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Abstract: Functional magnetic resonance imaging (fMRI) using the blood oxygen level dependent 
(BOLD) contrast was used to study sensory processing in the brain of isoflurane anesthetized mice. The 
use of a cryogenic surface coil  in a small-animal 9.4T system provided the sensitivity required for 
detection and quantitative analysis of hemodynamic changes caused by neural activity in the mouse 
brain in response to electrical forepaw stimulation at different amplitudes. A gradient echo-echo 
planar imaging (GE-EPI) sequence was used to acquire five coronal brain slices of 0.5 mm thickness. 
BOLD signal changes were observed in primary and secondary somatosensory cortices, the thalamus 
and the insular cortex, important regions involved in sensory and nociceptive processing. Activation 
was observed consistently bilateral despite unilateral stimulation of the forepaw. The temporal BOLD 
profile was segregated into two signal components with different temporal characteristics. The 
maximum BOLD amplitude of both signal components correlated strongly with the stimulation 
amplitude. Analysis of the dynamic behavior of the somatosensory 'fast' BOLD component revealed a 
decreasing signal decay rate constant koff with increasing maximum BOLD amplitude (and stimulation 
amplitude). This study demonstrates the feasibility of a robust BOLD fMRI protocol to study 
nociceptive processing in isoflurane anesthetized mice. The reliability of the method allows for 
detailed analysis of the temporal BOLD profile and for investigation of somatosensory and noxious 
signal processing in the brain, which is attractive for characterizing genetically engineered mouse 
models. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Abstract 

Functional magnetic resonance imaging (fMRI) using the blood oxygen level dependent (BOLD) 

contrast was used to study sensory processing in the brain of isoflurane anesthetized mice. The 

use of a cryogenic surface coil  in a small-animal 9.4T system provided the sensitivity required 

for detection and quantitative analysis of hemodynamic changes caused by neural activity in 

the mouse brain in response to electrical forepaw stimulation at different amplitudes. A 

gradient echo-echo planar imaging (GE-EPI) sequence was used to acquire five coronal brain 

slices of 0.5 mm thickness. BOLD signal changes were observed in primary and secondary 

somatosensory cortices, the thalamus and the insular cortex, important regions involved in 

sensory and nociceptive processing. Activation was observed consistently bilateral despite 

unilateral stimulation of the forepaw. The temporal BOLD profile was segregated into two 

signal components with different temporal characteristics. The maximum BOLD amplitude of 

both signal components correlated strongly with the stimulation amplitude. Analysis of the 

dynamic behavior of the somatosensory ‘fast’ BOLD component revealed a decreasing signal 

decay rate constant koff with increasing maximum BOLD amplitude (and stimulation amplitude). 

This study demonstrates the feasibility of a robust BOLD fMRI protocol to study nociceptive 

processing in isoflurane anesthetized mice. The reliability of the method allows for detailed 

analysis of the temporal BOLD profile and for investigation of somatosensory and noxious signal 

processing in the brain, which is attractive for characterizing genetically engineered mouse 

models. 
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Abstract 

Functional magnetic resonance imaging (fMRI) using the blood oxygen level dependent (BOLD) 

contrast was used to study sensory processing in the brain of isoflurane anesthetized mice. The 

use of a cryogenic surface coil  in a small-animal 9.4T system provided the sensitivity required 

for detection and quantitative analysis of hemodynamic changes caused by neural activity in 

the mouse brain in response to electrical forepaw stimulation at different amplitudes. A 

gradient echo-echo planar imaging (GE-EPI) sequence was used to acquire five coronal brain 

slices of 0.5 mm thickness. BOLD signal changes were observed in primary and secondary 

somatosensory cortices, the thalamus and the insular cortex, important regions involved in 

sensory and nociceptive processing. Activation was observed consistently bilateral despite 

unilateral stimulation of the forepaw. The temporal BOLD profile was segregated into two 

signal components with different temporal characteristics. The maximum BOLD amplitude of 

both signal components correlated strongly with the stimulation amplitude. Analysis of the 

dynamic behavior of the somatosensory ‘fast’ BOLD component revealed a decreasing signal 

decay rate constant koff with increasing maximum BOLD amplitude (and stimulation amplitude). 

This study demonstrates the feasibility of a robust BOLD fMRI protocol to study nociceptive 

processing in isoflurane anesthetized mice. The reliability of the method allows for detailed 

analysis of the temporal BOLD profile and for investigation of somatosensory and noxious signal 

processing in the brain, which is attractive for characterizing genetically engineered mouse 

models. 
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Introduction 

Processing of noxious stimuli involves different levels and structures of the neural system. In 

spite of substantial progress in understanding the molecular mechanisms underlying pain, many 

aspects are still poorly understood. Genetically engineered mouse lines displaying altered or 

pathological pain states may help to elucidate the physiological and molecular basis of normal 

and pathological pain processing [21; 7; 17; 34]. Classically, sensory responsiveness in animals is 

characterized using behavior tests such as the hot plate, von Frey filaments or tail flick test [54]. 

