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Synopsis 

A c ompute r pr ogram for t he as s embly and 

solution of symmetric positive de f ini te e quations 

as met in t he Finite Element analysis based on t he 

Fronta l Solution algorithm by I rons is pre s ented . 

The pr ogram f ea t ures impr oved direct access 

blocked I /0 and the u~e of Fron t parti t ioning ~hich 

make s the problem size ~hich can be solved practical ly 

independent of the size o f the computer memory . 

In addition the use of fast vector processors i s 

c onsidered ~hich s hou ld improve CPU times con siderably. 
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1. 

l. INTRODUCTION 

The Frontal Solution technique is based on the Gaussian 

Elimination method and was first published in 1970 by Irons (1) • 

Various authors (2,3,4,5) have since pointed out various 

advantages of this technique. The main advantage over band or 

skyline (6) solvers seems to be a simplification in the data 

preparation as the nubmering of nodes is not restricted to 

minimise a band width. Also, since the node numbers are treated 

as "Nicknames", design changes (i.e. adding or removing elements) 

may be made without having to renumber the nodes. Solution 

time for the Frontal solver is now sensitive to the numbering 

of the Elements but the sequence is a natural one. The famous 

example of a ring structure is often mentioned in this context (1) . 

The main difference between the Frontal technique and 

a conventional band solution lies in the manner in which the 

structure stiffness c o e fficient s are stored and in the order 

in which t he equations are eliminated. 

Consider, for example, a patch of 4 node/8 D.O.F. 

elements. in Fig. 1 in which the degrees of freedom are numbered 

from 1 to 18 . 

The stiffness coeff icie nts of Eleme nt I are stored in 

t he orde r of appearance (local node numbering) and in the manner 

shown in Fig. la. Each variable has a "Destination" which 

determines the position of its coefficients in the Front matrix. 

An asterisk , *• marks the equations which are already fully 

summed. These variable(s) can now be eliminated before the 

next element is assembled by treating the other equations with: 

c! . 
~.] 

c* . 
c. . - c* . ~' 1 
~.J n,J cn,n 

(1) 

Where n is the destination of the variable to be 

eliminated and the * denotes the coeff icients which are f ully 

s ummed . The reader should note that it does not matter that 

the coefficie nts ci, j are not in their final form since only 

the order in which the coefficients are added is changed. 
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After elimination, variables 1 and 10 cease to be 

"active" and the corresponding equations are transferred into 

buffer storage ready for output on disk. The storage locations 

of these equations in the Front matrix are cleared (Fig. lb). 

On assembly of element II this space is re-used by Equation 3 

and 6 (Fig. lc). The Front matrix thus contains only the 

coefficients of "active" variables. 

With the principle involved explained the reader may 

complete the example making the following observations: 

(1) Assembly and elimination order is governed by the 

order in which the variable coefficients are entered 

as one Element is assembled after the other. A 

variable is eliminated as soon as the coefficients 

are fully summed (i.e. on its last appearance). The 

position of the coefficients in the Front matrix is 

governed by the empty spaces available. 

(2) The storage requirement for storing the "active" 

coefficients is determined by the largest address 

used. Because of symmetry only one half of the 

Front matrix has to be stored and the storage require­

ment may be computed from 

m(m + 1) /2 

Here m is the largest "Destination" of a variable 

(Front width) . 

In the original code Irons assumes that the Front 

matrix resides in central storage (Comment on the program 

listing: "if not, buy larger computer"). 

(2) 

It can be seen that the storage requirement increases 

with the square of the Front width. This puts a severe limitation 

on the size of problems which can be solved on a special computer. 

The purpose of this paper is to present a program 

where this limitation has been over-come making it possible to 

solve large 3-D problems on a mini computer. In addition, the 
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transfer of data to and from disk is improved by using a 

blocked direct access I/O mode. 

The inner-most DO-loop of the Gauss elimination is 

written suitable for fast vector processors which have appeared 

on the market in recent years. 

The resulting program should not only be an improvement 

in solution capability but also in performance. 

2. STORAGE AND BUFFERING DURING ELIMINATION 

Similar to the original code by Irons, a working vector 

ELPA is used. ELPA is divided into 3 main areas which contain: 

(1) Element stiffness matrix of the Element to be assembled; 

(2) Front matrix or a partition of the front matrix; (3) Buffer 

for the equations which have ceased to be "active". 

