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Synopsis

This paper makes further investigations into
the Finite Integral Method (F.I.M.) as a means
of solving the equilibrium equations which arise
in the dynamic analysis of structures. Its
purpose is to classify, comment upon and present
an improvement of the method with special
reference to its place in relation to some other,
betfer known, Direct Integration schemes. The
paper relies heavily on Reference 2 for its
information regarding alternative schemes. The
presentation is designed for people, like the
writer, who do not have a background of experience
in numerical methods of analysis but who have a
curiosity about where their particular work "fits
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1. INTRODUCTION

When first presented by Brown and Trahair (3) the
F.I.M. was described in the context of static structural
analysis and, more particularly, in the solution of buckling
problems. These problems are generally not of the "initial
value" kind and require a numerical integration scheme which
extends, so to speak, "throughout the length of the problem".
The method appears to have been used successfully in several

such applications.

A feature of the F.I.M. so presented is the use of
the same integration operator when moving from second derivatives
to first derivatives, and from first derivatives to basic
unknowns. The essence of the technique is the assumption,
firstly, that curvatures be considered to vary parabolically
with respect to position over two integration steps. A pair
of equations then follows giving the gradients at discrete
positions X and x ., say, in terms of the curvatures at X
x1 and xz. In general x1 = x0 + h and x2 = x0 + 2h where

h is the integration step size.

Thereafter it is again assumed (and inconsistently)
that displacements may be obtained from gradients on the
basis that the gradients vary also parabolically with respect

to position over the two integration steps.

Such an assumption is convenient and provides
elegant operator matrices. It is seen, Reference 3, that the
integration may be extended over any number of steps by simple
addition of the "one step" and "two step" results. Further,
because of the assumption regarding similarity of operators,
the double integration necessary to proceed from curvatures
to displacements appears as a simple matrix product of the

individual operators.

A second feature of the method is its use of the
operators to write, in the case of a buckling or deflection
analysis, the second order differential equation in displace-
ments in terms of the curvatures only. The resulting set of

linear algebraic equations is solved simultaneously to give
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curvature values at each node in the discretised system.
Back-substitution into the operator relationships gives
displacements and, if necessary, gradients. The solution
procedure is adjusted to account for known boundary conditions
which might in general be specified at any of the nodes of

the system.

In Reference 7, O'Connor et al. report the use of
the F.I.M. in the context of a small but non-linear dynamic
analysis. The writer has summarised the application of the

method to other dynamics problems in Reference 8.

In each of these references it has been recognised
that an essential simplifying feature of the conventional dynamics
problem is that it is an "initial value" problem. It is not
necessary to solve a full set of simultaneous equations
covering the complete (time) domain of the response. Instead,
one can proceed in "two-step jumps" establishing accelerations
velocities and displacements at the "present" time, t0 say,
and solving for unknown accelerations etc at "future" times
tl =t +hand t = t0 + 2h. The solution procedure then

0 2
"marches forward" two time-steps and repeats itself.

With this exception, the method has been used
precisely as originally described i.e. using identical operators
to move from accelerations to velocities and from velocities
to displacements. Solution of the discretised governing
equations has been in terms of accelerations with back-

substitution to give velocities and displacements.

The F.I.M. need not be "classified" in order to use
it successfully. However the writer has felt some concern
that it should be possible to do this in relation to at least
some of the many better known, and more frequently used,
Direct Integration schemes. What follows is an achievement
of that objective, which doubtless might have been obvious to

those who possess backgrounds in numerical analysis!

Bonuses from the investigation have been the
opportunity to observe that there is nothing fundamentally

different about the Finite Integral Method and that, in a



two-step initial value problem, the method can be improved
without increasing its complexity. Investigations also show
that both the "standard" and the "improved" F.I.M. bear favourable

comparison with more commonly used procedures.

Some of what follows may be elementarily obvious

but all is included for the sake of completeness.

