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Synopsis 

The r esear ch sets out to solve two non- linear 

analyses pr oblems, namely the transient heat phenomena due 

t o we lding and the subsequent elas to- plas t ic stress analysi s . 

Both analyses employ t he finite el ement method and it i s 

assumed that the t ermperature distri bution can be calculated 

independent from the stress analysis . Von-Mises plasticity 

is used with variation of material properties with temper ature . 

Results are pr esented for t he effect of a weld Z·ine across 

t he edge of a flat plate and the residual stresses compared 

with experimental values . 
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1. INTRODUCTION 

The analysis presented in this paper is an application 

of the finite element method in the prediction of non-linear 

material behaviour of continuum type structures . The particular 

continuum chosen for a n a l ysis is that of plane-stress or strain, 

composed of a material whose y ield stress may be predicted by 

the Von-Mises - Hencky criterion. The non-linear effects chosen 

for investigation are those resulting from high-temperatures, 

such as welding. The problem t hus involves t wo stages of analysis. 

The first stage requires the solution to the non-linear transient 

heat fl ow problem in which the heat source varies in position 

with time. The thermal properties a r e assumed to be independent 

of any induced stress. From this analysis, termperature strains 

are calculated at each time interval and these used in the second 

stage of the analysis to predict the elasto-plastic stress 

distribution. Fina lly, when the structure has returned to the 

ambient temperatur e the pattern of residual stresses is obtained. 

The thermal stress analysis is complicated by change in both 

modulus of elasticity and yield surface with temperature. The 

analysis should have application in problems of residual stress 

determination and in determining pre-heat necessary to reduce 

these stresses in welding processes. For e xample, the effects 

of residual stresses from welding have been found to influence 

buckling behaviour of struts and plates ( l ) . 

2. THEORY OF DETERMINATION OF THERMAL STRAINS AND 
STRESSES 

Temperat ure change produces c hange in volume. The 

therma l expansion from a given state is proportional to the 

t emperature change dT and the thermal strain is given, 

(1) 

Of course , the coeff i cient of the rmal expansion a T may 

be a func tion of the t emperature T, so that Equation l can be 

regarded as a tangential or incremental relationship. Thermal 

stresses deve l op when the expansion is restrained. The restraint 

arises because the system is statically indeterminate, either 
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externally with regard to its support system or internally because 

the non-uniform expansion inside the solid violates t h e 

compatibility requirements of strain s and displacements. 

Fortunately, for most practical applications envisaged herein, 

the temperature field may be obtained independently from the 

stress fi e ld. That is, the heat equilibrium in the solid is not 

influenced by the force equilibrium or vice versa. 

In this paper the emphasis is placed on stag e two of the 

analysis, the thermo-elasto-plastic stress problem. The transient 

heat flow solution including high temperatures has been presented 

elsewhere (Refs. 2 and 3). 

2.1 Constitutive Equations 

For a linear elastic material, the stress chang e in the 

time interval in which the temperature changes by an amount ~T 

is, 

In Equation 2, [D] is the constitutive matrix and 

{~ s }, the elastic strains, 
e 

{~ s } 
e 

The thermal strain for the increment is calculated, 

~T 

{ ~ s } = J a T dT 
0 

The total strain c h a nge { ~s} may b e app roximated, 

(2) 

( 3 ) 

(4) 

(5) 

The r e are three types of ma terial non-linear b e haviour 

to b e conside r e d and the s e a r e discu ssed s e parate l y . 

2.2 Variable Elasticity 

The elastic properties (E, v ) are functions of temper-
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ature. Thus the e lastic constitutive matrix [D_] at the beginning 

of the interval and [D+] at the end may differ appreciably. The 

stress change for the increment is, 

(6) 

The change in the elastic constitutive matrix is, 

(7) 

with this notation, Equation 6 is written 

{flo} (8) 

That is, 

{flo } (9) 

Finally, 

{flo} (10) 

The term {EL'IE} in Equation 10 is called a 'pseudo' strain 

increment. From Equations 9 and 10, it is seen that, 

(ll) 

2.3 Plasticity 

Plastic strains occur when the stresses at a point reach 

the yield surface. Irreversible plastic strains {liE } occur, and, 
p 

{flo} [D] (12) 

The magnitude and direction of the plastic strain 

increments depend on the yield condition and the flow law. 