These analyses, however, depend on the skills of the experimenter and require undisturbed 

motor function of the animal. Electrophysiological recordings of neuronal activity provide high 

spatial and temporal resolution. However, the method is invasive and does not allow recording 

signals over extended brain areas in a limited time period. An objective readout of neuronal 

signal processing that is non-invasive, independent of the observer performance and capable of 

covering the entire brain would be highly desirable. Functional magnetic resonance imaging 

(fMRI) has been widely used to assess changes in brain activity evoked by noxious stimuli. 

Noxious-evoked activation patterns revealed by fMRI correspond well with the structures of the 

pain processing pathway both in humans and animals [26; 11; 30; 6; 28]. There are two 

peripheral nerve types which process sensory input: low threshold fibers, mainly Aβ, primarily 

mediate touch, while high threshold fibers, mainly Aδ and C, conduct nociceptive signals [8]. 

The response to peripheral sensory or noxious stimulation in rats has been studied in depth 

[23-24; 39]. In contrast, only few fMRI studies in mice using electrical stimulation paradigms 

have been reported to date [2; 31; 33; 1]. This is mainly due to experimental challenges related 

with the small size of mice, putting high demands on spatial resolution and thus sensitivity. 
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Another challenge for robust fMRI measurements in mice is the maintenance of stable 

physiological conditions. While human fMRI experiments are carried out in awake subjects, the 

large majority of animal fMRI studies are performed in anesthetized animals. Therefore, 

anesthesia should neither interfere with brain activity nor act analgesic when investigating the 

response to noxious stimulation paradigms. Unfortunately, there is no such ideal anesthetic 

suitable for longitudinal studies e.g. for studying functional changes over time. In this work we 

used isoflurane, the advantages of which are ease of administration and controlled dosing. 

Despite these challenges, the development of robust mouse fMRI protocols is highly desirable 

for investigating mechanistic aspects of signal processing under normal and pathological 

conditions. 

The aim of this study was to develop a reliable stimulation paradigm to analyze the 

somatosensory and nociceptive system in mice under isoflurane anesthesia. The high sensitivity 

of a cryogenic surface coil enabled detailed analysis of the BOLD response in activated brain 

regions elicited by electrical stimulation of the mouse forepaw as a function of time. BOLD 

signal intensities were found to correlate well with the amplitudes of the electrical stimulation 

applied. The quantitatively assessed dynamics of the temporal profile of the BOLD response 

yielded further insight into the hemodynamic response to electrical stimulation.  

 

Materials and Methods 

Animal preparation  
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All experiments were performed in accordance to the Swiss law of animal protection. 15 female 

C57Bl/6 mice weighting 22 ± 3 g were anesthetized with Isoflurane (induction 2-3 %, 

maintenance 1.2 % in a 70 % air – 30 % oxygen mixture; Abbott, Cham, Switzerland), 

endotracheally intubated and mechanically ventilated throughout the entire experiment to 

ensure stable physiology (90 breaths/minute, respiration cycle: 25 % inhalation, 75 % 

exhalation; Maraltec, Alfos Electronics, Biel-Benken, Switzerland). Animals were paralyzed by 

intravenous (i.v.) administration of a neuromuscular blocking agent (Pancuronium bromide, 1.0 

– 1.5 mg/kg; Sigma-Aldrich, Steinheim, Germany), which avoided interference by spontaneous 

breathing and prevented movement artifacts during the fMRI experiments despite the low 

isoflurane levels. A rectal temperature probe (MLT415, AD Instruments, Spechbach, Germany) 

was inserted to keep the animal at 36.5 ± 0.5 °C. Body temperature was maintained using a 

warm-water circuit integrated into the animal support (Bruker BioSpin AG, Fällanden, 

Switzerland). A transcutaneous electrode (TCM4, Radiometer, Copenhagen, Denmark) was 

placed on the shaved upper hind limb of the mouse to measure blood gas levels (pCO2). In 

some animals, heart rate and blood oxygenation was monitored using a MR-compatible 

infrared sensor (MouseOx® Pulse Oximeter, Starr Life Sciences, Oakmont, PA, USA). For 

accurate and reproducible positioning, the head of the animals was fixed with stereotactic ear 

bars and eye cream was applied to prevent the eyes from becoming dry. For the electrical 

stimulation a pair of needle electrodes (Genuine Grass instruments, West Warwick, USA) was 

inserted subcutaneously into the distal and proximal end of the palm of each forepaw with a 

distance of 2-3 mm between the two needles. The identical setup and parameters (1.5 mA) 

were used to stimulate the hind paw of four animals.  
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The entire experiment lasted approximately 2 hours, of which 20 min were used for 

preparation of the mouse, and the remaining time was used for acquiring fMRI data. The mice 

were anesthetized throughout the duration of the experiment. Animals were used for more 

than one experiment.  

 

MRI equipment and sequences 

All MRI experiments were performed on a Bruker BioSpec 94/30 small animal MR system 

(Bruker BioSpin MRI, Ettlingen, Germany) operating at 400 MHz (9.4 Tesla). For signal 

transmission and reception a commercially available cryogenic quadrature RF surface probe 

(CryoProbe), consisting of a cylinder segment (180° coverage, radius = 10 mm) and operating at 

a temperature of 30 K was used (Bruker BioSpin AG, Fällanden, Switzerland) (for detailed 

information see [3]). The ceramic outer surface of the coil touching the mouse head was kept at 

30 °C using a temperature controlled heating device.  