2. THE STANDARD FINITE INTEGRAL METHOD

It is helpful to re-state the standard procedures
in somewhat more detail than given in Reference 3. Figure 1
shows the general time continuum t with the discrete times
t_z,t_l, to 5 t1 etc each separated by a time interval h, here
chosen as constant. Accelerations, velocities and displacements
at each discrete time are indicated by appropriate suffices
on ¥, ¥y and y respectively. It may be helpful to regard t0 as
the "present time" with acceptable solutions for ¥, ¥y and y
_,r t_, etc. The
objective of the analysis procedure is the achievement of

already achieved at this and earlier times t

acceptable solutions for ¥, ¥y and y at "future times" t , t2
1

etc.

Let it now be assumed that yt, the acceleration at
absolute time t(t < t € t ), varies parabolically with respect
0 2

to time.

Fitting the assumed parabolic variation to the
specified values of yt at absolute times to, t1 and t2 leads
directly to the following result for Yy in terms of interpolation
polynomials Y, Yland'yzwith t now measured from t = 0 at
absolute time t0 to t = 2h at absolute time tz:-

T’l (1)
o
2
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where = 1 - 3t/2h + t%/2h?
Y, =2t/h- £2/h2
Y = - t/2h + t?/2h?

Hence, by integration of Equation 1, together with the boundary

condition 9t = 90 at t = 0,

T S
Ve =3, v, wl v, ¥,
91 (2)
y2
t
where ¢ = |y dt =t - 3t2/4h + t3/6h?
0
t
b=y dt = t?/h - t3/3h?
1
[1]
t
o= |y, dt = - t2/4h + t3/6h?

The standard Finite Integral Method now proceeds, inconsistently,
by writing displacements Ye (t0 < t < tz) in terms of velocities
yt on the basis that yt varies paraboiically with respect to
time, i.e. by use of the same operator as used in Equation 2.

v (3)



Equations 2 and 3, together with the definitions of vy , wl and
0
wz define the basis of the standard F.I.M.

Referring to Figure 1 for relevant symbol definitions
and by substituting t = h or t = 2h in the values of wo, wl

and wz we obtain the standard results,

4 F/°L 0 0 of [¥,
yor=9, 0t % 5 8 1199, (4)
¥, g, 4 16 4] |3,

and v, yOL 0 0 0 {ﬁol
v, p =gy, p ek 8 -1|q¥ (5)
Y, v, 4 16 4 |y,

Thereafter, substitution for {§y ¢ ¥ } in Equation 5 from
0 1 2

Equation 4 gives displacements in terms of accelerations,

0 0 0 Jyl
0
h2
+ 36 48  -12 1y - (6)
IJ

Y 1
Y. r=9y, Y, 142
y v 2hy 96 192 0

At this stage it is helpful to note one further
result. Using Equation 3 and substituting for {90 91 y } from
2

Equation 4 gives the general, assumed but inconsistent,
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variation of yt over the time interval (t - to) in terms of
2

the accelerations yo, yl and yz and time t (0 < t < 2h), viz:

y} 0 0 o (¥
0 0
Ye =y *<v b b > ¥ <v v oy >15 8 -1)<¥
0 0 b1

1% 4 16 4| |y

0 2

) _ . i £ - £ 3 £?) .
e yt'yo+yot+{3-’12h] Y, *37 Y, YR T 6 )Y,

Equation 8 inevitably confirms the assumed cubic distribution

of Yy with respect to time.

In the standard method the solution proceeds in
"two step jumps" using equations similar to Equations 4 and 6
to write the general equilibrium equations of a dynamic system

in terms of accelerations only.

