UNIVERSITY

OF
QUEENSLAND

Department of
Civil Engineering

RESEARCH REPORT SERIES

A Second Generation Frontal
Solution Program

TA
1

4956
NO, 12
2

Research Report No. CE12
May, 1980.

TA

s I,

Fyer

CIVIL ENGINEERING RESEARCH REPORTS

This report is one of a continuing series of Research Reports published by
the Department of Civil Engineering at the University of Queensland. This
Department also publishes a continuing series of Bulletins. Lists of recently
published titles in both of these series are provided inside the back cover of
this report. Requests for copies of any of these documents should be addressed
to the Departmental Secretary.

The interpretations and opinions expressed herein are solely those of the
author(s). Considerable care has been taken to ensure the accuracy of the
material presented. Nevertheless, responsibility for the use of this material
rests with the user.

Department of Civil Engineering,
_ University of Queensland,
St Lucia, Q 4067, Australia,
[Tel:(07) 377-3342, Telex:UNIVQLD AA40315]

,.’/\\ ;

&

A SECOND GENERATION FRONTAL SOLUTION PROGRAM

by

G. Beer, Dip Ing Austria, MSc Lehigh, PhD, MIE Aust.

Senior Research Assistant

RESEARCH REPORT NO. CE 12 ”:‘

Department of Civil Engineering
University of Queensland =
May, 1980 %

Synopsis o

A4 computer program for the assembly and o
solution of symmetric positive definite equations

as met in the Finite Element analysis based on the

Frontal Solution algorithm by Irons is presented.

The program features improved direct access
blocked I/0 and the use of Front partitioning which
makes the problem size which can be solved practically
independent of the size of the computer memory.

In addition the use of fast vector processors is

considered which should improve CPU times considerably.

10.

CONTENTS

INTRODUCTION AND MOTIVATION

STORAGE AND BUFFERING DURING ELIMINATION

PROGRAM STRATEGY

I/0 OPERATIONS DURING ELIMINATION

OPTIMISATION OF I/O OPERATIONS AND CHOICE OF
FRONT PARTITION AND EQUATION BUFFER LENGTH

SHORT DESCRIPTION OF COMPUTER PROGRAM

SUBSTRUCTURING WITH THE FRONTAL SOLUTION

RE-SOLUTION

FURTHER FACILITIES OF THE COMPUTER PROGRAM AND
DISCARDED FACILITIES

Treatment of Constraints

Computation of the determinant

9

CONCLUSIONS

APPENDIX A.

APPENDIX B.

APPENDIX C.

APPENDIX D.

APPENDIX E.

.1
.2
9.3 Check on Singularity and Indefiniteness
.4 Check on accuracy of solution

LIST OF IMPORTANT ARRAYS AND VARIABLES
LISTING OF THE COMPUTER PROGRAM

TEST PROGRAM

NOMENCLATURE

REFERENCES

Page

10

11

11
12
12
13

13

17
18
38
39

1. INTRODUCTION

The Frontal Solution technique is based on the Gaussian
Elimination method and was first published in 1970 by Irons (1).

Various authors (2,3,4,5) have since pointed out various
advantages of this technique. The main advantage over band or
skyline (6) solvers seems to be a simplification in the data
preparation as the nubmering of nodes is not restricted to
minimise a band width. Also, since the node numbers are treated
as "Nicknames", design changes (i.e. adding or removing elements)
may be made without having to renumber the nodes. Solution
time for the Frontal solver is now sensitive to the numbering
of the Elements but the sequence is a natural one. The famous‘
example of a ring structure is often mentioned in this context (1).

The main difference between the Frontal technique and
a conventional band solution lies in the manner in which the
structure stiffness coefficients are stored and in the order
in which the equations are eliminated.

Consider, for example, a patch of 4 node/8 D.O.F.
elements. in Fig. 1 in which the degrees of freedom are numbered
from 1 to 18.

The stiffness coefficients of Element I are stored in
the order of appearance (local node numbering) and in the manner
shown in Fig. la. Each variable has a "Destination" which
determines the position of its coefficients in the Front matrix.
An asterisk, *, marks the equations which are already fully
summed. These variable(s) can now be eliminated before the
next element is assembled by treating the other equations with:

c* .
n,i
c! . =c¢, . - c* . u (1)
i i n *
/3] v] v] Cn,n

Where n is the destination of the variable to be
eliminated and the * denotes the coefficients which are fully
summed. The reader should note that it does not matter that
the coefficients ci,j are not in their final form since only
the order in which the coefficients are added is changed.

2.

After elimination, variables 1 and 10 cease to be
"active" and the corresponding equations are transferred into
buffer storage ready for output on disk. The storage locations
of these equations in the Front matrix are cleared (Fig. 1lb).
On assembly of element II this space is re-used by Equation 3
and 6 (Fig. lc). The Front matrix thus contains only the

coefficients of "active" variables.

With the principle involved explained the reader may

complete the example making the following observations:

(1) Assembly and elimination order is governed by the
order in which the variable coefficients are entered
as one Element is assembled after the other. A
variable is eliminated as soon as the coefficients
are fully summed (i.e. on its last appearance). The
position of the coefficients in the Front matrix is

governed by the empty spaces available.

(2) The storage requirement for storing the "active"
coefficients is determined by the largest address
used. Because of symmetry only one half of the
Front matrix has to be stored and the storage require-

ment may be computed from
2 = m(m + 1) /2 (2)

Here m is the largest "Destination" of a variable
(Front width).

In the original code Irons assumes that the Front
matrix resides in central storage (Comment on the program

listing: "if not, buy larger computer").

It can be seen that the storage requirement increases
with the square of the Front width. This puts a severe limitation

on the size of problems which can be solved on a special computer.

The purpose of this paper is to present a program
where this limitation has been over-come making it possible to

solve large 3-D problems on a mini computer. In addition, the

3.

transfer of data to and from disk is improved by using a

blocked direct access I/0 mode.

The inner-most DO-loop of the Gauss elimination is
written suitable for fast vector processors which have appeared

on the market in recent years.

The resulting progrém should not only be an improvement

in solution capability but also in performance.

2. STORAGE AND BUFFERING DURING ELIMINATION

Similar to the original code by Irons, a working vector
ELPA is used. ELPA is divided into 3 main areas which contain:
(1) Element stiffness matrix of the Element to be assembled;
(2) Front matrix or a partition of the front métrix; (3) Buffer

for the equations which have ceased to be "active".

Allocation of the space for these areas is completely
flexible and will depend on the type of problem solved. Whereas
the space of first area is fixed by the size of the element
stiffness matrix, the space allocation for areas 2 and 3 must
be adjusted to give optimal solution times within the core
limitations of the computer used. This will be discussed in

detail later.

The number of equation coefficients in the Front matrix
for a particular Front width is computed from Equation 2 and
if it is greater than the space available, the partitioning

algorithm has to be activated.

The number of Equations ARN which fit into a particular

N can be computed from the inequality

AL (AR

*
N + 1) /2 + (kN - 1) TAR, < n (3)

N N P

Here kN is the destination of the first equation in
partition N and nP is the size of the storage space for the Front

matrix. Solution of Equation 3 gives

2% - 1 /
AlN = INT |- > +

2

2k - 1
N + 2n (8)
P

2

4.

Where INT means the truncation of the result. This
allows us to determine the limits of each partition i.e. partition

N can accommodate Equation kN to kN+l‘

For a coefficient k,i (k<i) residing in partition N,
where
kN < k< kN+l (5)

the address, %, is computed from (see Fig. 2),

L= 20 + (k - k (k,, = 1) + (k - kN) (k - kN + 1)/2 + i (6)

N) N
Here lo specifies the start address of the space reserved for

the Front matrix.

3. PROGRAMMING STRATEGY

As long as the Front matrix is small and fits into core
the program strategy is simple and follows three basic steps

for each element:

(1) Read element stiffness matrix
(2) Assemble its coefficients into Front matrix

(3) Eliminate variables which are ready

The elimination essentially consists of two steps.
First, the equation coefficients of the variable which is to be
eliminated (n) are moved to the equation buffer. When the buffer
is full its contents are written on disk and the pointer reset
to the beginning of the buffer before the coefficients are moved
(It should be noted at this stage that all the coefficients to
the right of the minus sign in Equation 1 are now in the buffer).
Then all the equations in the Front matrix are modified by

Equation 1.

When the current Front matrix becomes large and no longer
fits in the allocated space, partitioning is invoked automatically.
The program strategy becomes more complex and follows the following

basic steps:

5.

(1) Read Element stiffness matrix.

(2) Swap Partition 1 into core and assemble all
coefficients which are resident in this partition.

(3) Eliminate variables which are ready in this
partition (if any).

(4) Swap Partition 2 into core and assemble further
coefficients.