Anatomical reference images in coronal and sagittal directions (slice orientations are given 

using the nomenclature of the mouse brain atlas [13]) were acquired using a spin echo (Turbo-

RARE) sequence with the following parameters: field-of-view (FOV) = 20 x 20 mm2, matrix 

dimension (MD) = 200 x 200, slice thickness (STH) = 0.5 mm, interslice distance (ISD) = 1.0 mm, 

repetition delay TR = 3500 ms, echo delay TE = 13 ms, effective echo time TE,eff = 39 ms, RARE 

factor (number of echoes sampled for each excitation) = 32, and number of averages (NA) = 1. 

Subsequently, the slices for the fMRI experiment were planned on the anatomical reference 
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image and BOLD fMRI data were acquired using a gradient-echo echo planar imaging (GE-EPI) 

sequence with the following parameters: Five coronal slices covering a range of 2 to 5 mm 

anterior to the interaural line were recorded with FOV = 23.7 x 12.0 mm2, MD = 90 x 60 

(acquisition) and 128 x 64 (reconstruction) yielding an in-plane resolution of 200 x 200 μm2, STH 

= 0.5 mm, ISD = 0.7 mm, TR = 2500 ms, TE = 8.5 ms, and NA = 3 resulting in an image acquisition 

time of 7.5 seconds. The individual sections comprised the forelimb and hind limb areas of the 

somatosensory and insular cortices, and the thalamus [13]. An fMRI experiment consisted of 

112 repetitions and lasted 14 min, except for the group of 2.0 mA, where the acquisition 

consisted of 96 repetitions and lasted 12 min.   

 

Electrical stimulation paradigm 

Electrical pulses of 0.5 ms duration at a frequency of 3 Hz were applied. Current amplitudes 

were 0.5 mA (n = 8 animals), 1.0 mA (n = 8), 1.5 mA (n = 7), and 2.0 mA (n = 8) [42]. The 

stimulus strength is determined by the local current density (electric current per unit area of 

cross section), which itself depends on the placement of the electrodes. Current thresholds for 

noxious stimulation were estimated from an experiment on the hairy skin of the wrist of a 

volunteer with analogous electrode placement as in mice (distance between electrodes). 

Stimulation amplitudes of 1.5 and 2.0 mA were experienced as being painful, while the 

amplitude of 0.5 mA was clearly innocuous. Although innervation of human and mouse skin 

may differ, a noxious threshold in the range of stimulation amplitude of 1.0 mA appears 

reasonable.  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Page | 8  

 

The stimulation paradigm consisted of a block design starting with a resting period of 120 

seconds (baseline) followed by 60 seconds of stimulation. This series was repeated four times 

and fMRI data recording was continued for another 120 seconds after the last stimulation 

block. The duration between positioning of the mouse in the magnet bore and the beginning of 

the electrical stimulation and fMRI recording was kept constant at 40 minutes to ensure the 

same anesthesia conditions for all animals. This time was used for adjustment of MRI conditions 

as well as anatomical reference and high resolution scans. Stimulation started with the left paw 

in all animals. Following an 8 minute resting interval, the right paw was stimulated. These two 

stimulation cycles were followed by a control acquisition without electrical stimulation.  

 

Data analysis 

Four regions of the brain were evaluated in detail, including the somatosensory cortex S1 

contralateral and ipsilateral to the stimulated paw, the thalamus and a control region at the 

ventral pallidum, a structure involved in neither the sensory nor the nociceptive pathway. In 

addition, we looked at the S2, insular and piriform cortex in the 1.5 mA group. Statistical t-maps 

were calculated using the general linear model (GLM) tool integrated in the Biomap software 

program (M. Rausch, Novartis, Switzerland). GLM assesses correlations on a pixel-by-pixel basis 

between the fMRI signal train and the stimulation paradigm. Activation was detected using a 

statistical threshold of p = 0.0001 for all experiments. With a minimal cluster size of 15 voxels, 

two coronal sections were analyzed, of which one slice covered the thalamus, the secondary 

somatosensory (S2) and insular cortex (IC) (2.8 mm anterior to the interaural line (IAL +2.8 
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mm)) and the other covered the forepaw areas of the primary somatosensory cortex (S1) (IAL 

+3.7 mm). The respective regions-of-interests (ROIs) derived from the GLM analysis were used 

to extract BOLD signal changes as a function of time. In cases for which the correlation analysis 

revealed no activated voxels at the expected locations as well as for the unstimulated scans 

ROIs were transferred from the mouse brain atlas [13]. For group analysis, EPI images covering 

the S1 area (IAL +3.7 mm) and the thalamus (IAL +2.8 mm) were normalized to the coordinate 

system of the mouse brain atlas [13]. The fMRI coordinates were defined as followed: the origin 

of the right-hand coordinate system was chosen at the ventral end of the brain midline through 

the coronal sections. The second reference point was the dorsal end of the same midline, while 

the third point was placed on the edge of the right hemisphere at its widest point. The 

coordinate axes were defined along the midline (y-axis) and perpendicular to it (x-axis). The 

axes were then scaled to fit the dimensions of the mouse brain atlas, using an IDL-based 

software developed in-house [48]. 