Herein, the Von 1>1ises - Hencky yield condition has been used and 

this assumes that the yield function F is defined by the second 

invariant of the deviatoric stress tensor. 

The condition is written, 



F 

4. 

0 - 0 
y 

0 (13) 

The yield stress oy is obtained from a uni-axial tension 

test and is a function of temperature. The equivalent stress 

o is given from the second invariant of the deviatoric stress 

tensor to be, 

(14) 

In equation 14, for the three dimensional stress 

state, 

{ OD} T = { S X, S , S , 12 T , 12 T , 12 T } 
y z xy yz zx 

(15) 

Subsequent yield surfaces F depend on temperature and 

the amount of plastic strain {£ } that has taken place, so that 
p 

Equation 13 is written in the general form, 

0 (16) 

Corresponding to the equivalent stress, o, the equivalent 

plastic strain E is defined, 
p 

-2 2 {£ }T {£ } £ 
3 p p 

(17) 

where, 

{E }T {e 1 1 1 } 
x' e y, e z, yxy' yzy, yzx p 12 12 12 

(18) 

For isotropic hardening, the yield surface becomes, 

F 0 (19) 

The direction of the plastic strain increments is governed 

by the flow rule assumed. The Prandtl - Reuss Rule assumes that 

no volume change occurs during plastic straining and hence the 

plastic strains are dependent on the deviatoric stresses. That is, 

on the normal to the yield surface. 



d{E } 
p 

I n Equation 20, 

s. 

{s}ds 
p 

(20 ) 

(2 1 ) 

In an initial stress approach, an e l astic analysis is 

carried out a t every time i ncrement and any plastic strains 

which may have occurred computed at the end of the increment. 

L 

/I 
I 
I 

j..4llf 
cfv,lf-,T-1 

I I 
I I 

f 

FIGURE 1 Str ess-Strain Relationsh i ps 

Thus refe rring to Figure 1, the stress level at the 

e nd of the increment {o+*} may violate the y i eld condit ion. 

The equivalen t plastic strain incr ement 6£ is related t o the 
p 

'elastic overstress' , 6o , by 
p 

The constant C has to be de termined . 

For small increments of llo , 
p 

(22 ) 
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Also, since 6a is the 'elastic overstress', 
p 

{6a } 
p 

[D] {6E } 
p 

Hence, with the use of Equation 20, 

That is, C 

{S} T [D] {S} 6£ 
p 

{s} r [Dl {s} 

From Figure 1, it is seen that 

a* - a ( E , T ) = 6a + 6a 
y - - p y 

With a linear approximation of, 

Where, 

6a yE 

and, 

6a yT 

6a 
y 

a a ____z 
dE 

p 

a a 
____z 
ar 

6£ 
p 

H(T 

T A(T 

. E. ) 6£ 

. E ) 6T 

p 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

( 30) 

In Equations 29, 30, H and A are functions of the 

temperature and plastic strain and may be considered as the rate 

of expansion of the yield surface with strain (strain hardening) 

and temperature respectively. Equation 27 may be now rewritten 

as, 

-* a 

Solving for 6£ , 
p 

6£ 
p 

C6E + H6£ + A6T 
p p 

( 31) 

-* a - a ( E _, T _) - A6 T 

H + C 
(32) 
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Then with Equation 20, 

{6E } 
p 

{ s } ll"E ( 33) 
p 

The above relationships are only approximate and for 

large plastic strain 

not lie on the yield 

is modified slightly 

increments the corrected stress level may 

surface. In such a case the above process 

and an incremental correction method based 

on the above is used to ensure that the final stress does lie 

close to the yield surface (See Appendix A). 

