beams. From
this is developed a buckling moment equation. For laterally continuous
beams, a step-by-step procedure which allows for interaction between
adjacent segments is proposed. The structure is reduced to a critical
subassemblage of beam segments. The stiffness modification factor is
used to quantify segment end interaction and an effective length factor,
k, is found for the critical segment. The buckling moment equation is
used to estimate the beam capacity. A worked example and comparisons
with theoretical and experimental results show that the proposals are
accurate and simple to apply.
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1. INTRODUCTION

Elastic and inelastic buckling of single span beams with a variety
of support and loading conditions has been widely researched. From well
documented solutions a number of approximate inelastic buckling formulae
has been developed. Among these are several equations for simply-supported
inelastic I-beams under end moments (8,14). In this paper a new inelastic
buckling equation for such beams is developed from an approximate bucklina
theory. An approximate analysis for braced, determinate, inelastic beams
with loads at braced points is also presented. The braces are assumed to

prevent lateral movement and twisting.

The critical loads of beams continuous in the lateral plane are
greatly influenced by interaction between adjacent segments. HMNethercot
and Trahair (13,14) first proposed approximate analyses for both elastic
and inelastic beams, which attempted to account for this interaction. They
introduced the concept of the critical segment and adjacent restraining
segments. The end restraint offered to the critical segment was allowed
for in an effective length factor, k. Their method for elastic laterally
continuous beams has been refined by Dux and Kitipornchai (5,7) and has been
extended to elastic beam-grids (9). The new method proposed in this paper
extends the refined elastic analysis to inelastic laterally continuous
beams. It incorporates the new equation for single span beams and includes
multiple effective Tength charts for the critical segment. The method also
introduces a more rigorous appraisal of the effects of yielding on segment

interaction.



2. BUCKLING OF SIMPLY-SUPPORTED INELASTIC
I-BEAMS UNDER END MOMENTS

2.1 Rigidities of Yielded Cross-Sections

Figure 1(a) shows a simply supported I-beam under end moments.

While the beam remains elastic its buckling moment is given by (20),

M = m% /EIyGJ /1 + K2 (1)

where EIy is the minor axis bending rigidity, GJ is the torsional rigidity,
L is the beam Tength and m and K are the moment modification factor and

beam parameter respectively. The beam parameter is

- 5 __w
K= 2 & (2)

where EIw is the warping rigidity. The momentmodification factor is given

by
m=1.75+ 1.058 + 0.38% } 2.56 (3)
In Equation 3 the moment gradient, 8, 1ies in the range -1.058< 1.0
with 8 = - 1.0 for uniform bending. At elastic buckling the Targer major

axis moment, M, occurring at end A of the beam in Figure 1 has the value
ME' Throughout the paper end A of a beam or beam segment always has the

Targer end moment.

As the in-plane loading increases, the combination of residual and
applied stress causes partial yielding at more highly loaded cross-sections.

Rigidities alter and the elastic buckling moment becomes unattainable.
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Figure 1: Simply supported inelastic beams
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Figure 2: Rigidity variation for 10UB29
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The reduced capacity is given by the inelastic buckling moment, MI‘
Many proposals have been made for assessing the rigidity variations

of a cross-section under increasing major axis moment. Trahair and

Kitipornchai (21) have examined the research in depth and have suggested

a theoretical model comprising what they consider the best of the proposals.

Their model features the tangent modulus theory and Lay's equation for

the strain-hardening shear modulus (11).

Figure 2 shows typical rigidity variations for a 10UB29 cross-
section (1) with residual stresses having a fourth order polynomial
distribution and a flange tip compressive stress of 0.5 Fy (10). 1t is
seen that the section remains elastic until M/Mp = 0.45 and is fully strain-
hardened when M/Mp = 1.0. The minor axis bending and warping rigidity
curves are similar and are reasonably well approximated by the straight
line found from Equation 4. The line departs from the elastic property
line at an equivalent first yield moment MFY and extends to the strain-
hardened ratio of 0.03 at M/Mp = 1.0. The equivalent first yield moment

is
Frc
Mey = 0.9 |1-0.7 = M) (4)

where Frc is the peak flange residual compressive stress. In the absence

of other information, F__, can be estimated from the empirical formula of

rc
Young (22).

F.c = 165 {1- W ] MPa (5)

where Aw is the beam web area and AF is the total flange area. Equation 4

has been developed from a number of comparisons of straight line approximations
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with theoretical rigidity curves (3,4).