For a detailed analysis of the fMRI time curve, the resulting BOLD profile was segregated into 

two components S (‘slow’) and F (‘fast’). Component S was extracted by fitting the 8 data points 

before stimulation onset (light gray bars, shown in Fig. 3a, b) to a gamma-variate function: 

 with a (amplitude factor), r (power of growth curve), k (rate of 

exponential decay) being the parameters to be optimized, while t is measured with regard to 

the start of the first stimulation period (t = 0). The best fit curve (solid line, Fig. 3b) was then 

subtracted from the original data to yield component F of the fMRI signal (Fig. 3c). The maximal 

amplitudes of the fitted curve for component S and of the extracted curve for the first 
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stimulation period of component F (see Fig. 3) was analyzed as a function of the stimulation 

amplitude. The quantitative analysis was carried out for all ROIs.  

We furthermore analyzed the rates of BOLD signal increase and decay for both the first 

stimulation cycle and the entire stimulation period. The data points of the signal decay at the 

end of the stimulation interval (indicated by the dotted line in Fig. 5a) were used to calculate a 

decay constant koff assuming a single exponential decay function, 

, with S(t) indicating the signal amplitude during the decay at time t and 

 the amplitude at the end of the stimulation period (t = 0). A minimum of four data 

points of the decay curve with an amplitude exceeding noise levels were required for each 

individual signal curve to allow for fitting. The BOLD signal decay rate constant was then 

correlated to the maximum BOLD response Smax of the single animals (Fig. 5c).  

The constant kon describing the initial build-up of the signal at the beginning of the stimulation 

to its maximum was calculated assuming the following relation: S (t) = Smax  [1 – exp (–kon   

t/Smax)] for which the initial slope yields , i.e. the initial slope was 

assumed to be independent of the maximum BOLD signal. 

 

Autoradiography and intrinsic optical imaging 

Autoradiography with [18F]-2-fluoro-2-deoxyglucose (18F-FDG) was performed on two female 

C57Bl/6 mice according to published protocols [44; 55]. The left forepaw was electrically 

stimulated at 1.5 mA using the parameters described above. A 5 minute stimulation period was 
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followed by a one minute break. This was repeated for the entire time course of 45 minutes, 

before the animals were sacrificed and the brain extracted.    

One mouse was used for intrinsic optical imaging. Reflectance from 570 nm light was measured 

through the exposed skull using a CCD camera. The left forepaw was stimulated with a 10 

second pulse train of 0.5 msec pulses of 1.0 mA current amplitude at 3 Hz. These experiments 

were carried out under 1.5% isoflurane anesthesia.  

 

Results 

Animal physiology and anesthesia 

Non-invasive monitoring of the mice showed stable physiology throughout the duration of the 

experiments. Blood gas levels of pCO2 measured transcutaneously were in the range of 40 ± 10 

mm Hg, which indicates a well adjusted ventilation of the animals [50]. Body temperature was 

kept stable at 36.5 ± 0.5 °C for the entire experiment. The monitored heart rate was stable 

around 500 beats per minute in all animals and no changes were detected during the 

stimulation. After completion of the fMRI investigation, the animals recovered fast and could 

be used for further experiments, an important prerequisite for longitudinal studies.  

 

Signal and image quality 
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By exploiting the significant gain in sensitivity provided by the use of a cryogenic RF surface coil 

for signal detection [35; 3] BOLD fMRI data sets of high quality suitable for reproducible 

quantitative analysis have been obtained. Comparing the CryoProbe with a conventional room 

temperature coil of similar dimensions (for detailed information on the coils see [3]) using the 

GE-EPI sequence, a gain in image signal-to-noise ratio (SNR) of a factor of 3.1 ± 0.7 (mean ± 

standard deviation, unpublished data) was achieved. Using a coronal slice orientation proved 

advantageous as cross-sectional images recorded  3 mm anterior to the interaural line were 

largely devoid of geometrical distortions caused by local magnetic field inhomogeneities due to 

different magnetic susceptibilities of adjacent tissue compartments. In caudal brain structures, 

significant susceptibility artifacts have been observed due to the proximity of the air filled ear 

cavities. This also impaired the quality of images recorded in horizontal plane view, which 

would allow covering larger brain areas. Distortions caused by differences in susceptibility are 

experienced on an absolute scale, i.e. they affect more extended brain regions in mice than in 

rats due to the smaller dimensions of the mouse.  

fMRI data showed good reproducibility (e.g. see error bars in Figs. 1 g, h) and allowed for 

assessing differences in the BOLD response during stimulation at different amplitudes.  

 

 

Spatial distribution and intensity of the BOLD response 
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The spatial distribution of the activated areas after forepaw stimulation at 1.5 mA (threshold 

p=0.0001, cluster size: 15 voxels) for one representative animal is shown in Figure 1. The 

position of five coronal slices is indicated in the sagittal section shown in Figure 1a. Besides the 

forepaw S1 region activated areas are present in other S1 areas (Fig. 1c-f), the primary motor 

cortex (Fig. 1c-f), and several nuclei of the thalamus, including the ventral posterior nucleus 

which relays somatosensory information to the cortex (Fig. 1f) [13]. Figure 1i shows the 

distinction of the forepaw area (blue) and the hind paw area (red) after the respective 

stimulation as an activation map of two representative animals. As expected, hind paw 

somatosensory S1 areas were located median to the respective forepaw regions. The activated 

cluster at the brain midline reflects signal contributions from the sagittal sinus. No consistent 

deactivations were detected in any region of the brain.  