(5) Modify all coefficients for the variables
eliminated previsouly (if any) using the
coefficients c;E in the Equation buffer. This
is referred to as elimination of 'old variables'
in the listing.

(6) Eliminate variables which are ready in this

partition ('new variables').

Steps 4, 5 and 6 are repeated for all subsequent partitions

to the last one. Note that at step 3 not all the coefficients
*

ng
is still incomplete. Thus, additional coefficients have to be

c of the equation n are available and the equation in the buffer

transferred in step 5.

Our work is not completed yet since some lower partitions
have not been modified due to elimination of variables in higher
partitions. So we have to retrack and modify the Equations which
have not yet been modified using the coefficients c;l in the

equation buffer.

4. 1/0 OPERATIONS DURING ELIMINATION

When the Front matrix is small and fits into the allocated

space, the I/O operations are simple:

(1) Read the assembly information for each element
(The 'destination vector' is coded to indicate when
each variable is ready for elimination).

(2) Read Element stiffness matrix.

(3) Whenever the equation buffer is full, i.e. no
further equation fits, write its contents onto
disk.

6.

In the present program, the standard Fortran READ is

used for operations 1 and 2. For large amounts of data the speed
of the I/O operation depends greatly on the transfer mode. It

has been found by the author that on a Data General Eclipse mini-
computer, the data transfer is 10 times faster when the machine
dependent routines RDBLK nad WRBLK are used. The prerequisite

for using these routines is that the number of coefficients to

be transferred is divisible by the physical block size on disk
(128 real numbers in this case). Since operation 3 may involve

a large number of coefficients, a blocked I/O mode is used. The
equation buffer is divided into a number of blocks and the space
allocated for it should be a multiple of the block size. When

the buffer is full it may, however, not always fill the last block
completely. To avoid empty spaces on disk the last block is not
written in this-.case, but the coefficients are rather transferred
to core to the beginning of the buffer with new coefficients moved

into the subsequent spaces.

In this context it should be noted that in core transfers
are typically a factor of 10° faster than out-of-core transfers
(i.e. transfers to and from disk).

When the Front matrix becomes too large and no longer fits
into core, I/0 operations become more complex and frequent. The
Front matrix has to be swapped in and out of core as required.
Blocked I/0 transfer now becomes éssential and the programming
critical since a program slowed down by too many I/O operations

may no longer be competitive.

The aim is to reduce the I/O operations to a bare minimum
even if this means that more in core operations are necessary to
do this (see above statement about I/O transfer speeds).

The number of swapping operations on the partitions can
be determined from the basic steps delineated in the last chapter
and depends on the location of variables which are to be eliminated.
In the worst case, we need (2N - 1) swaps where N is the number
of partitions currently used. This number is critical for the
performance of the program as partitions usually involve a large
number of coefficients. Ways to optimise the number of I/0

operations are discussed in the next chapter.

7.

A further complication arises which could endanger the
economy of the program. For the basic step 5, (elimination of
'old variables') the coefficients c;l which are thought to reside
in the equation buffer are needed. But in the meantime, I/0
operation 3 (transfer of equation buffer on to disk when full)
may have been carried out and the required coefficients may no
longer be in core. Thus we must keep track of which coefficients
are in core and which are on disk. If the coefficients are no
longer in core they must be swapped into core and this requires
additional I/O operations, the number of which depends greatly
on the size of the equation buffer. If the buffer is very large

then swapping of the equation buffer may occur only rarely.

5. OPTIMISATION OF 1/0 OPERATIONS AND CHOICE OF FRONT
PARTITION AND EQUATION BUFFER LENGTH

When selecting the size of the buffer for the Front matrix,
we must aim to avoid partitioning since it is expensive. If no
partitioning is involved the equation buffer may be made small
to accommodate a big Front matrix, the only restriction being
that, the buffer has to be at least 2 blocks long and accommodate
the largest equation. On the other hand, when partitioning of
the Front is unavoidable because of core restrictions or size of
problem, there is a case for decreasing the partition size in
favour of a large equation buffer for the reasons explained in

the last chapter.

To reduce the number of I/O operations further, a number
of situations where swapping is not required is examined. Swapping

of partitions is not required when:

(A) There are no coefficients to be assembled into the
partition, and no variables have been eliminated yet
in the current element loop.

(B) There are no coefficients to be assembled and the
coefficients c* are zero.

ng oy < 2> Kygyp)
(C) Swapping of the equation buffer is not required when

the coefficients c;l (kN < L > kN+1) in the Front

partition are zero.

A check on conditions C and B is made by Subroutine SAVES

in the program.

6. SHORT DESCRIPTION OF COMPUTER PROGRAM

The program consists of two main subroutines PREFR and
SFRONT. The subroutine PREFR works out the coded destinations
of the variables and writes them onto disk. This program is
essentially the same as published by Irons and is included for
completeness. Subroutine SFRONT performs the assembly and
reduction of the structure or substructure stiffness matrix as
detailed in the last chapters.

It uses the following subroutines:

MOVE to move equation coefficients to buffer.
GAUSS to modify the coefficients in the Front matrix with
Eq. (1).

ASSEMB ... to assemble stiffness coefficients into the Front
matrix.
EMPDI to empty equation buffer on disk when full.

RESBUF ... to reset buffer pointer.

SWAPF to swap Front partitions in and out of core.
SAVES to save swaping (see last chapter).

UNCOD to uncode coded destinations (uses CODEST)
PALT to work out partition limits (kN, KN+1)'

In addition the following functions are used:

LADDR (M) is the local address in the current Front
partition of a coefficient M, M.

LADST(I,J) .. is the local address of a coefficient i,j in
the Element stiffness matrix.

Subroutines are also used to clear integer and real arrays and

write error messages.

The blocked I/0 operations are performed by subroutine
BLKIO which has a machine dependent coding. Files are opened and

channel numbers assigned by FILO which is also machine dependent.

The fast vector operations are performed by subroutine
SVECT. When a computer with vector processor is used, the
appropriate coding as given in the Users Manual of the machine
should be inserted here. For use on machines without this

capability the Standard Fortran coding may be used as shown.

The computer program is listed in Appendix B. = A list
of some important arrays and variables is given in Appendix A.
In addition, a program is included to test and demonstrate the

substructure capability of the sub-routine SFRONT in Appendix C.

7. SUBSTRUCTURING WITH THE FRONTAL SOLUTION

For very large structures, it is often desirable to
divide the mesh into several smaller meshes or substructures.
These are treated as large elements and the boundary stiffness

matrix obtained by elimination of the 'internal' degrees of freedom.
The substructuring has the following main advantages:

(1) The process of solving the structure is a continuous
one and errors may be detected at substructure level.
Remedial actions need only to be taken in the particular

substructure involved.

(2) Sometimes a structure consists of many subareas having
a similar geometry. Thus the stiffness matrix of a
particular type of substructure may be computed only
once and the main structure assembled with as frequent

re-use of the substructure stiffness as possible.

(3) For excavation type of problems in rock or soil mechanics
the substructuring technique offers additional advantages.
By defining the rock or soil mass in the full excavation
as one large substructure and the material to be excavated
at each stage as smaller substructures the analysis of
each excavation stage just requires the assembly of
substructure stiffnesses and the solution for the sub-
structure boundary degrees of freedom.

lo.

Substructuring with the Front Solution is relatively
simple. All that has to be done is to suspend the elimination
of selected variables at the boundary of the substructure. The
coefficients which remain in the Front matrix after the elimination
of all other variables then constitute the stiffness coefficients
for the super element. After suitable reordering, the stiffness
matrices of all super elements can be obtained and assembled in

the usual manner to solve for the complete structure.
Thus, substructuring involves the basic steps.

(1) The PREFRONT subroutine read the substructure "Nicknames"
into the vector NIX. This will modify the coding of the
destinations of the substructure variables in such a way

as to prevent their elimination.

(2) Perform the usual assembly and elimination for all elements

which make up the substructure.

(3) Remove zero rows and columns from the Front matrix and
reorder to obtain the substructure stiffness matrix in

condensed form.

After this has been done for all substructures, perform
the assembly and elimination in the usual way but this time
involving all substructures which make up the structure to be

analysed.

The substructuring capability is demonstrated with a test
program in Appendix II where the substructure consists of a regular

assembly of 4 node/8 degrees of freedom Elements.

8. RE-SOLUTION

Once the global stiffness matrix has been reduced and
stored a re-solution for as many load cases as desired can .be
made.