In general, with upper case symbols being used to

describe wecctors of displacements, velocities etc. we have,
MI{¥Y} + [CI{¥} + [RI{Y} = (R}

and, thence, at discrete times t1 and t ,
2

Subscripts are here used to denote the discrete times t1 and
t . In an n degree-of-freedom system {Yl}, {Yl}, {YZ}, {Yz}
etc are all n x 1 vectors. Equations 4 and 6 are used in
expanded form to write {Y 3 {Y } {Y } and {Y } in terms of
{Y 1, 1Y } and known responses at tlmes t, The resulting
equatlons, in terms of unknown accelerations {?1} and {§2}

are then solved simultaneously.

(7)

(8)

(9)

(10)
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The standard F.I.M. results are summarised in row 5
of the Tables 1 and 2. 1In Table 2, it is sometimes convenient
to partition matrix [B] and re-write the results firstly in
terms of {Y } only. After solution for {Y }, the values of
{Y } are obtalned by back-substitution in the partitioned

equatlons.

3. THE FINITE INTEGRAL METHOD IN TERMS
OF DISPLACEMENTS

In expanded form, allowing for multiple degrees of

freedom, Equations 5 and 6 provide the following results:-

{Y}={YO}+—{53'{ +8 %Y -v 1} (1la)
{y}_{y}+—{4§0+16§-4y} (11b)

and {Y}—{Y}+h{Y}+ {36 Yo+48Y -12 iiz} (12a)

144

{Y}—{Y}+2h {Y}+ {96Y +l92Y} (12b)

144

Equations 11 may be used to write velocities in terms of
displacements and Equations 12 similarly provide expressions
for accelerations in terms of displacements. In this revised
form the relationships can be used to write the discretised
dynamics Equations 10 in terms of displacements only. It is,
then, self-evident that the F.I.M. does not have, as a
fundamental feature, the need to solve firstly in terms of
accelerations. It becomes apparent that the F.I.M. is in every
way "classifiable" alongside such common Direct Integration
schemes as, for example, the Central Difference or Newmark
Methods.

The revised forms of Equations 11 and 12 are,

{{z}:-%{fzn—{—sy +4 Y +Y } (13a)
-1 0 b 2
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(v} =1{Y } + % (Y -2v +v} (13b)
2 0 0 1 2

and (¥ }=-2@ -2 w1+ 32 -y +v (14a)
1 2 0 2 0 4h> 0 2
Fr=w3r+S @1+ 3y -4y +v) (14b)
2 0 0 h 0 1 2

The necessary steps for the solution of Equation 10 in terms
of displacements are summarised in row six of Tables 1 and 2
(The Finite Integral Method (Revised)).

The computational effort required to implement the

F.I.M. in this revised form is precisely similar to that of the
standard form and solutions are identical for any given time-
step. The sole purpose of the revision has been to highlight

the fact that the F.I.M. is simply another Direct Integration
scheme, taking its place alongside many existing schemes. It
bases its procedure on the "forward projection" of accelerations
and (unlike in other methods) a second SIMILAR forward projection
of velocities each being described by the interpolation functions

Yo Yl and y of Equation 1.
2

An obvious area of investigation is the improvement
that might be gained by dispensing with the, formerly convenient,
quite unnecessary constraint upon the velocity distribution

having already prescribed an acceleration distribution.

4. THE FINITE INTEGRAL METHOD
(IMPROVED TECHNIQUE)

For completeness, two aspects are worth further

attention:

(1) A "first principles" derivation of Y in terms of
both {§o §1 yz}and {90 91 92}, noting that Equations
1 and 2 are retained, without assumption regarding
the time variation of yt when proceeding to

displacement estimates.
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(ii) A comparison of the resulting relationships with
those of the standard method.