Figure 2 shows statistical maps (threshold p=0.0001, cluster size: 15 voxels) depicted on the 

mouse brain atlas ([13], Fig. 2 a-f: IAL +3.7 mm, Fig. 2 g-l: IAL +2.8 mm) obtained from all 

animals at different stimulation amplitudes ((a, g) 0.5 mA, (b, h) 1.0 mA, (c, i) 1.5 mA, (d, j) 2.0 

mA). The activated clusters of individual animals were overlaid, i.e. the intensity in the 

activation map corresponds to the number of animals displaying a significant BOLD signal (left 

and right forepaw for each animal). Activation in response to the forepaw stimulation appears 

in the somatosensory S1 and S2 cortices, in the thalamus and at higher amplitudes in the 

insular cortex (regions indicated in Fig. 2e, k). For all activated regions, the spatial extent of 

BOLD response exceeded the topological area defined on the basis the mouse brain atlas [13]. 
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This is attributed to the fact that fMRI assesses the hemodynamic response elicited by neural 

activity and not the neural activity per se. 

 

BOLD signal changes in correlation to the forepaw stimulation paradigm  

The maximal BOLD signal intensity increased with increasing stimulation amplitude in all 

analyzed regions involved in sensory and nociceptive processing in a comparable manner as in 

the regions shown in Figures 3 and 4. Stimulation at the lowest amplitude of 0.5 mA led to a 

maximal BOLD signal of 0.93 ± 0.25 % (in % of baseline intensity) in the primary somatosensory 

cortex contralateral to the stimulated paw. For amplitudes of 1.0, 1.5, 2.0 mA, the maximal 

BOLD signal changes in this region amounted to 1.94 ± 0.20 %, 2.54 ± 0.22 %, and 3.52 ± 0.41 %, 

respectively (Fig. 3a). The maximum BOLD amplitude decreased for subsequent stimulation 

periods. Interestingly, the signal did not return to the initial baseline level within the two 

minutes resting interval following a stimulation episode, but stayed elevated until the start of 

the next stimulation block. The BOLD response to unilateral forepaw stimulation appeared 

consistently bilateral in all activated regions, including the S1 (Fig. 1, 4), thalamus, S2 and 

insular cortex (for 1.5 mA: Fig. 1h). The maximal BOLD signal amplitude in the regions of the S2 

somatosensory and insular cortex was significantly lower as compared to the S1 area. This was 

observed at all stimulation amplitudes except at 0.5 mA, where the amplitudes for S1 and S2 

area reached similar values (data not shown). There was no delay between ipsi- and 

contralateral responses within the time scale of the fMRI experiment (7.5 s temporal 

resolution). 
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The control region, which was located in the ventral pallidum, a structure not involved in 

sensory or nociceptive processing, showed no change in BOLD intensity for stimulation 

amplitudes ≤ 1.5 mA (Fig. 1g, 1.5 mA). At 2.0 mA a maximum signal increase of 0.81 ± 0.12 % 

was detected. This unspecific increase in the BOLD signal was observed in large parts of the 

brain. A second, cortical control region located in the piriform cortex, behaved comparable to 

the ventral pallidum (for 1.5 mA: Fig. 1h). No region-specific activation whatsoever, but only 

background noise was revealed by the analysis of the control fMRI data sets acquired without 

stimulation, indicating the stability of the fMRI setup including the physiological preparation 

(data not shown).  

 

Amplitudes of the two signal components S and F as a function of the stimulation amplitude  

The temporal profile of the BOLD response has been segregated into the two signal 

components S and F by fitting component S to a gamma-variate function and subtracting the 

best fit from the experimental data (Fig. 3b, c). Analysis of the maximal amplitude of both 

components for the two S1 regions and the thalamus were found to correlate with the 

stimulation amplitude. Linear regression analysis yielded correlation factors for component S 

(Fig. 5a) of R2 = 0.98 for the contralateral, R2 = 0.97 for the ipsilateral somatosensory cortex and 

R2 = 0.81 for the thalamus, respectively.  The values for component F (Fig. 5b) were R2 = 0.97 for 

contralateral S1, R2 = 0.98 for ipsilateral S1 and R2 = 0.87 for thalamus. 
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Analysis of the signal dynamics of component F 

Not only the amplitude but also the dynamic behavior of the BOLD response depended on the 

stimulation amplitude as demonstrated by the averaged temporal profile of component F of 

the first stimulation period of each animal (Fig. 5a). The maximum values for the S1 region 

contralateral to the stimulated paw were: 1.19 ± 0.48 %, 1.69 ± 0.21 %, 2.47 ± 0.18 %, and 2.81 