It is convenient to separate the resolution and back

substitution part completely from the reduction of the left hand

11.

side in order to have as much space available as possible.
Because the size of the vector needed for each load case is only
MAXPA no partitioning of the Front should be required even for

large problems and the basic procedures are as follows:-

(1) Read the Element right hand side (RHS) into the
first part of ELPA.
(2) Assemble into the space reserved for the Front-RHS.
(3) . Reduce RHS using the coefficients c; on disk
i.e. modify the Front RHS with

plop, - Jin g (7
i " i * n
n,m

The procedure is exactly the same as a non-
partitioned reduction except that vectors are involved instead

of matrices.

The results are obtained in Element form by back

substitution i.e.

_ 1 *
Xn T * Zi=n Cn,i Fn (8)
nn

in the same manner as by Irons.

9. FURTHER FACILITIES OF THE COMPUTER PROGRAM
AND DISCARDED FACILITIES

This section deals with features which are included
in the present program and facilities which have not been

considered but can be implemented easily.
9.1 Treatment of Constraints
In the present program a restrained degree of freedom

is treated by setting the corresponding destination to zero and

thereby preventing the assembly of the corresponding equation.

12.

This is the simplest and most economical way. Various other
types of constraints, as shown by Irons (1) can be easily

implemented.

9.2 Computation of the Determinant of the Structure

Stiffness Matrix

This is often required for vibration and stability
analysis and is incorporated by additional coding in Subroutine
GAUSS. After elimination the value of 1°glO/K/ is stored in the
variable DET. 1In addition the frequency of the occurrence of a
negative diagonal element is determined and stored in NEG. If
NEG is odd the sign of the determinant is positive otherwise
negative. The variables DET and NEG are in Common block/ EIGEN/.

9.3 Check on Singularity and Indefiniteness

A check on singularity and indefiniteness is made during
elimination. If the diagonal coefficient is less than or equal
to zero an Error meséage is produced. Because of machine accuracy,
the diagonal coefficient will not be exactly zero even for a
singluar matrix. More appropriate checks have been suggested (6),
that 1is,

(1) singularity

d. < t. (9)

(2) Indefiniteness

d. < - t. (10)

where d. is the j-th diagonal element at the j-th elimination

stage and

t, = 8e r.
J J
where € is the smallest positive floating point number for which
(1 + €) > 1 on the computer used and rj is the norm of the j-th
row of K. This can be easily implemented in Subroutine GAUSS if

the machine accuracy € is known.

13.
9.4 Check on Accuracy of Solution

In the original code by Irons a simple roundoff criterion
was included. The author has found this criterion not entirely
satisfactory because it is not sensitive to right hand sides and
was found to register only if the difference in stiffness is too

great between elements.

A better a priori estimate of the matrix condition is the
Eucledian condition number (6). But this also involves additional

unproductive computation and may be expenside.

The author favours the a posterori estimate by one step
of iterative refinement of the solution because it is a more
productive method giving not only an estimate of the accuracy but
also an improved solution. It only involves a re-solution and
matrix multiplication. .The iterative refinement may be made only
for one load case and not repeated for the other load cases if

the condition number is satisfactory.

First, the load case is solved with the re-solution
facility to give xg, the unrefined result. Then the residual

forces are worked out:
RO = F, - k.. x° : (11)

A second resolution with R? as new right hand side will give the

o o
error on xj, ij.

The expression
o o
Haxs 1711511 (12)

provides an estimate on the accuracy of the solution x?.

10. CONCLUSIONS

A computer program for the assembly and solution of a
symmetric positive definite set of equations has been presented.
The program is based on the Frontal Solution technique by Irons

but uses frontal partitioning to make the problem size which can

14.

be solved practically independent of the memory size of the

computer used.

In addition, a great deal of effort has been made to
optimise the I/O operations during partitioned elimination. Fast
vector or pipeline processing has also been considered in the

“coding.

The resulting program is an improvement, not only in
capability but also in performance. The program should be useful
not only in mini-computer applications but also for large
computers, because a reduction or optimisation of the band width

is not required in the Frontal solution.

The solution time and storage requirement is influenced

only by the numbering of the Elements which is a natural one.

15.

7 8 9
16 111 17 18
4 5 6
13 14 15
1 2 3
10 11 12

+ .. non-zero entry
P diagonal
0 zero coeff.

EQUATION DESTINATION 12345678
1 1* P
2 2 + P
5 3 ++ P
4 4 ++ + P
10 5% +++ + P
11 6 + + + + + P
14 7 + + + + + + P
13 8 + +++ +++ P
(a)
EQUATION DESTINATION 12345678
o 1 0
2 2 0P
5 3 0+ P
4 4 0+ + 7P
a 5 00000
11 6 0+++0°P
14 7 0+++0+P
13 8 0+++0++ P
(b)
EQUATION DESTINATION 12345678910
K] 1 P
2 2 + P
5 3 + + P
4 4 0+ +P
B 5 +++ 0P
11 6 + + + + + P
14 7 + + + + + + P
13 8 0O +++0++P
11 9 +++ 0+ ++0°P
12 10 +++0+++0+P
(c)
FIGURE 1 : Storage of stiffness coefficients

during Frontal solution

16.

STORAGE IN FRONT?:
<) ++ +F

K ++Xk++F
KN+)T FFFFFF

STORAGE IN ELFPAZ

o o B i e ok o ol il i a e o ol e ol o o e e o

LO |

FIGURE 2 : Storage of coefficients in long
vector ELPA

17.

APPENDIX A - LIST OF IMPORTANT ARRAYS AND VARTIABLES

ELPA ...iiveiaieninans

HBWR ..evvivnnnnnnnn
INDABL ...vivininvnnnn

LCDEST -covenennennns

LUDEST teveaes

LPAL .i.vviiinnncnnns

LISTEQ «vvverennnnrns

RURPA +vevnnrnnnanns
19:3% SN
NBLKA, NBLKE

NPA, NPAC

NELZ, LFRBUF, LEQBUF

main working space

an indicator if a partition has been written at least
once

indicator on the space availability in the Front
matrix also indicates in which partition space is
available (coding: "+" occupied "-" ve free)

list of coded element destinations
list of uncoded element destinations (not entirely

true since the destinations are still coded with a
"-" ve sign for variables ready for elimination).

list of partition limits

list of start addresses of equations in the buffer
or on disk. Lists address of pivot, block number
and relative address in block for each element loop
current equation length

length of physical block on disk (real words)

first and last block currently in the equation buffer

number of partition to be swapped into core and
number of partition Eurrently in core

length of buffers for element stiffness matrix,
Front matrix and equation buffer (real words)
MUST BE DIVISIBLE BY THE BLOCK LENGTH.

APPENDIX B

ooaoocoo0oon

18.

- LISTING OF THE COMPUTER PROGRAM

SUBROUTINE PREFR

VARIABLES IN BLANK COMMON:

NIX XX WORKING SPACE

MAXPA sen MAX. FRONT WIDTH

NELEMZ s NUMBER OF ELEMENTS

LDEST v ELEMENT DESTINATIONS
COMMON /FILES/ NF&6yNDIM&YNF7sNDIMN7 s NFB8sNIIMNByNF?»NDING
DIMENSION LVABL(60)yMVABL(S00)»LCOEST(60)
EQUIVALENCE (LPREQyLDEST(1))

EQUIVALENCE (KURELYLDEST(2))

EQUIVALENCE (LCDEST(1)sLDEST(3))

NIXEND= 2000

CALL ICLAR(MVARL,500)

MAXFA=1

NIZZ= 0

DO 10 NELEM= 1,NELEMZ

CALL BGETELN(NELEM»KURELsLVABL)
DO 8 I=1,KUREL

NIC= LVABL(I}

NIZZ= NIZZ +1

NIX(NIZZ)= -NIC

CONTINUE

NIX(NIXEND+1-NELEM)= NI1ZZ
CONTINUE

CALL GETSUN(KURELsLVAEL)
IF (KUREL .EQ. 0) GOTO 11
NIZS= NIZZ

N0 9 I=1»KUREL

NIC= LVAERL(I)

NIZZ= NIZZ+1

NIX(NIZZ)= ~-NIC

CONTINUE

CONTINUE

KURELS= KUREL

LCUREQ= 0O

NVABZ= ¢

Ni= 1

DD 286 NELEM=1,NELEMZ
LFREQ= LCUREQ
LCUREQ= NVABZ

NIXE= NIXEND+1-NELEM
NZ= NIX(NIXE)

KUREL= NZ - N1 + 1
DD 22 NEW= N1sNZ
NEWA= NEW

19.