2.4 Creep 

Creep occurs when the strain at a given stress level 

changes with time. In general there is a coupling between creep 

and plastic strains. For most practical purposes, however, the 

creep strain may be isolated from the plastic strains. The nature 

of the creep strains is very similar to that of the plastic strains 

and hence the direction of the creep strains is obtained by using 

the same flow rule. That is, 

{6 E } 
c 

{s} ll"E 
c 

(34) 

Here, 6"Ec is the equivalent creep strain increment and establishes 

the relationship between the multi-axial and uni-axial stress 

states. vlithin the increment ll"Ec is obtained from the average 

creep rate inside the increment, 

£ L'lt 
e 

(35) 

The creep rate £c is dependent on the state of stress, 

the temperature and the accumulated creep strain or time, so that 

it is possible to write, 

£ 
c 

(36) 

Several mathematical models for creep have been proposed (see 

Ref. 4). The stress increment for creep alone operative becomes, 
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{ 6o } (37) 

In general all the abovementioned materia l non-linearitie s 

may be present and together, 

(38) 

3. NUMERICAL IMPLEMENTATION 

The above the ory is incorporated in a finite e l ement 

program using an 8 node isoparametric element as the basic two­

dimensional block. Details of the iterative scheme used are 

discussed herein. 

For pure thermal stress probl ems (no ext ernal loading) , 

the following system of line ar equations is obtained for the 

equilibrium at the end of a time increment. 

The s tiffness matrix is the global assembl age of 

individual e l ement stiffness matrices. 

[k] = I [ B] T [D] [B] dV 
val 

(39) 

(40) 

and the initial nodal point force vector is obtained from all 

element contributio n s , 

I [ B] T [ D] {6 E } dV 
va l a 

(41) 

In Equation 41, { 6Ea } is the initial strain vector and 

contains all strains that a re not stress induced or elastic. 

For an elasti c t hermal str ess analysis {6Ea} contains only the 

the rma l strain s {6ET}. For a non- l inear ana l ysis a l l t h e non­

linear e ff e cts may b e conside r e d as initial s tra ins and hence, 

{6E } 
a 

(42) 
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Since the magnitudes of {~ s } and {~s } are not known 
p c 

at the beginning of the interval bu t depend on t he state of stress 

at the end of the increment, an iterative solution is used to 

solve the equilibrium equations. 

carried out at the beginning with 

A linear elastic analysis is 

assumed values of { ~s } and 
p 

{~sc }' and a first approximation t o the displacement increment 

obtained. The total strain increment is then computed, for the 

ith iteration, 

{~s .} 
]. 

(43) 

The corr esponding stress increment is then, 

(44) 

The approximation to the str ess leve l at t he end of the 

increment is 

{ 0 } + { ~0. } 
]. 

(45) 

With t hi s new stress l evel improved values of the plastic strain 

increment { ~ s pi } and the creep strain increme nt { ~ s ci } a r e 

computed. 

The nodal point force vector is then recompu ted with 

new values of { ~ s } and {~s } 
p c 

{M . } 
]. f 

vol 

+ { ~s . }) d V 
Cl. 

(46) 

An improved approx imation to the nodal displacement incr ement is 

made , 

(47) 
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The process is repeated until the 'residual force' vector 

{LlR.} 
l 

(48) 

is small. That is , until 

II { Ll Ri } II < Tolerance limit (49) 

The Tolerance limi t is set by the user. 

The method describe d above i s referre d to in t he literature 

as the 'initial force' method. The stiffness ma trix is computed 

with the elastic properties and in t he case of variable elasticity 

can change throughout the loading h istroy. To avoid r ecomputation 

at every time step , the changes may be moved to the right-hand 

side and included in the iteration process. Thus, t he stiffness 

matrix at any time is, 

[K] (50) 

Thence, 

(51) 

a nd approximate l y for the ith ite ration, 

(52) 

Then only the e lastic sti ffness matrix [ K0 ) at room 

temperature occ urs on the left hand side of the equations and 

the meth od is now a true ' constant s t i ffness ' approach . The 

merits of a 'tangent stiffness' approach with recompu t ation of 

the stiffness at the beginning of each time interval versus a 

'constant stiffness' approach have been discussed in the literature 

(Re f. 5). The authors have found the above process quite economi ca l 

in the problems t hey h ave investi gat e d. 