The torsional rigidity curves in Figure 2 differ markedly from
the other curves. However, Trahair and Kitipornchai (21) have shown that
the assumption (GJ)T = GJ and the consequent significant change to the
effective torsional rigidity, GJeff = (GJ)T - GJ, do not lead to substantial
changes in inelastic buckling moments. In the development of the approximate
inelastic buckling formula it will be assumed that some freedom can be

exercised when approximating the effective torsional rigidity.
2.2 Stiffness Modification Factors

For a given moment magnitude and residual stress distribution, the
lTongitudinal distribution of tangent modulus rigidities can be determined
(see Figure 1). The straight line approximation results in linear
variations of (EIy)T and (EIw)T as indicated by the equivalent non-uniform

beam in Figure 1(b).

Timoshenko and Gere (19) suggest using the minimum tangent modulus
rigidities with the elastic buckling formula to obtain lower bound estimates
of the inelastic buckling moment, MI' This leads to gross overestimations
except when the in-plane moment distribution is near uniform (g8 = - 1.0)

A number of studies has shown that the longitudinal distribution of yielding
is a significant factor (e.g. References 12,14). In moment gradient beams,
yielding is most pronounced at the maximum moment end. It is proposed here
that approximate uniform rigidities can be found from the increased
flexibility at the maximum moment or critical end of the partially yielded
beam. Specifically, it is proposed that the equivalent uniform minor axis
bending rigidity be found from the critical end response to a uniform

minor axis moment. This loading has been chosen to take some account of
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Figure 3: Beam under uniform minor axis moment

the yielding distribution. The out-of-plane components of major axis

loading are omitted from the analysis.

Figure 3 shows a partially yielded beam under uniform minor axis
moment. Through yielding, the minor axis bending stiffness, MyA/eyA’ at

the critical end changes from its elastic value of 2EIy/L to become

M JEI
o - 2t (®)
yA

The factor, j, is called the stiffness modification factor (4) and jEIy is

taken as the equivalent uniform bending rigidity.

Similarly, it is assumed that the warping response of the beam at
the critical end to a uniform bimoment indicates the effective uniform
warping rigidity. If the bimoment is assumed to produce equal flange bending
within the plane of each flange, the warping displacements at the critical
end can be measured in terms of flange end rotations. The assumption that
the distributions of (EIw)T and (EIy)T along the beam are identical leads

to an equivalent uniform warping rigidity of jEIw.

As discussed by Trahair and Kitipornchai (21), the choice of GJeff
is relatively unimportant for inelastic beams. For simplicity, the
equivalent uniform torsional rigidity will be taken as jGJ. Uhen the
effective rigidities are substituted for elastic rigidities in Equation 1,

the following approximate inelastic buckling equation emerges



=

—

T /s . 72 jEIw
Mp=m T /IEL, GG /1 + W (7)
which simplifies to
M= M (8)

where MI is the inelastic buckling moment.

The Tateral bending stiffness at the critical end of a beam with
linearly varying rigidities can be calculated using a simple moment-area
integration method. The values of j for a number of end moment ratios, 8,
are plotted against M/Mp in Figure 4 with Frc =0.29 FY. This residual
stress matches that used by Nethercot and Trahair (14) for a 254x146UB31 (2)
section having a yield stress of 300 MPa. The residual stress is a Tittle

lTess than that predicted by Equation 5.

Figure 4 shows that the reduction in stiffness is most pronounced
for uniform moment (B = - 1.0). As B8 increases so does the value of j
at any particular moment level. The inelastic buckling moment equation
can be solved directly by plotting the Tine M/Mp = jME/Mp as shown on
Figure 4 where the corresponding modified slendernesses, /ﬁg7ﬁg'are given.
The intersection point with the relevant j curve gives M/Mp = MI/Mp’ a

solution for which the yield pattern is correct.

Good approximations of the stiffness modification factors for other
values of Frc can be obtained by superimposing on Figure 4 the new
B = - 1.0 1ine from Equation 4. At each j value, an amount equal to j times
the abscissa separation of the g = - 1.0 Tines is then either added to or
subtracted from the abscissas of the curves to form a new set. For

- 1.0 ¢ B < 0.5, the full separation should be added or subtracted.
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2.3 Inelastic Buckling Formula

Equation 9 approximates the stiffness modification factors from

Figure 4 by a set of parallel lines.

j=3.5[1+”gﬁ-m—] 03¢ j<1.0 (9)
p

From Figure 4 it is seen that Equation 9 will give inelastic capacities

within a few percent of those from the true j curves.