We commence with Equation 1 and note that Equations 4, remain
valid. From Equations 4, making accelerations the subject of

the equations,

0 0 0 Y
Y, Y, ) Y,
1., .
=<-= o= [ —
y1 2y0 o 5 4 1 . (15)
J 8 -16 8
y2 yO YZ
Hence, in Equation 1,
G = (y -y /2+Y) ¥+ <y y vy >0
t 0 1 2 o 4h b1 2
250 449 +9
5y0 4y1 Y,
¢ —16¢ + 89
Byo l6yl 8y2
After substitution for Yo' Yl etc and rearrangement,
G =% B +3 (¥ +ag +ai) (16)
t 00 4 0”0 i 2% 2
where B =1 - 3t/h + 3t?/2h?
0
a = - l4t/h + 9t?/h?
0
a = 16t/h - 12t2%/h?
a = - 2t/h + 3t%/h?
2
Thence, by integration of Equation 16 with the initial
condition that 9t = )'/'0 at t = 0,
Y.=% +VB 3 (09 + 03 * 0T (17)
t 0 o 1 4h 070 171 272

t
where 81 = | Bdt =t~ 3t?/2h + t%/2h?
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t
6 = J aadt = - 7t2/h + 3t®/h?
t
¢ = J o dt = 8t%/h - 4t3/h?
1
t
¢ = J azdt = - t2/h + t%/h?

Equation 17 gives the velocity distribution resulting from an
assumed parabolic variation of accelerations with respect to
time. It is appropriate to both the Standard F.I.M. and the

present investigation.

Proceeding, now, without further assumption, the
displacement distribution is obtained by integration of

Equation 17 with the initial condition that Y =Y, at t = 0,

yt = yu * yot * i;'082 + %H (Ao9o * Alyl * Azyz) (18)
rt
where 8 = | B dt = t?2/2 - t%/2h + t%/8h?

“0
rt

A, = ¢Odt = - 7t%/3h + 3t"%/4n?
‘0
rt

A = | ¢ dt = 8t3/3h - t"/h?
0
gt

A2 = ¢2dt = - t%/3h + t"/4h?

Equation 18 gives the "correct" distribution of displacements
based solely on the assumption regarding the acceleration
distribtion. Substitution of t = h and t = 2h gives the
replacement operator, comparable to that given in Equation 5
for the Standard F.I.M.,
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i 0
y0 y0 0 0 0 Jyo . 1
h % =
= + = = -
y1 Y, a8 29 20 1 lyl ] yu[ (19)
16 %
Y, Y, 64 16 ¥, 0

Using Equation 4 and substituting for {y y ¢ }gives the

0 1 2
"correct" displacement distribution in terms of the discrete
accelerations {yo yl ?2}.

0

. o AL .

= +— <
Ye Y, * yot * yoﬁz 4h A0A1Az> [y
Js
Y,
¥

(20)

Substitution for Bz' AU, Al and Azgives, after rearrangement,

_ 2 ¢ £ ) . £? £ ) .
Ye =y tytH [2 m " 2ame) Y, Y |3 T T2R7) Y,

-t? t* ) .
* [l2h * 24h2] Y, (21)

Equation 21 is directly comparable with Equation 8 of the
standard method.

With t = h and t = 2h Equation 21 gives the result analogous
to Equation 6 viz:

3
G f (22)
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In expanded form to include multiple degrees of freedom, the
revised forms of Equations 19 and 22, written with velocities
and accelerations as the subjects of the egquations are as
below. They are directly comparable with Equations 13 and 14
of the standard method:-

h

_ _ é 1l " _h ..

{Yl} = 1 {YO} + 3 { 173(D + 16Y1 + Yz} 7 Y0 (23a)

{Y } =4{¢¥ 1} + %E {11Y - 16Y + 5Y } + h¥ (23b)
2 0 0 1 2 0

and  {¥ ) =-2 (¥ 1-2 (¥ )+, by +Y ) (24a)

, 2 Wl Y, tame : 3

(Y } = af¥ }+3£2 (¥ Y+ {13Y - 16Y + 3Y }  (24b)
2 0 h 0 2h 0 1 2

It will be observed that Equations l4a and 24a are identical

as are the last of Equations 6 and 22. The necessity for such
results is readily inferred from a comparison of Equations 8

and 21. 1In each equation the corresponding coefficients of

v yo, yl and yz become identical when t = 2h with, in fact, the

0
last of these pairs of coefficients being zero at that time.