NIC= NIX(NEW)
LDES= NIC
IF(NIC .GT. 0) GOTO 20
LDES= 1

14 CONTINUE
IF(HVABL(LDES) .EQ. 0) GOTO 14
LDES= LDES + 1}
IF(LDES .LE. MAXFA) GOTO 14
MAXPA= LDES

16 CONTINUE
MVABL(LDES)= 1

RECORD FIRSTsLAST AND INTERM. AFPEARANCES
KOUNT= 1000
DO 18 LAS= NEWsNIZZ
IF(NIX(LAS) .NE. NIC) GOTO 18
NIX(LAS)= LDES
KOQUNT= KOUNT + 1000
LAST= LAS
18 CONTINUE
NIX(LAST)= LDES + 1000
LDES= LIOES + KOUNT
NIX(NEW)= LIDES
20 CONTINUE
NZ1i= NEUW-N1+1
LCDEST(NZ1)>= LDES
22 CONTINUE
Ni= NEWA+ 1
UPDATE MVABL,COUNT ELIMINATED VARIABLES
AND WRITE DESTINATIONS ON DISK
DO 24 KL=1,KUREL
CALL COBEST(KL,NSTRES,LDES,LCDEST,»KUREL)
IF(NSTRES .NE. 0 .AND., NSTRES .NE. 1) GOTO 24
MVUABL (LDES)= 0
NVABZ= NVABRZ+1
24 CONTINUE
WRITE(NF9'NELEM) (LDEST(I)»I=1,NDIM?)
26 CONTINUE

NIZZ= NIZS

KUREL=KURELS

IF(KUREL .EQ. 0) GOTO 23

D0 25 KL=1sKUREL

NIZZ= NIZZ + 1

LCDEST(KL)= NIX(NIZZ) - 1000
25 CONTINUE
23 CONTINUE

NELEM= NELEMZ+1

WRITE(NF? /NELEM) (LDEST(I)>I=1yNDIN9)

RETURN

END

ooooconoo0n

20.

SUBROUTINE SFRONT

SUPERFRONT
A SECOND GENERATION FRONTAL SOLUTION FPROGRAM

G.EBEER UNIVERSITY OF QUEENSLAND 1979

VARIABLES IN BLANK COMMON
ELPA WORKING SPACE
MAXPA MAXIMUM FRONT WIDTH (FROM PREFRONT)
NELEMZ NUMBER OF ACTIVE ELEMENTS

+
.

s e

Ny

* e

v

ooooonoo

LDEST

EQUIVALENCE
‘EQUIVALENCE

ELEMENT DESTINATIONS

(KUREL yLDEST(2))
(LCDEST(1)yLDEST(3))

COMMON /EIGEN/ DET,NEG

COMMON /FARTL/ NSTyNEND

COMMON /PARA/ LOsL1

COMMON /BLOKL/ LBLK

COMMON /FILES/ NF&yNIIM6sNF79sNIIMZ7yNFByNDIMEBy)NFQ»NDIM?
COMMON /IOCONV/ IREADsIWRIT

COMMON /EQRL/ KURFA

COMMON /ENDQGN/ LASTRL

COMMON /BUFSZE/ NELZ,LFREUF»LERBUF,»LFREEL»LEQBEL
COMMON /INCORE/ NBLKAsNBLKE

CURRENT COMPILATION IS FOR:

ELEMENT SIZE= 60 D.0.F.
MAXIMUM FRONT WIDTH= 500
MAXTMUM NUMBER OF PARTITIONS= 50

DIMENSION FOR LISTER= 50 + 460%3

ocoOO000O000

DHIMENSION
DIMENSION
DIMENSION
DIMENSION
DIIMENSION
DIMENSION
NUMBER OF
MAXFAR= 50
SIZE OF ELPA?

HAX

LUDEST (40)

LCDEST(40)

INBABL(500)

HBWR (350)

LPAL(S1)

LISTEQ(230)

FARTITIONS THIS COMFILATION:!

LSIZE= 5000
IF(NELZ+LFRBUF +LEQBUF
LFREBL= LFRBUF/LBLK
LEQBBL= LEQBUF/LBLK

+6T. LSIZE) CALL ERROR(O,sLSIZEy3)

START OF FRONT MATRIX
LO= NELZ
START OF EQUATION BUFFER
Li= NELZ + LFRBUF
CLEAR ARRAYS AND' WORK OUT FARTITION LIMITS

3002

3003

21.

CALL CLEAR(ELPAs1,LSIZE)
CALL PALI(MAXPARsMAXPAsINDABL,LFPALYyNOPAR)
PRINT 3002,MAXPAyNOPAR
FORMAT (/7' MAXIMUM FRONT WIDTH=',15/

’ MAX. NO. OF PARTITIONS=',15//)
CALL ICLAR(HBUWRsNDPAR)

DET= 0.

NEG= 0

NBLK= 0
NEBLKA= 1
NRLKE= LEQGBBL
IEQ= L1

NPAC= 1

00 1 NELEM= 1,NELEMZ
TYPE 3003,NELEM
FORMAT(IS)

C READ CODED ELEMENT DESTINATIONS

READ(NF9/NELEM) (LOEST(I)»I=1,NIIN®)

C UNCODE AND UFDATE SPACE INDICATOR

CALL UNCOD(LCDEST»KURELyLUDESTy INDAELyMAXPAYNDFAR)

C READ ELEMENT STIFFNESS

Cc
C
C ______
21
20
4

READ(NF4’1) (ELPA(I)»I=1,NDIM6)
NVAR= O

III= 1

D0 2 NPA=1»NIDFAR

FIRST EQUATION IN PARTITION NFA
NST= LPAL(NFA) + 1

LAST EQUATION IN PARTITION
NEND= LPAL(NFA + 1)

IF(NEND .GT. KURFA) NEND= KURPA
NVA= 0

LISTEQ(III)= 0

I= III

DO 4 NV=1,KUREL

IRDY= O

LDES= LUDEST(NV)

IF(LDES) 21,4,20

CONTINUE

LDES= ~LDES

IRDY= 1

CONTINUE

LPA= INDAEL (LDES)

IF(LPA .NE., NPA) GOTO 4

CALL SWAFF(NPAs»NFAC»HBUR)

CALL ASSEMB(LIES,LUDESTsNV,KUREL)
IFCIRDY .EQ. 0) GOTO 4 :
NVA= NVA + 1

NVAR= NVAR + 1

LISTEQ(III)= NVA

I= 1+ 1

LISTEQ(I)= LDES

I= I+2

CONTINUE

c ELIMINATION OF OLD VARIABLES (THOSE ELIMINATED IN FREVIOUS PARTI

IF(NPA .EQ. 1) GOTOD S
IF(NVAR .EQ. 0) GOTO 5

=TIONS)

77

22.

ICYCL= 1

NEW= 0

I= 0

NFAM= NFA-1

DO & NP=1,NPAM

I= 1+ 1

NVA= LISTEQ(I)

IF(NVA .EQ. O0) GOTO 6

CALL SWAPF (NPA»NFPACsHBUR)

DO 7 N=1yNVA

I= I+1

LDES= LISTEG(I)

I= I+1

NNBLK= LISTEG(I)

I= I+1

LIEQ= LISTEG(I)

IF(LASDES .EQ. LDES) GOTO 77
CALL SAVES(LDES,»IEQs»ICYCL,»JES)
IF(JES .EQ. 1) GOTO 7
CONTINUE)

CALL RESBUF (IEQsNBLKyNNBLKsLIEQyICYCL)
CALL MOVE(NEW,LDES,IEQ)

CALL GAUSS(NEW»LDES,IEQR)
CONTINUE

CONTINUE

CONTINUE

c ELIMINATION OF NEW VARIABLES (THOSE TO BE ELIMINATED IN CURRENT

45

"""""""""""""""""""""""""" PARTITION)

NEW= 1

NVA= LISTEQ(III)

I= I1I

IF(NVA JEQ. 0) GOTOD 44
DO 45 N=1»NVA

I= 1+ 1

LDES= LISTEQ(I)
LASDES= LDES

LEQ= IEQ-L1

IBLK= LEQ/LBLK + 1
NNELK= NBLK + IBLK
LIEQ= LE@ - (IBLK-1)XLBLK

I= 1+ 1
LISTEQ(I)= NNBLK
I=1+1

LISTEQ(I)= LIEQ

CALL EMFDICIEQyNBLK)

CALL MOVE(NEW,LDES,IEQR)
CALL GAUSS(NEW,LDES,IEQ)
INDABL(LDES)= ~INDARL(LDES)
CONTINUE

c ADDRESS OF LAST COEFFICIENT IN EQUATION BUFFER

LE@= IEQ- L1

IBLK= (LE@-1)/LBLK + 1
LASTBL= NBLK + IELK

NDADD= LEQR -~ (IELK-1)XLELK
CONTINUE

III= I+%

CONTINUE

LASTP= NDPAR-1

NOW RETRACK AND MODIFY EQUATIONS IN LOWER

23.