Allocation of the space for these areas i s completely 

flexible and will depend on the type of problem solved. Whereas 

the space of first area is fixed by the size of the element 

stiffness matrix, the space allocation for areas 2 and 3 must 

be adjusted to give optimal solution times within the core 

limitations of the computer used. This will be discussed in 

detail later. 

The number of e quation c oe fficie nts in the Front matrix 

for a particular Front width is computed from Equation 2 and 

if it is greater than the space available, the partitioning 

algorithm has to be activated. 

The number of Equations ~£N which fit into a particular 

N can be computed from the inequali ty 

(3) 

Here kN is the destination of the first equation in 

partition N and n is the size of the storage space for the Front 
p 

matrix . Solution of Equation 3 gives 

~£N = INT [- 2kN2- 1 +J[2kN2- lr + 2np] (4) 
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Where INT means the truncation of the result. This 

allows us to determine the limits of each partition i.e. partition 

N can accommodate Equation kN to kN+l" 

For a coefficient k, i (k < i) residing in partition N, 

where 

(5) 

the address, ~ . is computed from (see Fig. 2), 

Here ~0 specifies the start address of the space reserved for 

the Front matrix. 

3. PROGRAMMING STRATEGY 

As long as the Front matrix is small and fits into core 

the program strategy is simple and follows three basic steps 

for each element: 

(1) Read element stiffness matrix 

(2) Assemble its coefficients into Front matrix 

(3) Eliminate variables which are ready 

The elimination essentially consists of two steps. 

First, the equation coefficients of the variable which is to be 

e liminated (n) are moved to the equation buffer. When the buffer 

is full its contents are written on disk and the pointer reset 

to the beginning of the buffer before the coefficients are moved 

(It should be note d at this stage that all the coefficients to 

the right of the minus sign in Equation 1 are now in the buffer) . 

Then all the equations in the Front matrix are modified by 

Equation 1. 

When the current Front matrix becomes large and no longer 

fits in the allocated space, partitioning is invoked automatically. 

The program strategy becomes more complex and follows the following 

basic steps: 
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(1) Read Element stiffness matrix. 

(2) Swap Partition 1 into core and assemble all 

coefficients which are resident in this partition. 

(3) Eliminate variables which are ready in this 

partition (if any). 

(4) Swap Partition 2 into core and assemble further 

coefficients. 

(5) Modify all coefficients for the variables 

eliminated previsouly (if any) using the 

coefficients c~2 in the Equation buffer. This 

is referred to as elimination of 'old variables' 

in the listing. 

(6) Elimi nate variables which are ready in this 

partition ('new variables'). 

Steps 4, 5 and 6 are repeated for all subsequent partitions 

to the last one. Note that at step 3 not all the coefficients 

c~2 of the equation n are available and the equation in the buffer 

is still incomplete. Thus, additional coefficients have to be 

transferred in step 5. 

Our work is not completed y et since some lower partitions 

have not been modified due to elimination of variables in higher 

partitions. So we have to retrack and modify the Equations which 

have not yet been modifie d using the coefficients c~2 in the 

e quation buffer. 

4. I/O OPERATIONS DURING ELIMINATION 

When the Front matrix is small and fits into the allocated 

space , the I / 0 operations are simple: 

(1) Read the assembly information for each element 

(The 'destination vector ' is coded to indicate when 

each variable is ready for elimination) . 

(2) Read Element stiffness matrix . 

(3) Whenever the equation buffer is full, i.e. no 

further equation fits, write its contents onto 

disk. 



6. 

In the present program, the standard. Fortran READ is 

used for operations 1 and 2. For large amounts of data the speed 

of the I/0 operation depends greatly on the transfer mode. It 

has b een found by the author that on a Data General Eclipse mini­

computer, the data transfer is 10 times faster when the machine 

dependent routines RDBLK nad WRBLK are used. The prerequisite 

for using these routines is that the number of coefficients to 

be transferred is divisible by the physical block size on disk 

(128 real numbers in this case). Since operation 3 may involve 

a large number of coefficients, a blocked I/0 mode is used. The 

equation buffer is divided into a number of blocks and the space 

allocated for it should be a multiple of the block size. When 

the buffer is full it may, however, not always fill the last block 

completely. To avoid empty spaces on disk the last block is not 

written in this·case, but the coefficients are rather transferred 

to core to the beginning of the buffer with new coefficients moved 

into the subsequent spaces. 