Notwithstanding this similarity it remains inevitable
that the simultaneous solution of Equations 10 at discrete
times t, and t, using Equations 23 and 24 rather than equations
13 and 14 will result in different predictions of displacements
at times tl and t2 from those obtained using the original
operators. A similar comment obviously applies to the solution
of Equations 10 in terms of accelerations using equations 4
and 22 rather than the original Equations 4 and 6. Table 2,
rows 5 and 7, summarise the two alternative solutions in terms
of accelerations. There is no obvious computational disadvantage
in the "improved" formulation (row 7) and it might be expected
that use of the more consistent set of operators would lead to
somewhat better solution quality. This is inferred in the

elementary but informative example investigated below.
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5. ALTERNATIVE DIRECT INTEGRATION SCHEMES

An overwhelming volume of published research exists
concerning Direct Integration methods. Felippa and Park [4]
for example, provide an excellent over-view of available methods
in non-linear structural dynamics and provide forty-two further
references. Bathe and Wilson [2] discuss various schemes used
in linear problems and quote from a range of investigations
regarding the convergence and stability of some of the more
popular methods. WVeeks [9] and Nickell [6] are sources of some
forty further references. Argyris et al. [1l] describe a family
of unconditionally stable algorithms for use with large linear
systems. Newmark's classic paper [5] remains as one of the
earliest and best sources of information. Tables 1 and 2 have
been developed with the aid of Reference 2 in an attempt to
provide a brief summary of the appropriate equations of some
commonly used schemes. In particular the Tables facilitate
comparison of the Finite Integral Method with other methods

when used to solve Initial Value problems.

6. A SIMPLE EXAMPLE

The Finite Integral Method, in its standard, revised
and improved forms, has been used to solve a simple two-degree-
of-freedom lumped mass problem discussed by Bathe and Wilson [2].
Solutions to the problem using common direct integration schemes

are presented by Bathe and Wilson.

The problem is described in Figure 2 and has been
synthesised from the data given in Chapter 8 of Reference [2].
The governing dynamic equilibrium equations are given below

and are identical to those quoted by Bathe and Wilson,

T (e r T
[2 oija .| 6 -2E[ya 0]

BN e RN el VO

The exact solution of this trivial problem is readily obtained,
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Y, =1 - % (5 cos V2t - 2 cos V5t)
(26)
v, = 3 - % (5 cos V2t + 4 cos V/5t)

[m, F—wW—{m, |—> Fit)

—> Y, * Yb
k,=4N/m k,=2N/m
m, = 2kg my = 1kg

F(t) = constant=10N

FIGURE 2 : Bathe and Wilson's? example problem

The displacements obtained by Bathe and Wilson,
using a time-step equal to 0.28 secs and various integration
schemes, are reproduced in Table 3. They are compared with
results obtained by use of the improved Finite Integral Method
using time-steps equal to 0.28 secs, 0.14 secs and 0.56 secs.
Table 4 compares the solutions obtained by the standard and
improved Finite Integral Methods for displacements, velocities

and accelerations using a time-step equal to 0.28 secs.

Unfortunately the exact results quoted by Bathe and
Wilson in Reference 2 are incorrect. Whilst they correctly
quoted equations identical to Equations 26 their subsequent
evaluation of displacements from these equations is in error.
It follows that certain conclusions drawn by them regarding

the accuracy of any of the quoted schemes are not strictly
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valid. The relative accuracy of results obtained by them

using various schemes remains of considerable interest.

The correct exact results (obtained by substitution
in Equations 26 and their derivatives) are quoted in Tables 3
and 4. An inspection of all the results unambiguously shows
the excellence of the predictions obtained by the Standard and,
particularly, the Improved Finite Integral Methods using a
time-step equal to 0.28 secs. Clearly all the schemes give
good predictions over at least part of the response time but
a characteristic of the Improved F.I.M. results is their

accuracy throughout the whole range.