PARTITIONS NOT YET MODIFIED
IF{LASTF .EQ. 0) GOTO 8
ICYCL= 2
NEW= 0
DO 9 NPA=1sLASTP
NET= LFAL(NPA) + 1
NEND= LPAL(NFA + 1)
IF(NEND .GT. KURPA) NEND=KURPA
I= LISTEQ(1)%3 + 1
DD 10 NP=2,NDPAR
I= 1+ 1
NVA= LISTEQ(I)
IF(NP ,GT. NPA) GOTO 99
I= 1 + NVAX3
GOTO 10
99 CONTINUE
IF(NVA .EQ. 0) GOTO 10
DO 11 N=1,NVA
I=1+ 1
LDES= LISTEQ(I)
I=1 + 1
NNBLK= LISTEQ(I)
I=1 1
LIEQ= LISTEQ(I)
CALL RESBUF (IEQs»NBLKyNNELK,LIEQyICYCL)
CALL SAVES(LDES,IEQsyICYCL»JES)
IF(JES +EQR. 1) GOTO 11
CALL SWAPF (NFAsNPACs»HBWR)
CALL GAUSS(NEW,LIIES,IEQ)
11 CONTINUE
10 CONTINUE
9 CONTINUE
8 CONTINUE
1 CONTINUE

IF(NBLK .GE. LASTRL) RETURN
NBLOKS= LASTBL-NELK
CALL BLKIO(IWRITyNF?7yNELK+1sNELOKS,ELPA»L1+1)

NELEM= NELEMZ + 1
READN(NF9'NELEM) (LDEST(I)yI=1sNDINM9)
IF(KUREL .EQ. 0) RETURN

D0 200 NFA= 1+NOFAR

CALL SWAFPF (NPAsNPAC»HBUWR)
NFAC= 0

NST= LPAL(NPA) + 1

NEND= LFAL(NPA+1)

IF(NEND .GT.KURFA) NEND= KURFPA
L=0

Do 201 I=1,KUREL

IDES= LCDEST(I)

D0 202 K=1,1

L= L+1

KDES= LCDEST(K)

LDES= MAXO(IDES,»KDES)

MDES= MINOCIDESsKDES)

24.

LPA= INDABL(LDES)
IF(LPA .NE. NFA) GOTO 202
LL= LADDR(LDES-1) + MDES
ELPA(L)= ELPA(LL)
202 CONTINUE
201 CONTINUE
200 CONTINUE
[PRINT SUBSTRUCTURE STIFFNESS
PRINT 3001, (KsK=1,KUREL)
3001 FORMAT(//’ CONDENSED SUBSTRUCTURE STIFFNESS MATRIX:’//4X+2016)
LA=1
LE=1
00 203 K=1,KUREL
PRINT 3000sKy (ELPA(L)L=LAYLE)
LA= LE+1
LE= LA#K
203 CONTINUE
3000 FORMAT(1X»I3»20F6.2)
PRINT 3004,LETsNEG
3004 FORMAT(//‘ LDOG10 OF DETERMINANT=',F15.4/
1 ’ NO OF NEGATIVE PIVOTS=’,15//)
RETURN
END
SUBROUTINE MOVE(NEW,LDES,yIEQ)

TO MOVE EQUATION COEFFICIENTS FROM FRONT PARTITION TO EQUATION

BUFFER
NEW=1 Xy NEW EQUATION

NEW=0 Xy OLD EQUATION
LDES Xy DESTINATION OF VARIARLE TO BE ELIMINATEL

1IEQ oo CURRENT ADDRESS OF BUFFER FONTER

aooonooconoaooonn

COMMON ELPAC1)
COMMON /PARTL/ NSTs»NEND
COMMON /EQL/ KURPA
COMMON /PARA/ LO»L1
IF(NEW .EQ. 0) GOTO 1
c - NEW EQUATION
L= LADDR(LDES-1)
M= IEQ
D0 2 J=1,LDES
L= L+1
M=M+1
ELFA(M)= ELFA(L)
ELPA(L)= 0.
2 CONTINUE
IF(LDES .EQ. NENI) G6OTO ?7
Ni= LDES + 1

K= 0

DO 3 J=N1sNEND
K=K + 1

L= L + LDES

M= M + 1
ELPA(M)= ELPA(L)
ELPA(L)= 0,

L= L + K

3 CONTINUE

25.

7 CONTINUE
NDEQN= IEQ@ + KURFA
IF(M .EQ., NDEQN) GOTO S
Mi= M+t
DO é I=M1,NDEQN
ELPA(I)= 0.

6 CONTINUE
M= NDEQGN

S CONTINUE
ELPA(N + 1) = LDES
ELPA(M + 2)= KURPA
RETURN

c - OLD EGUATION

1 CONTINUE
L= LDES + LO
M= IEQ + NST - 1
NREST= NST
DO 4 J=NST»NEND
M= M+l
ELPA(M)= ELFA(L)
ELPA(L)= 0.
L= L + NREST
NREST= NREST + 1

4 CONTINUE
RETURN
END
SUBROUTINE GAUSS(NEW,LDESsIER)

€

c MODIFIES ALL EQUATIONS OF FARTITION NPA
c (ELIMINATION OF VARIABLE LDES)
C
[y
c

IEQ Xy ADDRESS OF EQUATION RUFFER FOINTER

COMMON ELPAC(1)
COMMON /EIGEN/ DETsNEG
COMMON /EQL/ KURFA
COMMON /FPARA/ LO»L1
COMMON /PARTL/ NSTyNEND
NDIAG= IEQR + LDES
PIVDT= ELPA(NDIAG)
ELPA(NDIAG)= 0.

€ CHECK FOR SINGULARITY ANDY WORK OUT DETERMINANT
IF(NEW .EQ. 0) GOTO 2
PIVD= ABS(FIVOT)
DET= DET + ALOGIO(PIVD)
IF(PIVO ,LT. 1.E~20) CALL ERROR(FPIVOT,LDES»2)
IF(PIVOT .GT. 0.) GOTO 2
NEG= NEG + 1

. CALL ERROR(PIVOT,LDES»1)
2 CONTINUE

L= LO
MI= IEQ + NST- 1
DO 1 I=NSTsNEND
MI= MI + 1
CONS= ELPA(MI)
IF(CONS .EQ. 0.) GOTO 3
CONS= CONS/FIVOT
M= IEQ

c CALL VECTOR PROCESSOR

26.

CALL SVECT(ELPA»CONS»LyMy»I)
GOTO 1
3 CONTINUE
=L + 1
1 CONTINUE
ELPA(NDIAG)= PIVOT

c MOVE BUFFER POINTER TO END OF EQUATION
IEQ= IEG + KURFA + 2
RETURN
END)

SUBROUTINE UNCOD(LCDEST»KURELsLUDEST, INDABL yMAXFAsNDPAR)

c UNCODES DESTINATION VECTOR LCDEST AND
c UPDATES SPACE INDICATOR INDABL

DIMENSION LCDEST(KUREL)
DIMENSION LUDEST(KUREL)
COMMON /EQL/ KURPA
DIMENSION INDABL(MAXFA)
DO 1 K=1sKUREL
IRDY= 0
CALL CODEST(KsNSTRESsLDESsLCDESTsyKUREL)
‘IF(LDES .EQ. 0) GOTO 3
IF(NSTRES +NE. O .AND. NSTRES.,NE. 1) GOTO 2
c -—- VARIABLE LDES CAN BE ELIMINATED
IRDY= 1
2 CONTINUE
NPA= IABS(INDABL(LDES))
INDABL{LDES)= NPA
3 CONTINUE
IF(IRDY LEQ. 1) LDES= -LDES
LUDEST(K)= LDES
. -1 CONTINUE
CURRENT EQUATION LENGTH
M= MAXPA
5 CONTINUE
IF(INDABL(M) .GT. 0) GOTO 4
M= M-1
GOTO S
4 CONTINUE
KURFPA= M
NDPAR= INDABL (KURPA)
RETURN
END
SUBROUTINE PALI(MAXPARsMAXFAy INKARL,yLFALyNOFAR)
Cmmm e e e e e mr e m— . ——————
c SETS UP PARTITION LIMIT ARRAY LFAL
c DEPENDING ON SIZE OF FRONT BUFFER LFRBUF
c AND MAXPA (MAXIMUM FRONT WIDTH)
c TOTAL NUMBER OF FARTITIONS REQUIRED?! NDFAR
c __
DIMENSION INDABL(MAXPA)yLPAL{MAXFAR)
COMMON /BUFSZE/ NELZsLFRBUFsLEQBUF
LPAL(1)= 0
DO 1 NPA=1,MAXPAR
FAC= 2% LPAL(NFA) + 1
FAC1= 2XLFRBUF
LDSPI= SQRT(.25%FACXFAC + FAC1) - .SXFAC
LPAL(NPA + 1)= LPAL(NFA) + LDSPD
IF(LPAL(NPA + 1) .GE. MAXPA) GOTO 2
1 CONTINUE

27.