Several devices may be used to acce l erate convergence 

of the iterations, namely, 
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A good initial assumption of { 6E } and { 6 E } . Where 
p c 

progressive plasticity occurs the starting values may 

be taken from the previous time increment. For cyclic 

plasticity any such ass umption may, however, increase 

the number of iterations and a zero starting value for 

{6E } woul d be more appropri ate. 
p 

(b) The use of an over-relaxation factor where t he plastic 

strain estimate is magnified, 

a{ 6 E } 
p 

(53) 

For a values between 1.8 - 2.0, improved convergence 

has resulted for the case of progressive plasticity . However, 

for cyclic plasticity unstable oscillations may occur. 

The merits of higher order isoparametric elements for 

the the rma l stress computa tion and t h e use of nume rica l integr a tion 

has been discussed in Ref. 6. In Ref. 6 it has also been shown 

that the element used for thermal stress analysis should be able 

to represent at least a linear distribution of strain. Thus the 

choice of the 8 node - 'parabolic' isoparametric elemen t in the 

studie s prese nted here in. 

4. EXAMPLES 

Two examples are given to demonstrate the use of the 

theory. In both example s the mater ial used is struc tural steel 

a nd i ts be haviour at e l ev a t ed t empe r a tures i s given a s plots of 

s tre ss v e r s u s str a in in Fig . 2. These h av e been taken from test 

results reported in Ref. 8. The necessary information extracted 

from these curves is the temperature dependence of the modulus of 

elasticity, the strain hardening parameter H, and t h e c hange in 

yie ld stress parameter A. 
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FIGURE 2 Steel- Stress-Strain Curves 

for Various Temperatures 

=!, 

In Fig. 3, the depende nce of the modulus o f elasticity 

o n tempe r a ture is s hown a nd a smooth f unction i s passed through 

the band of available data. An accurate functional representation 

for A and H is very difficult if not impossible to obtain. A 

r e latively simple function which can be used is reported in 

Re f. 9. For thermal stress problems discussed herein it has 

been assume d that the strain h a r dening range can b e neglect e d 

with the introduc tion of l arge e rrors. A simp l e f unction of 

temperature only is used to represent cry a n d thus A . This 

function is shown in Fig. 4, and has been used in the examples 

a nalysed here in. 
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Example 1: Thick Cylinder subjected to a temperature difference 

between the inside and outside surface. 

The ratio of i nner t o external radius has been chosen 

to agree wi th that given in an analy t i cal solution i n Ref . 11. 

In Ref. 11, the external temperature is increased to 425°C 

whereas the internal temperature i s constant at 0°C . The Tresca 

yeild criterion is used and perfect p lasticity and constant 

material properties assumed. A comparison of this solution with 

the finite element analyses undertaken here in in shown in Figs. 

5 and 6. 

• FE.M. (VON MIESES) 
CONSTANT MAl PROP. 

+ FE.M. (VON MIESES) 
VARIABLE MAT. PROP. 

100~-------------------------------+~ 

FIGURE 5 

1.8 

Plastic Zones in Thick Cylinder 

Subject to Temperature Difference 



u 
Uyo 

0.5 

0.5 

-1.0 

FIGURE 6 

15. 

FINITE ELEMENT RESULTS 
(VON MIESES) 

CONSTANT MATERIAL 
PROPERTIES 
o- u6 
6.- or 

VARIABLE MATERIAL 
PROPERTIES 
D- a8 
+-or 

Results of Stress Analysis 

of Thick Cylinder 

The finite e l ement mesh consisting of 3 elements is 

shown in Fig. 7. In Fig. 5 the comparison of stress distributions 

is given, whereas in Fig. 6, the plastic zones are shown. The 

results compare favourably considering the limi ted number of 

elements used and the slightly different y ield criterion . A 

consideration of the variation of material properties with 

t emperature causes a d e crease in stresses at the hotter outside . 
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FIGURE 7 Finite Element Mesh for Thick Cyli nder 

