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Synopsis

The research sets out to solve two non-linear
analyses problems, namely the transient heat phenomena due
to welding and the subsequent elasto-plastic stress analysis.
Both analyses employ the finite element method and it is
assumed that the termperature distribution can be calculated
independent from the stress analysis. Von-Mises plasticity
is used with variation of material properties with temperature.
Results are presented for the effect of a weld line across
the edge of a flat plate and the residual stresses compared
with experimental values.
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1. INTRODUCTION

The analysis presented in this paper is an application
of the finite element method in the prediction of non-linear
material behaviour of continuum type structures. The particular
continuum chosen for analysis is that of plane-stress or strain,
composed of a material whose yield stress may be predicted by
the Von-Mises - Hencky criterion. The non-linear effects chosen
for investigation are those resulting from high-temperatures,
such as welding. The problem thus involves two stages of analysis.
The first stage requires the solution to the non-linear transient
heat flow problem in which the heat source varies in position
with time. The thermal properties are assumed to be independent
of any induced stress. From this analysis, termperature strains
are calculated at each time interval and these used in the second
stage of the analysis to predict the elasto-plastic stress
distribution. Finally, when the structure has returned to the
ambient temperature the pattern of residual stresses is obtained.
The thermal stress analysis is complicated by change in both
modulus of elasticity and yield surface with temperature. The
analysis should have application in problems of residual stress
determination and in determining pre-heat necessary to reduce
these stresses in welding processes. For example, the effects
of residual stresses from welding have been found to influence

buckling behaviour of struts and plates (1).

2. THEORY OF DETERMINATION OF THERMAL STRAINS AND
STRESSES

Temperature change produces change in volume. The
thermal expansion from a given state is proportional to the

temperature change 4T and the thermal strain is given,

de = a., dT (1)

Of course, the coefficient of thermal expansion o, may

T
be a function of the temperature T, so that Equation 1 can be
regarded as a tangential or incremental relationship. Thermal
stresses develop when the expansion is restrained. The restraint

arises because the system is statically indeterminate, either
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externally with regard to its support system or internally because
the non-uniform expansion inside the solid violates the
compatibility requirements of strains and displacements.
Fortunately, for most practical applications envisaged herein,

the temperature field may be obtained independently from the
stress field. That is, the heat equilibrium in the solid is not
influenced by the force equilibrium or vice versa.

In this paper the emphasis is placed on stage two of the
analysis, the thermo-elasto-plastic stress problem. The transient
heat flow solution including high temperatures has been presented
elsewhere (Refs. 2 and 3).

2.1 Constitutive Equations

For a linear elastic material, the stress change in the
time interval in which the temperature changes by an amount AT
is,

{ac)=[p] {ae_} (2)

In Equation 2, [D] is the constitutive matrix and
{Aae), the elastic strains,

"{Aee} = {Ae} - {AeT} (3)

The thermal strain for the increment is calculated,

AT
{ae }=f a dT (4)
(o]

The total strain change {Ae} may be approximated,
{ae} = (e} - {e ) (5)

There are three types of material non-linear behaviour
to be considered and these are discussed separately.

2.2 Variable Elasticity

The elastic properties (E,v ) are functions of temper-
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ature. Thus the elastic constitutive matrix [D_] at the beginning
of the interval and [D+] at the end may differ appreciably. The

stress change for the increment is,

{60} = [p,] {e } - [p_1 {e_} (6)

N
The change in the elastic constitutive matrix is,

(ap] = (p,] - [D_] (7)

with this notation, Equation 6 is written

{ac} = [D,] {ae} + [aD] {e_} (8)

That 1is,
{ac} = [p,] ({ae} - [p,17" [4D] {e_}) (9)

Finally,
{80} = (0,1 ({8e} - {Ae,,}) (10)

The term {EAE} in Equation 10 is called a 'pseudo' strain

increment. From Equations 9 and 10, it is seen that,

-1

{be,pt = (0,177 [ D] {e_} (11)

2.3 Plasticity

Plastic strains occur when the stresses at a point reach

the yield surface. Irreversible plastic strains {Aep] occur, and,

{ac} = [p] ({ae} - {Aap}] (12)

The magnitude and direction of the plastic strain
increments depend on the yield condition and the flow law.
Herein, the Von Mises - Hencky yield condition has been used and
this assumes that the yield function F is defined by the second

invariant of the deviatoric stress tensor.