The combination of Equations 8 and 9 gives the following inelastic

buckling formula,

1
— = - <

S (10)

=]
—
’><
N
+
o
—
=
=]
o

where X is the modified slenderness, Vﬁ;7ME. Capacities from Equation 10
are plotted with theoretical capacities (14) and experimental results (3,6)
in Figure 5. The formula gives reasonable accuracy over the moment range
from first yield to Mc/Mp = 1.1. The approximations are conservative and
are generally well within 10%. It is suggested that Equation 10 is suitable
for use in the design office as a general inelastic buckling formula. If
required, formulae corresponding to other Frc values can be derived easily

from the appropriate modification factors found by using the transformation

described in the previous section.
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2.4 Comparison lith Other Buckling Formulae

Several buckling formulae which approximate the theoretical

capacity curves of Reference (14) have been proposed. The original formulae

in References (14) and (15) are

M (1 -0.7M /M)
H=0.7+0.3 2k (11a)
p (0.61 - 0.3 8 + 0.07 g2)
for the range 0.7 < MI/Mp~< 1.0 and
M
=12 - 0.2%/// 0.7 (11b)
p 0.39 + 0.3 8 - 0.07 g2

when 1.0 < MI/Mp < 1.1. Both Equations 10 and 11 closely predict the
experimental results from Reference 6 with Equation 10 being perhaps the
easier to apply. Equation 10 also offers some formula flexibility to the
designer. Through the stiffness modification factor transformation, other
formulae corresponding to a larger or a smaller characteristic imperfection,
Frc’ can be developed by hand.

In References 8 and 17 the theoretical curves are approximated by
series of straight 1ines. In Reference 8 it is observed that in beams
under higher moment gradients, initial yielding is Timited to portions near
the supports and linear approximations are proposed which depart from the

elastic buckling Tine at

3|H3

=0.7+0.2/T+8 (12a)

o

to intersect the line MC = Mp at a modified slenderness of

X =0.17 +0.55 /JT+@ (12b)
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The proposal in Reference 17 closely matches Equations 12a and b
and extends the approximation beyond Mc = Mp' The equation to the

approximation is

=

M—I = (1.06 + 1.16 YT+ B)- 0.3 X (13)

o

with MI/Mp < ME/Mp'

Although Equations 12 and 13 are simple to apply, Reference 3 shows

that they tend to be unconservative as beam slenderness increases.
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38 BUCKLING OF INELASTIC LATERALLY CONTINUOUS BEAMS

3.1 General

This section extends the method of estimating buckling loads of
laterally continuous elastic beams (5,7) to determinate inelastic beams.
Dux and Kitipornchai model the structure as a subassemblage comprising a
critical segment and restraining segments. The restraining segments
provide equal warping and minor axis bending restraints which are expressed
in non-dimensional restraint parameters GA and GB. The dimensionless
elastic buckling moment of a simply supported segment with end restraints

can be expressed in the form,

ML 2
v/ ) (14)
VET, GJ
J
= fn (K.8, Gp.Gg) (15)

The parameters GA’GB measure the minor axis bending and warping end stiffnesses
of the adjacent segments relative to an initial end stiffness of the critical
segment. For any given set of values of GA’ GB,K and B, the effective

length factor, k, may be obtained from charts presented in References (5)

and (7). Some of the charts are reproduced in Appendix A. Because yielding
alters segment stiffness it is proposed to modify the elastic analysis to

include the effects of yielding for inelastic analysis.
3.2 Effect of Yielding

It is proposed that a partially yielded critical segment behaves

as a uniform beam with reduced rigidities jEIy, JEI and jGJ as suggested
w
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for single segment beams in the previous section. If end restraints are
known, the effective Tength factor charts together with Equations 10 and
14 can be used to give the inelastic capacity. The end stiffnesses of an

inelastic restraining segment can be expressed as

IEL ( M2
Uncoupled stiffness = n | —¥2%| |1 - . (16)
L R[ 1 Jp

when j and MI are from Equations 9 and 10 respectively. The subscript, R,
refers to a restraining segment and n = 2, 3 or 4 depending on the far end
conditions (14, 7). The restraint parameters GA’ GB at the end of critical

segment are

A,B ~

where the subscript c refers to the critical segment. The stiffness
modification factor, j, in Equation 16 accounts for yielding excluding the
enhanced out of plane effect of major axis moment distribution on the end

stiffnesses as this is included in the destabilising factor, 1 - (M/MI)Z.