± 0.37 % for 0.5, 1.0, 1.5, and 2.0 mA, respectively. A striking feature of the observed BOLD 

response (Fig. 3c, 5a, b) is that the signal amplitude started to decay despite ongoing 

stimulation. The signal maximum was observed typically 30 seconds after stimulation onset, 

thereafter the amplitude decreased significantly by 5 to 15 %. The fitted curves (Fig. 5a) were 

computed assuming single exponential signal build-up and decay with parameters described in 

the Materials and Method section. The exponentially decaying vasodilatory response of the 

neuronal signal is characterized by a time constant kv = 0.02 s-1. For the build-up of the BOLD 

signal the same initial rate kon = 0.002 s-1 was assumed, irrespective of the stimulation 

amplitude applied. In contrast, the value for the decay rate constant koff was found to decrease 

with increasing stimulation amplitude. This is also apparent when normalizing individual BOLD 

signals to the respective maximum intensity value (Fig 5b). Single exponential fitting for the 

averaged curves yielded first-order rate constants of koff values of 0.040 s-1 for 2.0 mA, 0.051 s-1 

for 1.5 mA and 0.063 s-1 for 1.0 mA, displaying a linear dependence on the stimulation 

amplitude with a correlation factor of R2 = 1.00 (data not shown). In a next step we tested 

whether the decay rate koff depended on the maximal BOLD change. We therefore used the 

average BOLD signals of all stimulation cycles (4 stimulation blocks per stimulation amplitude), 
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which fulfilled the criteria with at least four data points exceeding the noise level used for the 

fitting procedure (Fig. 5c): a significant negative correlation has been found with R2 = 0.76.  

 

Autoradiography and intrinsic optical measurements 

The autoradiography data of the two animals (Fig. 6b) showed a clear bilateral increase in FDG 

uptake in the thalamus, consistent with the observed fMRI activation pattern (Fig. 6a). Cortical 

activation was found to be weak. Bilateral local increases in cortical blood volume indicative of 

neuronal activation were detected using intrinsic optical imaging (Fig 6d), which is in line with 

our fMRI finding of bilateral cortical activation.     

 

Discussion 

fMRI in rodents, predominantly in rats, has become an important tool in biomedical research 

e.g. to phenotype animal models of CNS disorders [36; 32; 37; 31].  In view of the many 

genetically engineered mouse lines the development of robust procedures for mouse fMRI 

protocols should be rewarding. By exploiting the significant gain in sensitivity provided by the 

use of a cryogenic RF surface coil for signal detection [35; 3], BOLD fMRI data sets of high 

quality suitable for reproducible quantitative analyses have been obtained. The CryoProbe 

enabled fMRI at a spatial resolution of 200x200x500 μm3, which is sufficient to resolve the 

major cerebral structures of the mouse brain and allows for detailed anatomical and functional 

studies.  
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The obtained fMRI data were highly reproducible both with regard to spatial extent and 

temporal profile. This allowed reliable detection of even small changes in the BOLD amplitude 

in response to stimulations at different current amplitudes. The BOLD intensity increased 

significantly at each stimulus onset, though there was a net decrease of BOLD amplitude for 

subsequent stimulation periods across the cycle consisting of four blocks. This was observed 

before [18; 42] and might be due to adaptation or habituation mechanisms, occurring either 

peripherally in the stimulated paw, or centrally in the brain. These mechanisms may also 

contribute to the signal decrease observed during ongoing stimulation (Fig. 3a, b).  

Due to the lack of clear evidence whether stimulation was noxious or not, the parameters used 

were tested on a human subject under the presumption that the threshold to activate C- or Aδ-

fibers is similar in humans and mice. However, as the innervation pattern differs, the human 

values cannot be translated directly to the mouse but should rather be used as an estimate of 

the noxious threshold. This stands in contrast to a study by Nair and Duong, which report hind 

paw stimulation with amplitudes up to 7 mA to be somatosensory only [33]. To our experience, 

the stimulation used in that study was likely to be noxious, at least at higher amplitudes.  

Data analysis revealed a robust activation of the S1 cortical forelimb area. However, the signal 

was not confined to the S1 region contralateral to the stimulated paw, but was also observed 

on the ipsilateral side with essentially the same amplitude and spatial extent. This stands in 

contrast to the majority of fMRI studies in healthy rats which report strictly unilateral responses 

during unilateral electrical stimulation [53; 41; 15; 20] including our own study using isoflurane 
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anesthesia [48]. We performed additional experiments to modulate the laterality of the fMRI 

response: varying anesthesia depths, male instead of female mice, or preparing only one paw 

with electrodes to prevent possible crosstalk between the leads carrying the needle electrodes. 

None of these interventions affected the bilateral symmetry of the activation pattern observed 

(data not shown). In addition, electrical forepaw stimulation at 1.5 mA in another strain 

(HsdWin:NMRI) showed the same bilateral activation pattern (data not shown). Bilateral 

activation of the areas responsible for pain processing has also been observed in humans [45; 

52; 47; 49; 46]. These bilateral signals may be conveyed by fibers of the corpus callosum [29] or 

by commissural neurons of the spinal cord [38]. The occurrence of bilateral activation has also 

been reported previously for rat studies [25]. However, due to our relatively slow temporal 

resolution of 7.5 s, we were not able to resolve a possible delay between the onset of activation 

in the two hemispheres. Even increasing the temporal resolution to 1 s was not sufficient to 

reveal a potential delay of the ipsilateral versus the contralateral activation (data not shown).  