The condition is written,



F=0-06_=0 (13)

The yield stress oy is obtained from a uni-axial tension
test and is a function of temperature. The equivalent stress
0 is given from the second invariant of the deviatoric stress

tensor to be,

3° =3 (6T {0} (14)

In equation 14, for the three dimensional stress

state,

{oD}T ={s,s,8,V/i1 , VIt ,VZ1 )} (15)
X Xy

y z yz zZX

Subsequent yield surfaces F depend on temperature and
the amount of plastic strain {ep} that has taken place, so that

Equation 13 is written in the general form,

F(op, ep, T) =0 (16)

Corresponding to the equivalent stress, o, the equivalent

plastic strain Ep is defined,

g2 -2 {ap}T (e } (17)
where,

Yoo, =y —= v __} (18)
V2

For isotropic hardening, the yield surface becomes,

F=0=-0_(_, T) =20 (19)

The direction of the plastic strain increments is governed

by the flow rule assumed. The Prandtl - Reuss Rule assumes that

no volume change occurs during plastic straining and hence the

plastic strains are dependent on the deviatoric stresses. That is,

on the normal to the yield surface.



_ _OdF - _ =
d{ep} = 3767 dap {s}dep (20)
In Equation 20,
T_21
{s}” = 3 3 % (21)

In an initial stress approach, an elastic analysis is
carried out at every time increment and any plastic strains

which may have occurred computed at the end of the increment.
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FIGURE 1 : Stress-Strain Relationships

Thus referring to Figure 1, the stress level at the
end of the increment {5+*} may violate the yield condition.
The equivalent plastic strain increment Aep is related to the
'elastic overstress', Aop, by

Aap = cAEp (22)

The constant C has to be determined.

For small increments of ABP,



T
- 30 _ T
65, = [55y] o) - (91T o)) (23)
Also, since Aop is the 'elastic overstress',

{Adp} = [D] {Aep} (24)

Hence, with the use of Equation 20,
A5 = {s}T [p] {s} A% (25)
P P
That is, C = {s}T [D] {s} (26)
From Figure 1, it is seen that
-

g -0 (e, T = A0+ Ao 27
y( _ ) o y (27)

With a linear approximation of,

Ao = Ac + Ac 28
y yT VE (28)
Where, Boy B B )

AOyE = ﬁ; AEp = H(T_, E‘) AEP (29)
and, acy .

AoyT = 3T T = A(T_, E_) AT ) (30)

In Equations 29, 30, H and A are functions of the
temperature and plastic strain and may be considered as the rate
of expansion of the yield surface with strain (strain hardening)
and temperature respectively. Equation 27 may be now rewritten

as,

_% - _
6 - o0 (e, T ) = CAe_ + HAe + AAT (31)
y - - P P

Solving for AEP,

o - o (e, T) - ALT

Aep = T (32)




Then with Equation 20,

{pe_} = {s} e (33)
p P

'The above relationships are only approximate and for
large plastic strain increments the corrected stress level may
not lie on the yield surface. In such a case the above process
is modified slightly and an incremental correction method based
on the above is used to ensure that the final stress does lie

close to the yield surface (See Appendix A).

2.4 Creep

Creep occurs when the strain at a given stress level
changes with time. In general there is a coupling between creep
and plastic strains. For most practical purposes, however, the
creep strain may be isolated from the plastic strains. The nature
of the creep strains is very similar to that of the plastic strains
and hence the direction of the creep strains is obtained by using

the same flow rule. That is,

{ae ¥} = {s} Ae (34)
C c

Here, AEC is the equivalent creep strain increment and establishes
the relationship between the multi-axial and uni-axial stress
states. Within the increment AEC is obtained from the average

creep rate inside the increment,
Ae = & At (35)
C e
The creep rate éc is dependent on the state of stress,
the temperature and the accumulated creep strain or time, so that

it is possible to write,

€ =¢ (o, T, E ) (36)

Several mathematical models for creep have been proposed (see

Ref. 4). The stress increment for creep alone operative becomes,



{ac} = [D] ({ae} - {Aee}) (37)

In general all the abovementioned material non-linearities
may be present and together,

{Ac} = [D,1 ({Ae} - {AEAE] - {Aep} - {AEC} (38)

+

3. NUMERICAL IMPLEMENTATION

The above theory is incorporated in a finite element
program using an 8 node isoparametric element as the basic two-
dimensional block. Details of the iterative scheme used are

discussed herein.