Example 2: In this second example the welding of a thin plate 

along one of its free edges is analysed. The welding rod is 

here ideali zed as a point heat source and the actual deposit 

of weld material is not considered. Th a t is, its mass is 

considered small when compared with the mass of the p late. For 

the thin plate the simplifie d assumption is made for the therma l 

analysis that heat fl ow can be treated as two dimensional with 

no temperature variation through the t h ickness. The heat flow 

analysis was discussed i n Ref . 1 2, and results of t his shown in 

Fig. 9 , f or the finite e l eme nt me sh in Fig. 8 . 

The results i n Fig. 9 are contour plots f o r different 

times and location of t he heat source (welding rod) . The thermal 

stress analysis was performed using t he high temperature material 

properties d i scu ssed previou s l y . The functions for E and a 
y 

wer e extended to give zero values at the melting poi nt ( l400 °C ) 

to allow for the high temperatures e ncountered n e a r the we l ding 

rod. Creep strains were not considered. The iteration process 

discussed previously has proved to be stable even in the extreme 

c ase where part of an element has zero strength. The same finite 
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element mesh shown in Fig. 8 was used in the stress analysis. 

In all 16 time steps were use d to cover the range from beginning 

of welding to the complete cooling of the plate. 

Within each time step a maximum of 5 iterations gave 

an average convergence of about 1%. The step by step computation 

of the plastic strain increments as discussed in Appendix A 

ens.ured that the stresses were on or very near the yield surface 

wherever plasticity occurred. 

-.-

E 
E 

0 

~ 

-'--

FIGURE 8 

150mm ./ 
t = 10mm 

Finite Element Mesh for Plate-Weld 

Problem 
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TIME 6 sec. 

TIME INTERVAL 1 

TIME 44 sec. 

TH1E INTERVAL 7 

TH1E 75 sec. 

TH1E I NTERVAL 11 

CONTOURS: 

MAXIMUM 

HINIMUM 

INCREMENT 

1600°C 

475° C 

l25° C 

FIGURE 9 Temperature Variati on in Plate with Time 
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The results of the analysis are presented in Figs. 10 

to 12. In Figs. lOa to lOc,the plastic zones for three of the 

time intervals are shown together with principal stress plots. 

Gauss-points that are plastic are shown by a circle and the 

plastic zones shown by the shaded zones. The final residual 

stress pattern that remains after the plate has cooled is shown 

in Fig. lOd. In Fig. ll the variation of the longitudinal 

residual stresses which remain after the plate has finally 

cooled completely are plotted. These are compared with 

experimental results for the same problem given in Ref. ll. 

Good agreement is observed between the present analysis and 

these experimental results. Finally in Fig. 12, displacement 

plots (magnified 25 times) show the plate distortion produced 

by the welding. 

5. CONCLUSION 

It has been shown that the constant stiffness, initial 

force method in the Finite Element Method may be used successfully 

to analyse thermal stress problems even when highly non-linear 

material behaviour is encountered. The proposed solution algorithm 

has proved to be stable even in the extreme welding problem 

where material strength decreases to zero in the region near the 

heat source. 

The consideration of all possible material non-linearities 

such as variable elasticity, plasticity and creep is limited 

only by the amount of tension test data available for high 

temperatures and the subsequent representation of such data by 

smooth functions that can be generated for the computer solution. 