Although carried out with a small number of animals, autoradiography and intrinsic optical 

imaging experiments support our fMRI findings. Autoradiography revealed a distinct bilateral 

activation of the thalamus, most pronounced in the ventral posterior nuclei, structures known 

to relay nociceptive information. One mouse also showed bilateral cortical activation in the 

regions of S2, insula and motor cortex. The intrinsic optical measurement showed a clear 

bilateral activation of similar amplitudes in both hemispheres. These experiments, which were 

performed independently from our fMRI setup, are in line with the results obtained with BOLD 

fMRI.     
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Besides the S1 region, bilateral activation was observed in the thalamus, the motor, S2 and 

insular cortex. These regions are known to be part of the nociceptive network. Motor cortex 

activation might originate from antidromic stimulation of the efferent motor fibers as seen in a 

study by Cho and colleagues [9]. These activated areas are in accordance with those reported 

for similar studies in rats [53].  

Anesthesia is a recurring issue in animal imaging, in particular when investigating nociception. 

Isoflurane is an attractive anesthetic as it is easy to administer and control; however, there are 

also drawbacks. Isoflurane is a potent vasodilator causing a global increase of cerebral blood 

flow (CBF) in a dose dependent manner [27]. The basal energy level as derived from the 

cerebral metabolic rate of glucose consumption (CMRglc) is lower than in the awake state. A 

reduction by approximately 40% was reported for an isoflurane concentration of 1.4% [22]. In 

comparison, -chloralose was found to reduce baseline CMRglc by approximately 60% [25]. The 

higher energy consumption, the high CBF and concomitantly the dilated vessels in isoflurane 

anesthetized animals during baseline conditions reduce the dynamic range of the hemodynamic 

response as compared to -chloralose anesthesia [10; 19]. The vasodilatory effects however 

are dose dependent and can therefore be significantly reduced by using relatively low 

isoflurane levels (at around 1%). At this low level we assume reduced antinociceptive efficacy of 

isoflurane. Deady et al. showed that the hypnotic effects of isoflurane occurred at lower 

concentrations than the antinociceptive effects [12]. Also, low concentrations of isoflurane 

appear to exhibit minimal neuro-suppressive effects, as the flow-metabolism coupling was 

shown to remain preserved [16]. The robust BOLD response reported in this study as well as 
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data from other studies performed under isoflurane anesthesia prove it to be a useful 

anesthetic for fMRI studies in rodents [36; 32; 37; 40; 33; 43]. 

A recent study [1] performed on mice using electrical forepaw stimulation claims the α2-

adrenergic receptor agonist medetomidine to be better for long time studies than other 

anesthetics. However, the occurrence of BOLD activation in less than 60% of all scans 

performed (our study:  > 95%) and the noisy temporal BOLD profiles do not clearly show the 

superiority of medetomidine anesthesia.  

When analyzing the temporal BOLD profile, it became obvious that it consists of two 

components, of which one is in phase with the stimulation (component F), while the other one 

is much slower, starting with the onset of the first stimulation (component S). The two 

components might be explained in terms of the underlying physiological processes: Component 

F being in phase with the stimulation episodes, is probably associated with the peripheral 

neuronal input of the A and C fibers, while the underlying signal described by component S 

might reflect a slow vascular response. 

The BOLD signal amplitude of both components depended linearly on the stimulation 

amplitude. A similar linear dependence has been demonstrated using cerebral blood volume 

(CBV) [31] and CBF [42] measurements in mice and rats, respectively. Torebjörk et al. also 

showed that nociceptor responses and individual pain ratings in humans both linearly 

correlated with the applied heat stimulation [51].  
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By averaging and normalizing the BOLD signal curves of all animals, it became apparent that the 

rate of the signal decay following a stimulation episode decreased with increasing stimulation 

amplitudes. Stimulation at high amplitudes led to a larger BOLD response and thus to a higher 

content of oxyhemoglobin (and correspondingly a lower concentration of deoxyhemoglobin) in 

the vessels, as compared to stimulations at lower amplitudes. This is in line with the 

hemodynamic model described by Friston and colleagues [14], which combines the balloon 

model with a linear dynamic model of changes in CBF as caused by neuronal activity. The 

balloon model describes the link between CBF and the BOLD signal and is able to predict 

nonlinear effects of the BOLD signal, which contrast the linear relationship of CBF and synaptic 

activity. The central concept of the model is to treat the venous compartment as an expandable 

balloon, which is inflated by an increase in CBF, leading to a dilution of the deoxygenated blood 

and an increased expelling rate of the blood [4]. The model predicts the recovery rate following 

a stimulation episode to be proportional to the amount of deoxyhemoglobin in the vessel [5; 

14; 4], which is in line with our experimental results (Fig.5). In contrast, the initial rate of the 

build-up of the BOLD response was found independent on the current amplitude within error 

limits. 

A further aspect that becomes apparent from the temporal profile of the BOLD response is that 

the BOLD amplitude decays during stimulation despite ongoing peripheral input. This can be 

explained by a decaying vasodilatory signal, which is also subject to feedback regulation by CBF, 

in response to a prolonged neuronal stimulus [15, 45]. The neuronal input is described as an 

initial peak followed by a decay to a lower level [14; 4]. 
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We could demonstrate that reproducible mouse BOLD fMRI data can be obtained following 

sensory stimulation. The high quality of the data and the use of isoflurane make longitudinal 

studies to study e.g. functional changes in the brain feasible.  
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Figure Captions 

Figure 1: Spatial distribution of the BOLD activation. (a) Sagittal reference image indicating the 

positions of the coronal EPI slices covering a large section of the mouse forebrain. (b) – (f) 

Spatial distribution of the activated clusters (p = 0.0001) of one representative animal after 

unilateral forepaw stimulation. The left side of the image corresponds to the left hemisphere. 