In this context it should be noted that in core transfers 

are typically a factor of 10 3 faster than out-of-core transfers 

(i.e. transfers to and from disk). 

When the Front matrix becomes too large and no longer fits 

into core, I/0 operations become more complex and frequent. The 

Front matrix has to be swapped in and out of core as required. 

Blocked I/0 transf~r now becomes essential and the programming 

critical since a program slowed down by too many I/0 operations 

may no longer be competitive . 

The aim is to reduce the I/0 operations to a bare minimum 

even if this means that more in core operations are necessary to 

do this (see above statement about I/0 transfer speeds). 

The number of swapping operations on the partitions can 

be determined from the basic steps delineated in the last chapter 

and depends on the location of variables which are to be eliminated. 

In the worst case, we need (2N - 1) swaps where N is the number 

of partitions currently used. This number is critical for the 

performance of the program as partitions usually involve a large 

number of coefficients . Ways to optimise the number of I/0 

operations are discussed in the next chapter. 
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A further complication arises which could endanger the 

economy of the program. For the basic step 5, (elimination of 

* 'old variables') the coefficients cn2 which are though t to reside 

in the equation buffer are needed. But in the meantime, I/0 

operation 3 (transfer of equation buffer on to disk when full) 

may have been carried out and the required coefficients may no 

longe r be in core. Thus we must k e ep track of which coefficients 

are in core and which are on disk. If the coefficients are no 

longer in core they must be swapped into core and this requires 

additional I / 0 operations, the number of which depends greatly 

on the size of the equation buffer. If the buffer is very large 

then swapping of the equation buffer may occur only rarely. 

5. OPTIMISATION OF 1/0 OPERATIONS AND CHOICE OF FRONT 
PARTITION AND EQUATION BUFFER LENGTH 

When selecting the size of the buffer for the Front matrix, 

we must a im to avoid partitioning since it is expensive . If no 

partitioning is involved the equation buffe r may b e made small 

to accommodate a big Front matrix, the only restriction being 

that, the buffer has to be at least 2 blocks long and accommodate 

the largest equation. On the other hand, when partitioning of 

the Front is unavoidable because of core restrictions or size of 

p roblem, there is a case for decreasing the partition size in 

favour of a large equ a tio n buffer for the reasons e xplained in 

the last c ha pte r. 

To reduce the number of I / 0 operations further, a number 

of situations where swapping is not required is examined. Swapping 

of partitions is not require d when: 

(A) There are no coeffic i e n t s to be assembled into the 

partition, and no variables have been eliminated yet 

in the current element loop. 

(B) There are no coefficients to be assembled and the 

coefficients c~2 (kN < 2 > kN+l) are zero. 

(C) Swapping of the equation buffer is not required when 

the coe fficients c~2 (kN < 2 > kN+l) i n the Front 

partition are ze ro . 
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A check on conditions C and B is made by Subroutine SAVES 

in the program. 

6. SHORT DESCRIPTION OF COMPUTER PROGRAM 

The program consists of two main subroutines PREFR and 

SFRONT. The subroutine PREFR works out the coded desti nations 

of the variables and writes them onto disk. This program is 

essentially the same as published by Irons and is included for 

completeness. Subroutine SFRONT performs the assembl y and 

reduction of the structure or substructure stiffness ma trix as 

d e tailed in the last c hapters. 

It uses the following subroutines: 

MOVE .... . to~ equation coefficients to buffer. 

GAUSS ...• to modify the coefficients in the Front ma trix with 

Eq. (1). 

ASSEMB ... to a ssemble stiffness coeffic i e nts into the Front 

matrix. 

EMPDI .... to empty equation buffer on disk when full. 

RESBUF 0 0 0 to reset buffer pointer. 

SWAPF to swap ~ront partitions in and out· of core. 

SAVES to ~ ~waping (see last chapter) . 

UN COD to uncode coded destinations (uses CODEST) 

PALl ...... to work out partition limits (kN' KN+l). 

In addition the following function s are used: 

LADDR(M) 

LADST (I,J) 

is the l ocal address in the current Front 

partition of a coefficient M, M. 

is the l ocal address of a coefficien t i,j in 

the Element stiffness matrix. 

Subroutines are also used to clear integer and r eal arrays and 

write error messages. 