For pure thermal stress problems (no external loading),
the following system of linear equations is obtained for the

equiiibrium at the end of a time increment.

[k] {a8} = {AFO} (39)

The stiffness matrix is the global assemblage of

“individual element stiffness matrices.

(k] = [ [B]" [D} [B] 4v (40)

vol
and the initial nodal point force vector is obtained from all
element contributions,

[(8£,1 = [ [B]" [p] {Ae } av (41)

In Equation 41, {Aao} is the initial strain vector and
contains all strains that are not stress induced or elastic.
For an elastic thermal stress analysis {Aeo} contains only the
thermal strains {AeT}. For a non-linear analysis all the non-

linear effects may be considered as initial strains and hence,

{Aeo} = {AaAE} + {Asp} + {AEC} + {AET} (42)
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Since the magnitudes of {Aep} and {Aec} are not known
at the beginning of the interval but depend on the state of stress
at the end of the increment, an iterative solution is used to
solve the equilibrium equations. A linear elastic analysis is
carried out at the beginning with assumed values of {Aep} and
{AEC}, and a first approximation to the displacement increment
obtained. The total strain increment is then computed, for the

ith iteration,

{ae .} = [B] {bs,} (43)
The corresponding stress increment is then,

{bo;} + (D] ({oe,) - {beg)d - {oe,p b - (be o ]

- {ae . 1} (44)
c

i—-1

The approximation to the stress level at the end of the

increment is

lo ;3 = 1o } + {40} (45)

With this new stress level improved values of the plastic strain
increment {Ae i} and the creep strain increment {Aeci} are

computed.

The nodal point force vector is then recomputed with

new values of {Aep} and {Aec}

T
{Afi} = Vil [B]" [D] ({AET} + {AeAE} + {Aepi}

+ {ae 1) av (46)
ci

An improved approximation to the nodal displacement increment is

made,

{Adi+l} = [K] {AFi} (47)
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The process is repeated until the 'residual force' vector

{ARi} = {AFi+l} - {AFi} (48)

is small. That is, until
||{ARi}I| < Tolerance limit (49)
The Tolerance limit is set by the user.

The method described above is referred to in the literature
as the 'initial force' method. The stiffness matrix is computed
with the elastic properties and in the case of variable elasticity
can change throughout the loading histroy. To avoid recomputation
at every time step, the changes may be moved to the right-hand
side and included in the iteration process. Thus, the stiffness

matrix at any time is,

[K] = [K ] + [AK] (50)
Thence,
([Kol + [LK]) {Aéi} = {AFi_l} . (51)
and approximately for the ith iteration,
[k 1 {88,} = {aF, .} - (4K, ] {as,_}} (52)

Then only the elastic stiffness matrix [Ko] at room
temperature occurs on the left hand side of the eqguations and
the method is now a true 'constant stiffness' approach. The
merits of a 'tangent stiffness' approach with recomputation of
the stiffness at the beginning of each time interval versus a
'constant stiffness' approach have been discussed in the literature
(Ref. 5). The authors have found the above process quite economical
in the problems they have investigated.

Several devices may be used to accelerate convergence
of the iterations, namely,
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(a) A good initial assumption of {Aep} and {Aec}. Where
progressive plasticity occurs the starting values may
be taken from the previous time increment. For cyclic
plasticity any such assumption may, however, increase
the number of iterations and a zero starting value for

{Aep} would be more appropriate.

(b) The use of an over-relaxation factor where the plastic

strain estimate is magnified,

{ae” } = afse } (53)
p p

For o values between 1.8 - 2.0, improved convergence
has resulted for the case of progressive plasticity. However,

for cyclic plasticity unstable oscillations may occur.

The merits of higher order isoparametric elements for
the thermal stress computation and the use of numerical integration
has been discussed in Ref. 6. 1In Ref. 6 it has also been shown
that the element used for thermal stress analysis should be able
to represent at least a linear distribution of strain. Thus the
choice of the 8 node - 'parabolic' isoparametric element in the

studies presented herein.