The stiffness modification factors for a restraining segment are
shown in Figure 6 for the full range of far end support conditions and for
various end moment ratios. Straight line approximations (Equation 9)
obtained from the previous section are compared. It can be seen that when
the critical segment connects to end A of a restraining segment (see left
side of Figure 6) the error in using Equation 9 is not great. The Tlargest
errors occur when g + 1.0 and end B of the restraining segment is fully

fixed. However, under these circumstances Figure 6 shows that either the
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Figure 6: Stiffness modification factor for restraining segments
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moments, M/Mp, corresponding to a given factor, j, do not differ significantly
or the factors for a given moment are close. In the cyclical approach to
solution which is outlined later, these two conditions should adequately
contain unconservative errors resulting from the use of Equation 9. The
equation generally underestimates modification factors at end B of a

restraining segment. The effect is to increase GB’ a conservative change.

The inelastic buckling moment of the restraining segment, MI’ in
the destabilising factor 1 - (M/MI)zis calculated assuming simply supported
conditions. Usually the moment in a restraining segment at subassemblage
buckling is less than MI’ and, as yielding is less severe, the term in the
destabilising factor should be greater than MI' However, it is not practical
to introduce another buckling equation to predict capacities between ME
and MI' It is recommended that MI (Equation 10) be used. This reduces

restraining segment stiffnesses which is conservative.
3.3 Analysis Procedure and Worked Example

The procedure for inelastic beam analysis is summarised below.
(1) Determine the major axis moment distribution.
(i) Find 8 and K for each segment.
(iii)  For each segment calculate M, where M_ is the Tesser of Mg and

M Find the beam load factor to produce Mc' The segment with

I
the Towest load factor AC is the critical segment. The two (at
most) adjacent segments have higher load factors, AR‘

(iv) Assume a trial value of A the load factor at subassemblage

buckling and calculate GA and GB from Equation 17, noting that

2
M) |
_[MIJR (A] e
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Stiffness modification factors appearing in GA and GB correspond
to the segment moments under load factor AF.

(v) Find the critical segment effective length factor using the
appropriate chart (see Appendix A).

(vi) Revise the critical segment buckling moment from Equation 14 (for

M-) and from Equation 10 (for MI)‘ Obtain the beam load factor

£)
XF(new) corresponding to the revised critical segment capacity.
(vii)  Compare the new load factor with the value assumed at Step (iv)

and repeat Steps (iv) to (vii) until good agreement is obtained.

Iteration (Step (vii)) ensures consistency between assumed and calculated
yielding patterns, at least as far as the simple model permits. Often a
close guess can be made at Step (iv) and only one or two cycles are required.

The procedure is applied to the beam in Figure 7.

Beam properties and Toading are those of Experiment 8 described by
Dux and Kitipornchai (6). Much of the data necessary for analysis is

provided in Table 1.

Step (1) Calculate bending moments (see Figure 7).

Step (1) Find 8 and K for each segment (see Table 1).

L4 |ARN o .478 AkN
1 2 3 4,
L217AL A52AL
T

Figure 7: Test beam No. 8 (Reference 6)
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TABLE 1. - Analysis Data

Segment 1-2 2-3 3-4
B 0.0 0.7 0.0
K 1.91 0.96 0.91
Me (kN.m) 717.3 152.8 717.3
MI (kN.m) 150.7 119.6 150.7
A 86.8 68.9 123.9

Step (iii) Calculate Mc for each segment (in this instance MC = MI for
all segments). Segment 2-3 indicates the lowest load factor
(A = 68.9) and hence is the critical segment.

Step (iv) Assume a value of Ap, say, Ap = 76 and calculate G, and GB'
End 2 of the critical segment is end A. When AF =76, M/Mp =
0.932 at end A and M/Mp = 0.652 at end B. From Equation 10,

j = 0.68, j = 0.48, and j = 1.0. Hence
1=2 273 3=y
_ 2 .25L _ .48 1 -
GA—gXT—E‘—X—-‘.GSX-—*———‘2 1.01
1 - 76
86.8

and since segment 3-4 has no yielding,

.25 . .48 1 -
x Bl L1 -0.163

o
"
w|ro

Step (v) From Appendix A, effective lengths for g=-1.0 and 8 = - 0.5,
may be interpolated to give
k = 0.675.
Step (vi) From Equations 9 and 10, ME = 284.4 kNm, and MI = 132.3 kNm.