CALL ERROR(O.»NFA»4)
2 CONTINUE

LPAL (NPA+1)= MAXPA

NDPAR= NFA

c SET UP ARRAY INDABL § CODING: "+"-VE=0CCUPIEDR;"-"VE=FREE
C ___ -
DO 3 M=1,MAXPA
DO 4 NPA=1yNDPAR
IF(M JLE. LPAL(NFA+1)) GOTO 5
4 CONTINUE
3 CONTINUE
INDABL (M)= -NFA
3 CONTINUE
RETURN
END
SUBROUTINE ASSEMB(LDES»LUDEST,NV,KUREL)

COMMON ELPA(1)
DIMENSION LUDEST(KUREL)
LL= LADODR(LDES-1)
00 1 K=1,KUREL
II= LUBEST(K)
IF(II) 25153
2 CONTINUE
I1I= -11
3 CONTINUE
IF(IT .GT, LDES) GOTO 1
L= LADST(KsNV)
LF=LL + II
ELPA(LF)= ELPA(LF) + ELPA(L)
1 CONTINUE
RETURN
END
FUNCTION LADDR(M)

COMMON /PARA/ LOsL1

COMMON /PARTL/ NST»NEND

NS= NST -1

MR= M-NS

LADDR= MRXNS + MR¥(MR+1)/2+ LO
RETURN

END

FUNCTION LADST(I,J)

II= MAXO0(I»J)

JJd= MINO(I»J)

LADST= JJ + IIX(II-1)/2.
RETURN

END

SUBROUTINE EMPDICIEG)NELK)

c EMPTIES EQUATION BUFFER ONTO DISK WHEN FULL

28.

c IEG vee BUFFER POINTER
c NBLK ves NUMBER OF BLOCKS WRITTEN

COMMON ELPAC(L)
COMMON /PARA/ LO»L1
COMMON /EGL/ KURPA
COMMON /INCORE/ NBLKAsNBLKE
COMMON /BLOKL/ LELK
COMMON /FILES/ NF&6sNIIM&»NFZ7sNDIM7yNFByNHIMBINFPsNDINS
COMMON /IOCONV/ IREADyIWRIT
COMMON /BUFSZE/ NELZyLFREBUFsLEQBUF,LFRBBLLEQBBL
CHECK IF ANOTHER EQUATION FITS :
NDEQN= IEQ + KURFA + 2 - L1
IF(NDEGN .LT. LEQBUF) RETURN
c -—- DOES NOT FIT >> WRITE BUFFER ONTO DISK
NBLOKS= (IEQ-L1)/LBLK
Catl BLKID(IWRITyNF7yNBLK + 1sNBLOKSsELFAsL1+1)
c MOVE LAST BLOCK AT THE BEGINNING OF BUFFER IF NOT COMPLETELY FULL
LEGE= IEQ
LE@= NELOKS xLBLK + L1
IEQ= L1
IF(LEQ@ .ER. LEQE) 6070 10
LEG= LEG + 1
BD 1 I=LEQ,LEQE
IEQ= IEQ + 1
ELPACIERQ)= ELPA(I)
1 CONTINUE
10 CONTINUE
NELK= NBLK + NBLOKS
NBLKA= NBLK + 1
NBLKE= NBLK + LEQGBBL

RETURN
END
SUBROUTINE RESEBUF (IEQyNEBLK»NNELK,LIEQ»ICYCL)
C ___
c RESETS BUFFER FOINTER IEQ TO LIEQ IN BLOCK NNBLK
c AND SWAPS(ICYCL=1) OR READS(ICYCL=2) BLOCKS IF NECESSARY
C
C ___
COMMON ELPAC(L)
COMMON /FARA/ LO»L1
COMMON /EBLOKL/ LBLK
COMMON /EGL/ KURFA :
COMMON /INCORE/ NBLKA,NBLKE
COMMON /FILES/ NF6yNDIM&6sNF7yNDIMZ7)NFB8yNDINByNF Py NIIMY
COMMON /IOCONV/ IREAD,IWRIT
COMMON /BUFSZE/ NELZ,LFRBUF,LEQBUF/LFRERLLEQEBBL
COMMON /ENDQN / LASTEL
e e e e e e e e e e e
c IS EQUATION STILL IN CORE 7
C __
IF(NNBLK .LT. NBLKA) GOTQ 2
LE@= LIEQ + KURFA + 2
LE@GB= (LEQ-1)/LBLK
NDBLK= NNBLK + LEQE
IF(NDBLK .LE. NBLKE) GOTO 1
D e e o e e et o o o et e
C NO - SWAP BLOCKS
Cm e e e e e e e e

2 CONTINUE
IFC(ICYCL .EQ. 2) GOTO 4

oooo0ono

29.

NBLKEN= NBLKE
IF(NBLKEN .LT. LASTBL) GOTO 3
NBLKEN= LASTBL
3 CONTINUE
NBLOKS= NBLKEN-NBLKA + 1
CALL BLKIO(IWRIT,NF7sNELKAyNBLOKSsELFAsL1+1)
4 CONTINUE
NBLOKS= LEQEBL
LIMBLK= LASTBL - NNBLK + 1
IF(NBLOKS .G6GT. LIMELK) NBLOKS= LIMBLK
CALL BLKIO(IREAD»NF?7»NNBLKyNBLOKSyELPA»L1+1)
NBLKA= NNBLK
NBLKE= NNBLK + NBLOKS - 1
NBLK= NBLKA - 1
IEQ= LIEQ@ + L1
RETURN
1 CONTINUE
IEQ= (NNBLK-NBLKA)XLBLK + LIEQ + L1
RETURN
END
SURROUTINE SWAPF (NFAyNPACyHBWR)

SWAPS FRONT PARTITIONS IN AND OUT OF CORE AS REQUIRED

NPA s NEW PARTITION
NPAC Xy CURRENT PARTITION
COMMON ELPA(1)
DIMENSION HBWR(1)
COMMON /PARA/ LOsL1,sL2
COMMON /FILES/ NF6sNDIM6sNF7)NRIM7yNFB8yNIIIMBsNFP»NRIM?
COMMON /IOCONV/ IREADSIWRIT
COMMON /BLOKL/ LELK
IF(NPA JEQ. NFAC) RETURN
NBLKS8= NDIMB/LBLK
IF(NPAC .EQ. 0) GOTO 1
NFROM= (NFAC-1)XNBLKSB + 1
CALL BLKIO(IWRITyNF8»NFROM)NBLKSBsELPAYLO+1)
HBWR(NPAC)= 1
1 CONTINUE
IF(NPA +EQs O0) RETURN
NFROM= (NPA-1)%NBLKS8 + 1
IF(HBWR(NFA) LEQ. 1) CALL BLKIO(IREAD)NFB8»NFROMsNELKS8)ELPA»
IF (HBWR(NPA) JEQ. O0) CALL CLEAR(ELFA»LO+1»L1) LO+1)
NPAC= NPA
RETURN
END
SUBROUTINE CODEST(KyNSTRESyLDESsyLCDESTsKUREL)

DIMENSION LCDEST(KUREL)
LDES= LCDEST(K)

DO 2 NSTRES= 1,32000
IF(LDES ,LT. 1000) GOTO 4
LDES= LDES - 1000
CONTINUE

CONTINUE

NSTRES= NSTRES - 2

RETURN

END

P]

30.

SUBROUTINE CLEAR(CARRAYsNST,yNEN)
DIMENSION ARRAY(NEN)
DD 1 N=NST»NEN
ARRAY(N)= 0.
1 CONTINUE
RETURN
END
SUBROUTINE ICLARCIARR»NEN)
DIMENSION IARR(NEN)
DO 1 N=1sNEN
IARR(N)= 0
1 CONTINUE
RETURN
END
SUBROUTINE ERROR(F»IsN)
6070 (1+2,3) »N
1 CONTINUE
PRINT 2000sF»1I
2000 FORMAT(/’ %%Xx NEGATIVE PIVOT (’yE15.5y’) AT DESTINATION’,IS)
RETURN
2 CONTINUE
PRINT 2001»F»IX
2001 FORMAT(//’ SINBULARITY CHECK:'/
1t ’/ NEAR ZERO OR ZERO PIVOT (’sE15.5,°) AT DESTINATION',IS)
STOP
3 CONTINUE
PRINT 20021
2002 FORMAT(//’ %x%x DIMENSION OF ELPA (’»15,’) TOO SMALL’)
STOP ’
4 CONTINUE
PRINT 2003,1I
2003 FORMAT(//’ XXX MAXIMUM NUMBER OF PARTITIONS (’,»ISy’) ECCEEDED’)
STOP
RETURN
END
SUBROUTINE SAVES(LIESyIEQ»ICYCL,»JES)
TO SAVE ON COMPUTATION AND SWAPFING TIME
FOR ZERO COEFFICIENTS
COMMON ELPAC(1)
COMMON /PARTL/ NSTyNEND
COMMON /PARA/ LOsL1,L2
IFCICYCL JERQ. 2) GOTO 1
L= LDES + LO
NREST= NST
DO 2 J=NSTsNEND
IF(ELPA(L) JNE. 0.) GOTO 3
L= L + NREST
NREST=NREST + 1
2 CONTINUE
JES=1
RETURN
3 CONTINUE
JES= 0
RETURN
bt CONTINUE
MI= IEQ + NST-1
DO 4 I= NSTyNEND
MI= MI+1
IF(ELFA(MI) .NE. 0.) GOTO 5

OO0 OO0O0O000O00000

31.