4. EXAMPLES

Two examples are given to demonstrate the use of the
theory. In both examples the material used is structural steel
and its behaviour at elevated temperatures is given as plots of
stress versus strain in Fig. 2. These have been taken from test
results reported in Ref. 8. The necessary information extracted
from these curves is the temperature dependence of the modulus of
elasticity, the strain hardening parameter H, and the change in

yield stress parameter A.
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FIGURE 2 : Steel~ Stress-Strain Curves

for Various Temperatures

In Fig. 3, the dependence of the modulus of elasticity
on temperature is shown and a smooth function is passed through
the band of available data. An accurate functional representation
for A and H is very difficult if not impossible to obtain. A
relatively simple function which can be used is reported in
Ref. 9. For thermal stress problems discussed herein it has
been assumed that the strain hardening range can be neglected
with the introduction of large errors. A simple function of
temperature only is used to represent oy and thus A. This
function is shown in Fig. 4, and has been used in the examples

analysed herein.
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Example 1: Thick Cylinder subjected to a temperature difference

between the inside and outside surface.

The ratio of inner to external radius has been chosen
to agree with that given in an analytical solution in Ref. 11.
In Ref. 11, the external temperature is increased to 425°C
whereas the internal temperature is constant at 0°C. The Tresca
yeild criterion is used and perfect plasticity and constant
material properties assumed. A comparison of this solution with
the finite element analyses undertaken herein in shown in Figs.
5 and 6.

PLASTIC

BOUNDARIES
REF 10

(TRESCA) +

e FE.M.(VON MIESES) ¥
CONSTANT MAT. PROP.

+ FEM.(VON MIESES)

VARIABLE MAT. PROP.

100

1.4 1.8 2.5

FIGURE 5 : Plastic Zones in Thick Cylinder

Subject to Temperature Difference
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FINITE ELEMENT RESULTS
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+1.0 R CONSTANT MATERIAL
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P \\ \}> 0— 0y

\ A— 0O

Oyo \\ 9, r

) VARIABLE MATERIAL
I\ PROPERTIES
\ o — o,
0S5 \ ‘\ -— ,f
A\
\
o o
~*_
RN
‘4 \ St
\ : A T
1.4 ‘\ 18 2.2 f
\ REF 10 (TRESCA)
0.5}
-1.0f
FIGURE 6 : Results of Stress Analysis

of Thick Cylinder

The finite element mesh consisting of 3 elements is
shown in Fig. 7. 1In Fig. 5 the comparison of stress distributions
is given, whereas in Fig. 6, the plastic zones are shown. The
results compare favourably considering the limited number of
elements used and the slightly different yield criterion. A
consideration of the variation of material properties with

temperature causes a decrease in stresses at the hotter outside.
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FIGURE 7 : Finite Element Mesh for Thick Cylinder

Example 2: In this second example the welding of a thin plate
along one of its free edges is analysed. The welding rod is
here idealized as a point heat source and the actual deposit

of weld material is not considered. That is, its mass is
considered small when compared with the mass of the plate. For
the thin plate the simplified assumption is made for the thermal
analysis that heat flow can be treated as two dimensional with
no temperature variation through the thickness. The heat flow
analysis was discussed in Ref. 12, and results of this shown in
Fig. 9, for the finite element mesh in Fig. 8.

The results in Fig. 9 are contour plots for different
times and location of the heat source (welding rod). The thermal
stress analysis was performed using the high temperature material
properties discussed previously. The functions for E and o
were extended to give zero values at the melting point (1400°C)
to allow for the high temperatures encountered near the welding
rod. Creep strains were not considered. The iteration process
discussed previously has proved to be stable even in the extreme

case where part of an element has zero strength. The same finite
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element mesh shown in Fig. 8 was used in the stress analysis.

In all 16 time steps were used to cover the range from beginning

of welding to the complete cooling of the plate.

Within each time step a maximum of 5 iterations gave

an average convergence of about 1%. The step by step computation

of the plastic strain increments as discussed in Appendix A
ensured that the stresses were on or very near the yield surface

wherever plasticity occurred.

£
E
3
i
!_ 150 mm
t =10 mm
FIGURE 8 : Finite Element Mesh for Plate-Weld

Problem
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TIME = 6 secC. TIME = 75 sec.
TIME INTERVAL = 1 TIME INTERVAL = 11

I |

CONTOURS :
MAXIMUM = 1600°C
MINIMUM = 4750C
INCREMENT = 125°C

TIME = 44 sec.
TIME INTERVAL = 7

FIGURE 9 : Temperature Variation in Plate with Time
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The results of the analysis are presented in Figs. 10
to 12. 1In Figs. 10a to 1l0c, the plastic zones for three of the
time intervals are shown together with principal stress plots.
Gauss-points that are plastic are shown by a circle and the
plastic zones shown by the shaded zones. The final residual
stress pattern that remains after the plate has cooled is shown
in Fig. 104. 1In Fig. 11 the variation of the longitudinal
residual stresses which remain after the plate has finally
cooled completely are plotted. These are compared with
experimental results for the same problem given in Ref. 11.
Good agreement is observed between the present analysis and
these experimental results. Finally in Fig. 12, displacement
plots (magnified 25 times) show the plate distortion produced

by the welding.