Nominal distance to the interaural line (IAL) is given for each slice. Scale bar indicates 5 mm. 

Activated areas include the S1 forelimb area (c, d, e); motor cortex M1 (c, d, e); and several 

nuclei of the thalamus, including the ventral posterior nucleus which relays somatosensory 

information (f). Activated clusters are also observed at the sagittal sinus (e, f). (g) Time course 

of the BOLD signal after unilateral electrical stimulation of the forepaw at 1.5 mA for S1 

contralateral to the stimulated paw (pink), S1 ipsilateral (dashed black), thalamus (gray), and 

the control region (light gray). Gray bars indicate the stimulation periods. The BOLD signals of 

the contralateral and ipsilateral S1 are almost identical. (h) Maximal signal amplitude of 

different regions (S1, S2, insular cortex (IC), piriform cortex (PC, control region)) ipsi- (black 

circles) and contralateral (pink squares) to the stimulated paw at 1.5 mA. All values are given as 

mean + SEM. (i) Activation map of two representative animals showing activation of the 

forepaw (blue) and hind paw (red) S1 area after stimulation of the respective paw at 1.5 mA, 

overlaid on an EPI image. Scale bars indicate t-values.    

 

Figure 2: Activation maps of the cortex after left and right forepaw stimulation at (a,g) 0.5 mA, 

(b,h) 1.0 mA, (c,i) 1.5 mA, (d,j) 2.0 mA. Data show activated clusters derived from GLM analysis 
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(p = 0.0001, cluster size: 15 voxels) for all animals overlaid on the mouse brain atlas at IAL +3.7 

mm (a-f) and IAL +2.8 mm (g-l) [13]. (e-k) Mouse brain atlas with relevant regions (SI: primary 

somatosensory cortex, forepaw region; SII: secondary somatosensory cortex; IC: insular cortex; 

MI: primary motor cortex; TN: thalamic nuclei) overlaid on the anatomical image. (f,l) 

Representative EPI image revealing relatively little distortions. (g-j) Activation maps; intensity 

indicates the number of stimulation periods displaying significant BOLD activation at a given 

location (scale bar). 

 

Figure 3: (a) Relative change of the BOLD signal intensity as a function of time during electrical 

forepaw stimulation for the different stimulation amplitudes. Dark grey bars indicate the 

stimulation periods, light gray boxes mark data points used for fitting the component S curve 

(b). (c) Signal component F obtained by subtracting (b) from (a). Values are given as mean + 

SEM. 

 

Figure 4: The amplitudes of the two components S (a) and F (b) as a function of the stimulation 

amplitude. (a) Linear regression analysis yielded correlation factors of R2 = 0.98 for the 

contralateral and R2 = 0.97 for the ipsilateral S1 somatosensory cortical area. The corresponding 

value for thalamus was R2 = 0.81. (b) For the fast component the correlation factors were: R2 = 

0.97 for contralateral S1, R2 = 0.98 for ipsilateral S1 and R2 = 0.87 for thalamus. Values are given 

as mean ± SEM.  
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Figure 5: Analysis of component F of the fMRI response to electrical stimulation of the forepaw 

in the contralateral S1 cortical region. (a) Mean fMRI signal response for the first stimulation 

episode as a function of time and current amplitude. Solid lines indicate the BOLD response 

modeled as described in the text. The dashed line illustrates the vasodilatory stimulus, which 

displays a single exponential decay with a rate constant kv = 0.02 s
-1

. (b) The mean normalized 

fMRI response of the first stimulation period (normalized to 1) as a function of time and 

stimulation amplitude. The reduced rate of signal decay with increasing stimulus amplitude 

(and correspondingly higher maximum BOLD intensity) becomes apparent. For sake of clarity 

error bars have been omitted. (c) The decay rate constant of the BOLD signal of the single 

animals decrease with increasing maximal intensity of the BOLD signal. Linear regression 

yielded a correlation coefficient of R2 = 0.76. Values are given as mean  SEM. 

 

Figure 6: Autoradiography and intrinsic optical imaging. (a) fMRI activation map of a 

representative animal. (b) 18F-FDG autoradiographies of two mice after unilateral forepaw 

stimulation show bilateral thalamic activation and some bilateral cortical activation (blue 

arrows). (c) Reflection of 570 nm light used for intrinsic optical imaging reveals the vascular 

anatomy at both sides of the sagittal sinus. (d) Activation map of intrinsic optical imaging shows 

bilateral activation of the somatosensory area. Regions with increased cerebral blood volume 

are recognized by a decrease in signal intensity (blue). Color bar indicates changes in signal 

intensity in [%].     
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Summary 

 

The development of a robust BOLD fMRI protocol using electrical forepaw stimulation allowed studying 

somatosensory and nociceptive processing in mice.  

*Summary
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