4 CONTINUE
JES= 1
RETURN
5 CONTINUE
JES=0
RETURN
END ,
SUEROUTINE SVECT(VECTORyCONS»I1,I2yN)

FAST VECTOR PROCESSING ROUTINE TO FERFORM ¢
VECTOR(I1)= VECTOR(I1) - VECTOR(I2)XCODNS

VECTOR xy VECTOR

CONS Xy SCALAR

I1 ven START ADDRESS 1

12 e START ADDRESS 2

N Xy NUMBER OF OPERATIONS

MACHINE DEFPENDENT CODING SHOULD BRE USED IN ACTUAL IMFLEMENTATION
ON A GIVEN MACHINE.
CODING SHOWN IS STANDARD FORTRAN

DIMENSION VECTOR(1)

DO 2 J=1sN

Il1= Ii+1

I2= 12+1

VECTOR(I1)= VECTOR(I1) - VECTOR(I2)XCONS
2 CONTINUE

RETURN

END

oOoOOoOOO0n0ODO0nN0O0000n

oOooDOocoO0O0o0n

32.

SUBROUTINE BLKIO(IRWsLUNYyNBLAsNBLOKSsBUFFER,IADD)

SUBROUTINE TO READ/WRITE DIRECTLY INTO BUFFER

IRW vee SWITCH FOR READ/WRITE
IRW=1 Ve READ
IRW=2 o WRITE
LUN Xy LOGICAL UNIYT NUMBER
NBLA vee FIRST EBLOCK
NBLOKS e NUMBER OF BLOCKS TO BE READ/WRITTEN
BUFFER vae BUFFER
IADD “e START ADDRES IN BUFFER

COMMON /I0/ IPAR(4)sISTAT(2)
COMMON /BLOKL/ LBLK
DIMENSION BUFFER(1)
INSERT MACHINE DEFENDENT CODRING HERE
RETURN
END
SUBROUTINE FILO
SUBROUTINE TO ASSIGN CHANNEL NUMBERS
AND OPEN DIRECT ACCESS AND BLOCKED FILES

CHANNEL # SIZE CONTENTS
NF & NELZ ELEMENT STIFFNESS
NF9 D.OF. '+ 2 ELEMENT DESTINATIONS
NF7 LBLK BLOCKED EQUATIONS
NF8 LBLK BLOCKED FARTITIONS

COMMON /FILES/ NF&yNDIM&yNF7 s NDIM7sNF8yNDIM8sNFPyNDIM?
COMMON /BUFSZE/ NELZ»LFRBUFyLEQBUF
COMMON /IOCONV/ IREADsIUWRIT
COMMON /BLOKL/ LRLK
IREAD= 1
INRIT= 2
INSERT MACHINE DEFENDENT CODING HERE
RETURN
4 END

33.

APPENDIX C - TEST PROGRAM

In the following a test program is listed which can be used to
test the subroutines PREFR and SFRONT. The example is a substructure
condensation for a regular patch of square 4 node/8 d.o.F. Elements. The
stiffness matrix of the Elements is read in and all the nodes except the
4 corner nodes of the super element are condensed out. Results can be

obtained for different mesh and buffer sizes

—8

NROWS

[
——————0
S S -
————O——

NCOLS

[J substructure nodes

o element nodes

34.

COMMON ELPA(5000) yMAXPAYNELEMZsLDEST(42)
COMMON /BUFSZE/ NELZ»LFRBUF,LEQBUF,LFRBEL»LEGBEL
COMMON /MESH/ NROWSsNCOLS»NODES
COMMON /BLOKL/ LBLK
COMMON /FILES/ NF6sNDIM&YNFZ»NDIMZ?yNFB8»NDIMB)NFFyNDIM?
NCR= 7
CALL ASSIGN(NCR»s’INFUT’)
NELZ= 36
READ(NCR»1000) NROWSsNCOLS
1000 FORMAT(1613)
NELEMZ= NROWSXNCOLS
NODES= (NCOLS+1)X(NROWS+1)
NDOFS= NODESX2
READ(NCR»1000) LFRBUFy»LEQBUF,LBLK
CALL FILO
READ(NCRy1000) ISTIF
IF(ISTIF .NE. 1) G6OTO 1
READ(NCR»1001) (ELFA(N)sN=1,NELZ)
1001 FORMAT(BF10.0)
WRITE (NF&‘1) (ELPA(I)»I=1yNELZ)
G0TO 2
1 CONTINUE
READ(NF6’1) (ELPAC(I)»I=1,NELZ)
2 CONTINUE :
PRINT 3000
3000 FORMAT(1H1//’ x%Xx SUBSTRUCTURE CONDENSATION EXAMPLE %X%’)
PRINT 3001,NROWSyNCOLS
3001 FORMAT(//’ NUMBER OF ELEMENT ROWS=‘,15/
1 NUMBER OF ELEMENT COLUMNS=’,15)
PRINT 3002yNELEMZ,NODESsNDOFS
3002 FORMAT (/ NUMBER OF ELEMENTS=’,I5/
‘ NUMBER OF NODES ='y15/
/ NUMBER OF D.0.F., =’,15)
PRINT 3003,LFRBUFsLEQBUF
3003 FORMAT(’ SIZE OF FRONT BUFFER =215/
1 ’ SIZE OF ERUATION BUFFER=‘,15)
PRINT 3004, (KyK=1,8)
3004 FORMAT(//’ ELEMENT STIFFNESS MATRIX!’//4Xy20164)
LA= 1
LE= 1
oo 200 K=1,8
PRINT 3005,Ky (ELFA(L)»L=LAYLE)
LA=LE+1
. LE= LA¥K
200 CONTINUE
3005 FORMAT(1Xs13920F6.2)
CALL PREFR
CALL SFRONT
STOP
END

-

35.

SUBROUTINE GETELN(NELEMyKURELyLVABL)

C ___
c THIS IS A DUMMY SUBROUTINE FOR TESTING SFRONT
c IT CREATES CONNECTIVITY DATA FOR A REGULAR
c ASSEMBLY OF 4 NODE/8 D.O.F. ELEMENTS
C .
c NROWS ves NUMBER OF ELEMENT ROUWS
c NCOLS o NUMBER OF ELEMENT COLUMNS
c NODES see NUMBER OF NODES
c
E______________-_____._—....__._...__ __________________________
DIMENSION LVABL(8)
COMMON /MESH/ NROWS»NCOLS»NODES
KUREL= 8
NROW= (NELEM-1)/NCOLS + 1
NCOL= NELEM - NCOLSX(NROW-1)
NCOL1= NCOLS + 1
LVABL(1)= NCOL + (NROW-1)%XNCOL1
LVABL(2)= NCOL + 1 + (NROW-1)%NCOL1
LVABL(3)= NCOL + 1 + NROWXNCOL1
LVABL (4)= NCOL + NROWXNCOL1
DO 1 N=5»8
LVABL(N)= LVABL(N-4) + NODES
1 CONTINUE
RETURN
END
SUBROUTINE GETSUN(KUREL»LVABL)
= - —————
c THIS IS A DUMMY SUBROUTINE TO TEST THE SUBSTRUCTURING
c CAPABILITIES OF SFRONT.
c IT CREATES CONNECTIVITY DATA FOR A
c 4 NODE/8 D.0.F. SUPERELEMENT
c
C ___

DIMENSION LVABL(8)
COMMON /MESH/ NROWS,NCOLSsNOINES

KUREL= 8
NCOLi= NCOLS + 1
LVABL(1)= 1

LVABL(2)= NCOL1

LVABL(3)= NODES

LVABL(4)= NCOL1XNROWS + 1

DO 1 N=35,8

LVABL(N)= LVABL(N-4) + NODES
1 CONTINUE

RETURN

END

36.