The natural periods of the system are 4.44 secs and
2.81 secs and the time step chosen for comparison purposes is
therefore 10% of the shorter natural period. It is self-evident
that the chosen problem could hardly be better chosen in respect
of its simplicity or suitability for numerical solution with
a relatively large time-step! It will also be noted that the
Finite Integral Method proceeds in "two-step" jumps with therefore
twice the number of equations to be manipulated in every
"solution cycle" (and half the number of "solution cycles" in

any given time range).

7. CONCLUSION

It would not be valid to draw general conclusions
about the relative suitability of the various schemes.
References quoted earlier, and many others seek to do that
from a much more generalised stance. Rather, the purpose of
the paper has been to clarify the Finite Integral Method and

its relationship with other schemes.

In the context of Initial Value problems typified
by common dynamic analysis models the nature of the F.I.M. is
clear. 1In its standard form it is merely a direct integration
scheme in which accelerations and velocities are assumed to
vary periodically with respect to time over two time-steps

projected forward from the time at which satisfactory responses
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are known. It is immaterial whether the dynamic equations of
equilibrium, in discrete form, are formulated in terms of
accelerations or displacements. There is no computational
advantage or improvement in solution accuracy achievable by
use of one formulation rather than the other. Solving the
basic equations in terms of accelerations or displacements
merely alters the order in which the calculations proceed and,
in each case, accuracy is determined by the size of the time-
step chosen and the actual (a priori unknown) acceleration

and velocity profiles.

Any advantage apparent in the use of identical operators
for synthesising velocities from accelerations and displacements
from velocities disappears in the context of the simple "two-
step" initial value problem. The evidence of the simple example
is that an improved technique in which a consistent synthesis
of displacements and velocities, on the basis of the single
assumption of a parabolic acceleration-time relationship, gives
an improvement in solution accuracy for a particular time step.
There is, further, no computational disadvantage, whatsoever,

in using the more consistent formulation.

There is every reason to be influenced by computational
efficiency when formulating solution procedures for systems
involving a very large number of degrees of freedom. There
can possibly be an over-emphasis in this regard, however, when
studying problems with relatively few degrees of freedom where
the transient initial response of the system is of interest.

A method which is manageable and capable of modelling a rapidly
changing acceleration response with a relatively large time-step
is a useful tool even if it does not appeal to "Big System"
designers. The F.I.M. appears to be one such method in an

increasing range of applications.
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APPENDIX B - NOTATION

h Integration step size
t Time variable
t—z’ t_l, to etc. Discrete values of t
X 4, X , X Position variables in F.I. static analysis
0 1 2
Y_yo Y_10 Y, etc. Displts. at times t—z’ t_l, to etc
&_2, &_1, 90 etc. Velocities at times t_,» t-1’ t0 etc.
§_2, §_1, §D etc. Accelerations at times t_ , t_ . t etc.
§a, ?b Nodal accels. in example problem
[Cc] Structure damping matrix
Suffices indicate value
[K] Structure stiffness matrix
at times t , t , t
M] Structure mass matrix g . 3
{r} Time-dependent load vector
{Y}, {?}, {y} Displt., vel. and accel. vectors. Suffices indicate

values at times to, tl and t
2

8 Integration step size multiplier, (Wilson 6)

BO, Bl, Bz Interpolation functions (Equations 16, 17 and 18)
YU, Yl, Yz Interpolation functions (Equation 1)

wo, wl, wz Interpolation functions (Equation 2)

ao, al, az Interpolation functions (Equation 16)

¢0, ¢1, ¢2 Interpolation functions (Equation 17)

AO, Al, AZ Interpolation functions (Equation 18)

All other symbols, Tables 1 and 2, are defined in these Tables.
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