5. CONCLUSION

It has been shown that the constant stiffness, initial
force method in the Finite Element Method may be used successfully
to analyse thermal stress problems even when highly non-linear
material behaviour is encountered. The proposed solution algorithm
has proved to be stable even in the extreme welding problem
where material strength decreases to zero in the region near the

heat source.

The consideration of all possible material non-linearities
such as variable elasticity, plasticity and creep is limited
only by the amount of tension test data available for high
temperatures and the subsequent representation of such data by

smooth functions that can be generated for the computer solution.

The analysis for thermal distortion and residual stresses
has many applications in design: for example, their effects on
stability of compression panels. In addition such analyses
should provide information to plan welding procedures to minimize-
distortion and also for the determination of pre-heat necessary

to reduce residual stresses to a minimum.
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FIGURE 11 : Deformations of Plate with Time
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APPENDIX A - INCREMENTAL CORRECTION METHOD

The incremental relationships Equations 25 and 29 are
only valid for small values of At , since the direction vector
{s} and the strain hardening parameter (H) may otherwise change
within the interwval. Thus Equation 25 must be re-written in

incremental form as
dbo = (s)T (o1 (s} abe (54)

Thence for a finite increment,

Mg A€
- T _ P -
Ag = [ {s}” [p] {s} dae_ = [ cdhe (55)
P 0 P 0 P
In a similar manner,
Ae
p -
AG = f HdAe (56)
YE 5 P

Equation 31 now becomes an integral equation,
€ Ae
_ P -
CdAe  + | HAAe (57)
p 0 P

An approximate solution of the integral equation can be
obtained by treating Equation 57 as an initial value problem.
Stirting with the known values of {SO} and L at stress level
{o+} = {00}, the correction to the actual value on the yield

surface {0+} = {Gm} is performed in m small steps.

The recursion formulas are, for the ith step,

o, - o (e T,)
- i-1 y -2 -+ (58)
AF, m+ 1 - 1
_ AT
T S
ol Gy P H

{6 } = {g,
i-
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FIGURE 13 : Corrections to Yield Surface

A graphical interpretation of the method in plane stress
is shown in Fig. 13 for ideal Von-Mises Plasticity. The correction
from oi to o, is aiong the curved line 1 - 2. If this correction
is performed in one step it would follow the straight line 1 - 3
with the normality vector computed at the fictitious yield surface,
F - AF = 0. Point 3 is therefore some distance away from the
true yield surface. An improved solution is shown using 2 steps.
The correction is first made to point 4 where the normality
vector is recomputed and hence the final correction 5 is much
closer to the yield surface. 1In practice 10 or more steps can

be used to reach a point very close to the yield surface.
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APPENDIX B - NOMENCLATURE

Symbo1l Meaning

A(T,e) function of yield surface with temperature

B strain transfdrmation matrix

[ matrix scalar, relating equivalent plastic stress and strain
D constitutive matrix for the material

D+,D_ constitutive matrix at beginning and end of time steps
ex,ey,ez direct deviatoric strain components

OF load increment vector

F(Bp,Ep,T) yield function

H(T,¢€) function of yield surface with strain

X ' element stiffness matrix

KO,K structure stiffness matrices (initial, and at some time interval)
AR increment in K

ARi residual force vector

sx,sy,sz direct deviatoric stress components

S deviatonic stress vector

T,dT temperature, variation in temperature

Oy coefficient of thermal expansion

a over relaxation factor

ny’sz’Y shear strain components

T 53T »T shear stress components
xy’ 'yz’ ‘zx

EP equivalent plastic strain

Ase elastic strains

AEAE increment in elastic strain

AEC equivalent creep strain

o equivalent stress

Ao stress increment

Gy yield stress

[of stress matrix used for calculating O
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Meaning

elastic over stress

stress matrix

thermal strain increment

initial strain vector

strains at end and beginning of interval

plastic strain vector, increment in plastic strain
increment in nodal displacements

stresses at beginning and end of intexval
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