XXX SUBSTRUCTURE CONDENSATION EXAMPLE XXx

NUMBER OF ELEMENT ROUWS= 2
NUMBER OF ELEMENT COLUMNS= 10
NUMBER OF ELEMENTS= 20

NUMBER OF NODES = 33

NUMBER OF D.O.F, = -2

SIZE OF FRONT BUFFER = 0512
SIZE OF EQUATION BUFFER= 254

ELEMENT STIFFNESS MATRIX:

1 2 3 4 S 6 7

1 S5.00

2 -2.50 5.00

3 -2.50 0.00 5.00

4 0,00 -2.50 -2,50 5.00

5 1.25 1,25 -1,25 -1.25 5.00

6 -1.25 -1.25 1.25 1.25 0.00 5.00

7 -1.,25 -1.,25 1.25 1,25 -2,50 =2,50 §5.00

8 1.25 1.25 -1.,25 -1.25 -2.50 -2.,50 0.00
MAXIMUM FRONT WIDTH= 30
MAX. NO. OF PARTITIONS= 1

CONDENSED SUBSTRUCTURE STIFFNESS MATRIX!:

1 2 3 4 S é 7
1 1.12
2 —00_08 1.12
3 -0.,74 -0.,29 1.12
4 -0,29 -0.74 -0,08 1.12
5 0.21 -0,01 -0.21 0,01t 2,05
4 0,01 -0.21 -0,01 0.21 0.01 2,05
7 -0.21 0.01 0.21 -0,01 -0.05 -2.01 2,05
8 -0.04 0,21 0.01 -0.21 -2,01 ~-0.05 0.01
LOG10 OF DETERMINANT= 55.9191

NO OF NEGATIVE PIVOTS= 0

5.00

37.

%%X%x SUBSTRUCTURE CONDENSATION EXAMPLE XXX

NUMBER OF ELEMENT ROWS= 2
NUMBER OF ELEMENT COLUMNS= 10
NUMBER OF ELEMENTS= 20

NUMBER OF MNODES = 33

NUMBER OF D.O.F., = -1

SIZE OF FRONT BUFFER = 256
SIZE OF EQUATION BUFFER= 256

ELEMENT STIFFNESS MATRIX!

1 2 3 4 5 é 7
5.00 '
-2.,50 5.00

-2.50 0.00 35.00
0.00 -2,50 -2,50 5.00
1,25 1.25 -1.25 -1.25 5.00
-1.25 -1.,25 1.25 1.25 0.00 &5.00
-1.,25 -1.25 1,25 1.25 -2.50 -2.50 5.00
1.25 1.25 -1,25 -1.25 -2,50 -2.50 0.00

WNOU D N

MAXIMUM FRONT WIDTH= 30
MAX. NO. OF PARTITIONS= 2

CONDENSED SUBSTRUCTURE STIFFNESS MATRIX!

1 2 3 4 S) 7
1 1.12
2 -0.08 1.12
3 -0.74 -0.29 1.12
4 -0.29 -0.74 -0.08 1,12
5 0.21 -0.01 -0.21 0.01 2,05
6 0,01 -0.21 -0.01 0.21 0.01 2,05
7 -0.21 0.01 0.21 -0,01 -0.05 -2.01 2.05
8 -0,01 0.21 0.01 -0.2%1 -2.,01 -0.05 0.01
LOG10 OF DETERMINANT= 55.9191

NO OF NEGATIVE PIVOTS= 0

5.00

2.09

38.

APPENDIX D - NOMENCLATURE
Symbol Meaning
cij Equation coefficient
3 Address of coefficient in long vector ELPA
Eo Start address in ELPA of space reserved for the Front matrix
m Front width
AQN Number of Equations in partition N
Ky "destination" of first equation in partition N
np Size of storage space for the Front matrix
k,1i Coefficient indexes
Fi Coefficient on right hand side
X Variable
Ri 7 Residual
13 Structure stiffness coefficient
ij error on Solution for Xj

39.

APPENDIX E - REFERENCES

1.

IRONS, Bruce M. '"A Frontal Solution Technique for Finite Element
Analysis', Int. Jnl. Num. Meth. Engng., Vol. 2, pp. 5-32, 1970.

LIGHT, M.F. and LUXMORE, "Application of the Front Solution to two
and three-dimensional Elasto-plastic Crack Problems", Int. Jnt. Num.

Meth. Engng., Vol. 11, pp. 393-395, 1977.

HOOD, P. '"Frontal Solution Program for Unsymmetric Matrices", Int.
Jnl. Num. Meth. Engng., Vol. 10, pp. 379-399, 1976.

NATARAJAN, R. '"Front Solution Program for Transmission Tower Analysis",

Computers and Structures, Vol. 5, pp. 59-64, 1975.

ALIZADEH, A. and WILL, G.T. '"A Substructural Frontal Solver and its
Application to Localized Material Non-linearity", Computer and
Structures, Vol. 10, pp. 225-231, 1979.

FELIPA, C.A. "Solution of Linear Equations with Skyline-Stored
Symmetric Matrix", Computers and Structures, Vol. 5, pp. 13-29, 1975,

CE
No.

10

11

12

13

14

CIVIL ENGINEERING RESEARCH REPORTS

Title

Flood Frequency Analysis: Logistic Method
for Incorporating Probable Maximum Flood

Adjustment of Phreatic Line in Seepage
Analysis by Finite Element Method

Creep Buckling of Reinforced Concrete
Columns

Buckling Properties of Monosymmetric
I-Beams

Elasto-Plastic Analysis of Cable Net
Structures

A Critical State Soil Model for Cyclic
Loading

Resistance to Flow in Irregular Channels
An Appraisal of the Ontario Equivalent
Base Length

Shape Effects on Resistance to Flow in
Smooth Rectangular Channels

The Analysis of Thermal Stress Involving
Non-Linear Material Behaviour

Buckling Approximations for Laterally
Continuous Elastic I-Beams

A Second Generation Frontal Solution
Program

Combined Stiffness for Beam and Column
Braces

Beaches:- Profiles, Processes and
Permeability

Author(s)
BRADY, D.K.
ISAACS, L.T.
BEHAN, J.E. &

0'CONNOR, C.

KITIPORNCHAI,
& TRAHAIR, N.S

MEEK, J.L. &
BROWN, P.L.D.

CARTER, J.P.,
BOOKER, J.R. &
WROTH, C.P.

S.

KAZEMIPOUR, A.K.

& APELT, C.J.

0'CONNOR, C.

KAZEMIPOUR, A.K.

& APELT, C.J.

BEER, G. &
MEEK, J.L.

DUX, P.F. &
KITIPORNCHAI,
BEER, G.

O'CONNOR, C.

GOURLAY, M.R.

S.

Date

February,
1979

March,
1979

April
1979

May,
1979

November,
1979

December,
1979
February,

1980

February,
1980

April,
1980

April,
1980

April,
1980

May,
1980

May,
1980

June,
1980

10

CURRENT CIVIL ENGINEERING BULLETINS

Brittle Fracture of Steel — Perform-
ance of ND18 and SAA A1 structural
steels: C. O’Connor (1964)

Buckling in Steel Structures — 1. The
use of a characteristic imperfect shape
and its application to the buckling of
an isolated column: C. O’Connor
(1965)

Buckling in Stee/ Structures — 2. The
use of a characteristic imperfect shape
in the design of determinate plane
trusses against buckling in their plane:
C. O’Connor (1965)

Wave Generated Currents — Some
observations made in fixed bed hy-
draulic models: M.R. Gourlay (1965)

Brittle Fracture of Steel — 2. Theoret-
ical stress distributions in a partially
yielded, non-uniform, polycrystalline
material: C. 0’Connor (1966)

Analysis by Computer — Programmes
for frame and grid structures: J.L.
Meek (1967)

Force Analysis of Fixed Support Rigid
Frames: J.L. Meek and R. Owen
(1968)

11

12

13

14

15

16

17

18

19

20

Analysis by Computer Axisy-
metric solution of elasto-plastic pro-
blems by finite element methods:
J.L. Meek and G. Carey (1969)

Ground Water Hydrology: J.R. Watkins
(1969)

Land use prediction in transportation
planning: S. Golding and K.B. David-
son (1969)

Finite Element Methods — Two
dimensional seepage with a free sur-
face: L.T. Isaacs (1971)

Transportation Gravity Models: A.T.C.
Philbrick (1971)

Wave Climate at Moffat Beach: M.R.
Gourlay (1973)

Evaluation of Traffic
C. Lucas and

Quantitative
Assignment Methods:
K.B. Davidson (1974)

Planning and Evaluation of a High
Speed Brisbane-Gold Coast Rail Link:
K.B. Davidson, et al. (1974)

Brisbane Airport Development Flood-
way Studies: C.J. Apelt (1977)

Numbers of Engineering Graduates in
Queensland: C. O’Cannor (1977)