The new load factor is
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Step (vii) Since calculated and assumed values of XR are close, the
average value, AF = 76.1 will be taken as the solution. This

underestimates the experimental value, AF = 78.2, by 2.7%.

The method has been applied to experimental results in Table 2 (6).

It can be seen that predictions obtained are within 6% of the experimental

values.
TABLE 2. - Comparison with Experiment
Experiment 8 oo e o Percentage
No. Experimental Predicted Difference
6
1 0.0 47.1 45.2 - 4.0%
2 0.0 62.6 58.9 - 5.9%
3 0.0 71.0 67.3 - 5.2%
4 - 1.0 89.8 85.2 - 5.1%
5 - 1.0 107.7 105.9 - 1.7%
6 - 1.0 71.6 71.4 - 0.3%
7 - 0.7 92.8 89.1 - 4.0%
8 - 0.7 78.2 76.2 - 2.7%
9 - 0.7 67.2 65.5 - 2.5%
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4. COMPARISON WITH ALTERNATIVE APPROXIMATE METHODS

The simplest approximate analysis ignores lateral continuity.
This is consistent with the general lower bound approach of Salvadori (18)
which neglects interaction between segments. Inelastic buckling moments,
MI’ in Table 1 indicate a lower bound buckling load factor for the beam
in Figure 7 of AF = 68.9. This underestimates the experimental value by
12%. This approach is often overconservative particularly as slendernesses
increase (see Figures 8 to 11). However, yielding reduces the differences
in capacity between beams under different moment gradients and the tendency
in laterally continuous beams is for segment interaction to reduce as
yielding becomes more extensive. The accuracy of the Tower bound solution

is therefore 1ikely to improve.

The approximate method developed in previous sections follows closely
in concept that of Nethercot and Trahair (14,16). There are several differences
some of which are similar to those between elastic analyses discussed in
References 5 and 7. Nethercot and Trahair use a destabilising factor of
(1 - M/MI) for restraining segments and take effective length factors, k,
from the B = - 1.0 chart for all critical segments. Iteration is not

suggested.

Additional differences are found in the inelastic moment equations
and in the estimation of yielding effects. The moment equations have been
discussed in Section 2 where those of Nethercot and Trahair appear as
Equations 12a and 12b. Nethercot and Trahair (14) propose that yielding be
allowed for by multiplying the segment end stiffnesses by a yielding factor,

F, where

-
0]
=
o
—
—
Yo}
~
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In Equation 19, MC is the smaller of the inelastic and the elastic
buckling moments of the segment when simply supported. The simple form of
the yielding factor can be compared with Equation 9 which gives the equivalent,
the stiffness modification factor, j. However, the simplicity of Equation 19
is at the expense of accuracy. The equation predicts some reduction in ;
stiffness except for slender segments for which MC = ME' If Mc = MI’ the
yielding factor, F, is less than unity whether or not the segment carries
moments sufficient to cause yielding. Furthermore, the factor is often
smaller for a restraining segment than for the critical segment. The
elastic buckling moment, ME, of a restraining segment tends to be relatively
Targe. As discussed earlier in this section, inelastic moment differences
tend to be less than differences in elastic buckling moments. The combination
of these two features through Equation 19 can Tead to excessive reductions
in restraining segment end stiffnesses. In Figures 8 to 11 Nethercot and
Trahair's predictions (14) vary from being within a few percent of theoretical
capacities to underestimating these capacities by up to 30%. Because of
this inconsistency they have revised the yielding factor, F, for restraining
segments to (16)

M A

(= C
Feogl . (20)
Mer © AR

where
0.21 M
p

Mer = M A v
0.3 - |+&%- 0.7 [0.61 - 3B+ .9762]

MpAR

The quantity, MER’ is the elastic buckling moment of a segment with

MI

Equation 12a. If MCAC/AR Mp > 1.0 substitution into Equation 12b would

= MCAC/AR. Equation 21 is derived by making this substitution in

be required for the appropriate expression. This empirical revision
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eliminates the possibility of F being less than unity in elastic segments
as permitted by Equation 19. Equations 20 and 21 give F = 1.0 where
MCAC/AR < 0.7 Mp. Figures 10 and 11 show that the new factor results

in higher restraining segment stiffnesses and improved accuracy.