The analysis for thermal distortion and residual stresses 

has many applications in design: for example, their effects on 

stability of compression panels. In addition such analyses 

should provide information to plan welding procedures to minimize 

distortion and also for the determination of pre-heat necessary 

to reduce residual stresses to a minimum. 
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(a) Plastic Zone in 
Plate Time t = 1 

(b) Plastic Zone in 
Plate Time t = 7 

(c) Plastic Zone in 
Plate Time t = 11 

(d) Residual Principal 
Stresses in Plate 

FIGURE 10 Plastic Zone and Residual Principal Stress 
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TIME INTERVAL 2 TIME INTERVAL 10 

TIME INTERVAL 4 TIME INTERVAL 12 

TIME INTERVAL 6 TIME INTERVAL 14 

TIME INTERVAL 8 TIME INTERVAL 16 

FIGURE 11 Deformations of Pla t e with Time 
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FIGURE 12 
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APPENDIX A INCREMENTAL CORRECTION METHOD 

The incremental relationships Equations 25 a nd 29 are 

only valid for small values of 6E , since the directi on vector 
p 

{S } and the strain hardening parameter (H) may otherwise change 

within the interval. Thus Equation 25 must be re-wr i tten in 

incremental form as 

dt:.a 
p 

{S}T [D ] { s } d6E 
p 

Thence for a finite increment, 

t:. E 

t:. a 
p 

p 
f {s}T [D] { s } d6E 
0 p 

In a similar manner, 

t:.a 
YE 

t:.E 
J p 

0 
Hd6E 

p 

t:.E 
J p 

0 
Cd6E p 

Equation 31 now becomes an integral equation, 

6 F 

t:.E 
p 

f Cd t:.E 
0 p 

t:. E 
+ J p 

0 
Hd6E 

p 

(54) 

(55) 

(5 6 ) 

(57) 

An approximate solution of the integral equation can be 

obtained by treating Equation 57 as an initial value problem. 

Starting with the known values of { s } and H at stress level 
* 0 0 

{a+} = {a0 }, the corre ction to the a c tual value on t h e y ield 

surface {a+} = {am} i s per f orme d i n m s ma ll s t e p s . 

The recursion formulas are, for the ith step, 

6F . 
]. 

t:.E . 
p , l. 

{ a } 

a i-l - ay ( e _, T+ ) 
m + l - i 

6F. 
]. 

(58) 
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FIGURE 13 Corrections to Yield Surface 

A g r aphical inte rpretation of the me thod i n p l ane stre ss 

is shown in Fig. 13 for ideal Von-Mises Plasticity. The correction 

from o: to o+ is along the curved line l - 2. If this correction 

is performed in one step it would follow the straight line l - 3 

with the normality vector computed at the fictitious y ield surface, 

F - 6F = 0 . Point 3 is therefore some distance a wa y from the 

true yie ld surface. An improved solution is shown usi ng 2 ste ps . 

The correction is first made to point 4 whe r e the norma lity 

vector is recomputed and hence t he final correction 5 is much 

closer to the yield surface. I n p ractice 10 or more steps can 

be used to reach a point very close to the yield surface . 
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APPENDIX B - NOMENCLATURE 

A(T,E) function of yield surface with temperature 

B strain transformation matrix 

C matrix scalar, relating equivalent plastic s tress and s train 

D constitutive matrix for t he material 

D+,D- constitutive matrix at beginning and end of time steps 

ex, ey, e 2 direct deviatoric strain components 

6F0 load increment vect or 

F(o ,s ,T) yield function 
p p 

H(T,E) function of yield surface with strain 

K element stiffness matrix 

K0 ,K structure stiffness matrices (initial, and at some time interval) 

6K i ncrement in K 

6R. residual force vector 
l 

sx,sy,sz direct deviatoric stress components 

S deviatonic stress vector 

T,dT t emperature, variation in t empera ture 

aT coefficient of thermal expansion 

a over relaxation factor 

Yxy'yyz'yzx shear strain components 

Txy 'Tyz'Tzx shear stress components 

EP equivalent plastic s tra in 

6E e lastic strains e 

6E6E increment in elastic strain 

6sc equivalent creep strain 

a equivalent stress 

6a str ess increment 

ay yield str ess 

aD stress matrix used for calculating a 



!1sT 

!1s 
0 

£+,E-

Ep,f1Ep 

M 
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elastic over stress 

stress matrix 

thermal strain increment 

initial strain vector 

strains at end and beginning of interval 

plastic strain vector, increment in plastic strain 

increment in nodal displacements 

stresses at beginning and end of interval 
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