In Figures 8 to 11 the beam analysed is taken to be a 254x146UB31 (2)
with a yield stress of 280 MPa. Unfortunately Reference (14), from which
the Finite Element results in Figures 8 to 11 have been taken, does not
identify the beam. However a 254 x 146UB31 with a yield stress of 300 lMPa
was used in that reference to obtain capacity curves for simply supported
moment gradient beams. It has been assumed that a similar section was used
for the other theoretical analyses. A yield stress of 280 MPa was needed

in order to reproduce the approximate solutions given in Refererence 14.

It can be seen that results using the proposed method (see Figures
8 to 11) are consistently accurate. The largest discrepancy occurs in
Figure 11 (critical segment B=+1.0) where theory is underestimated by
around 8%. This accuracy is consistent with that of Equation 10 which is
in error by a similar amount as B approaches + 1.0. As the critical segment
moment gradient reduces, the approximate solutions improve. This trend
can be seen also in Table 2. The accuracy of the new proposal supports
the use of multiple effective length factor charts and the attempt to
account more rigorously for the effects of yielding through the stiffness

modification factor, j.

The alternative methods from References 14, 16 and 18 are less
predictable as can be seen from the figures. Of these three, the method
of Reference 16 seems preferable. However, the equations involved in its
application are more complicated than Equations 9 and 10 of the new proposal.
Furthermore, the yield factor, F, is of less obvious origin than is the

stiffness modification factor.
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5. CONCLUSIONS

An inelastic buckling equation for simply supported beams under
end moments has been developed. The stiffness modification factor, j, is
introduced and used to estimate the effects of yielding, thereby to provide
equivalent reduced uniform rigidities for use with the elastic buckling
equation. The resulting inelastic buckling equation is flexible, simple to
apply and is of good accuracy. A hand method is suggested for altering

factors, j, for varying levels of residual stresses.

The analysis method for determinate inelastic laterally continuous
beams is an extension of the elastic beam analysis previously proposed by
the authors (4,6). The critical segment is assumed to have reduced uniform
rigidities, the change being determined by a stiffness modification factor.
Stiffness modification factors and a revised destabilisation factor are used
to estimate restraining segment end stiffness reductions due to yielding.
Inelastic restraint parameters GA, GB are used with a range of effective
length factor charts to obtain an effective length factor for the critical

segment.

The proposed method predicts the experimental results from Reference 5
to an average accuracy of - 3.5%, the largest underestimation being - 5.9%
(see Table 2). Predictions are compared against theory with those of
other approximate methods. Only the new method is consistently accurate
to the same order of accuracy as its simple inelastic beam equation. The
method is easy to apply and is more rigorous in its modelling of the effects

of yielding than are the alternatives.
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APPENDIX A - EFFECTIVE LENGTH FACTOR CHARTS
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APPENDIX B - NOMENCLATURE

The following symbols are used in this paper:

A

AB
Jga

1}

beam end with Targer axis end moment; or subscript referring
to end A of beam :

total flange area of beam
web area of beam

beam end with smaller major axis end moment or subscript referring
to end B of beam

subscript referring to critical segment
Young's modulus of elasticity

minor axis bending rigidity

tangent modulus minor axis bending rigidity
warping rigidity

tangent modulus warping rigidity

yielding factor

compressive residual stress at flange tip
yield stress

shear modulus of elasticity

minor axis bending and warping end restraint parameters at
ends A and B

St Venant torsional rigidity

effective torsional rigidity = (GJ) - G

reduction in torsional rigidity due to Vtagner effect

tangent modulus torsional rigidity
minor axis second moment of area
warping section constant

St Venant torsion constant

stiffness modification factors
stiffness modification factor at end A

stiffness modification factor at end B
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beam parameter = /ézElw/GJLz

effective Tength factors

length of beam or of beam segment
major axis moment

elastic or inelastic buckling moment
elastic buckling moment

equivalent first yield moment
inelastic buckling moment

plastic moment

minor axis moment

= minor axis moments at ends A and B

moment modification factors

end stiffness factor commonly 2, 3 or 4
subscript referring to restraining segment
ratio of major axis end moments

dimensionless elastic buckling moment of restrained critical
segment or substructure

minor axis end rotation at A

Toad factor

beam Toad factor indicated by adjacent segment

beam load factor indicated by unrestrained critical segment

= beam load factor indicated by restrained critical segment
or subassemblage

modified slenderness = 4p ME
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