The blocked I/0 operations are performed by subroutine 

BLKIO which has a machine dependent coding. Files are opened and 

channel numbers assigned by FILO which is also machine dependent. 
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The fast vector operations are performed by subroutine 

SVECT. When a computer with vector processor is used, the 

appropriate coding as given in the Users Manual of the machine 

should be inserted here. For use on machines without this 

capability the Standard Fortran coding may be used as shown. 

The computer program is listed in Appendix B. A list 

of some important arrays and variables is given in Appendix A. 

In addition, a program is included to test and demonstrate the 

substructure capability of the sub-routine SFRONT in Appendix C. 

7. SUBSTRUCTURING WITH THE FRONTAL SOLUTION 

For very large structures, it is often desirable to 

divide the mesh into several smaller meshes or substructures. 

These are treated as large elements and the boundary stiffness 

matrix obtained by e limination of the 'internal' degrees offreedom. 

The substructuring has the following main advantages: 

(l) The process of solving the structure is a continuous 

one and errors may be detected at substructure level. 

Remedial actions need only to be taken in the particular 

substructure involved . 

(2) Sometimes a structure consists of many subareas having 

a similar geometry. Thus the stiffness matrix of a 

particular type of substructure may be computed only 

once and the main structure assembled with as frequent 

re-use of the substructure stiffness as possible. 

(3) For excavation type of problems in rock or soi l mechanics 

the substructuring technique offers additional advantages. 

By defining the rock or soil mass in the full excavation 

as one large substructure and the material to be excavated 

at each stage as smaller substructures the analysis of 

each excavation stage just requires the assembly of 

substructure stiffnesses and the solution for the sub­

structure boundary degrees of freedom. 
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Substructuring with the Front Solution is relatively 

simple. All that has to be done is to suspend the elimination 

of selected variables at the boundary of the substructure. The 

coefficients which remain in the Front matrix after the elimination 

of all other variables then constitute the stiffness coefficients 

for the super element. After suitable reordering, the stiffness 

matrices of all super elements can be obtained and assembled in 

the usual manner to solve for the complete structure. 

Thus, substructuring involves the basic steps. 

(1) The PREFRONT subroutine read the substructure "Nicknames" 

into the vector NIX. This will modify the coding of the 

destinations of the substructure variables in such a way 

as to prevent their elimination. 

(2) Perform the usual assembly and elimination for all elements 

which make up the substructure. 

(3) Remove zero rows and columns from the Front matrix and 

reorder to obtain the substructure stiffness matrix in 

condensed form. 

After this has been done for all substructures, perform 

the assembly and elimination in the usual way but this time 

involving all substructures which make up the structure to be 

analysed. 

The substructuring capability is demonstrated with a test 

program in Appendix II where the substructure consists of a regular 

assembly of 4 node/8 degrees of freedom Elements. 

8. RE-SOLUTION 

Once the global stiffness matrix has been reduced and 

stored a re-solution for as many load cases as desired can be 

made. 

It is convenient to separate the resolution and back 

substitution part completely from the reduction of the left hand 
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side in order to have as much space available as possible. 

Because the size of the vector needed for each load case is only 

MAXPA no partitioning of the Front should be required even for 

large problems and the basic procedures are as follows:-

(1) 

(2) 

(3) 

Read the Element right hand side (RHS) into the 

first part of ELPA. 

Assemble into the space reserved for the Front-RHS. 

* Reduce RHS using the coefficients en on disk 

i.e . modify the Front RHS with 

* 1 c. 
* F . F . - 1n F 1 1 * n c n,m 

(7) 

The procedure is exactly the same as a non­

partitioned reduction except that v ectors are involved instead 

of matrices. 

Th e results are obtained i n Element form by back 

substitution i.e. 

in the same manner as by Irons . 

9. FURTHER FACILITIES OF THE COMPUTER PROGRAM 
AND DISCARDED FACILITIES 

This section deal s with features which are i ncluded 

in the p r esent p rogram and facilities which have not been 

considered but can be implemented easily. 

9.1 Treatment of Constraints 

(8) 

In the prese nt program a restrained degree of freedom 

is tre ated by setting the corresponding destination to zero and 

t h e r e by preventing the assembly of the corresponding equation. 
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This is the simplest and most economical way. Various other 

types of constraints, as shown by Irons {l) can be easily 

implemented. 

9.2 Computation of the Determinant of the Structure 

Stiffness Matrix 

This is often required for vibration and stability 

analysis and is incorporated by additional coding in Subroutine 

GAUSS. After elimination the value of log10/K/ is stored in the 

variable DET. In addition the frequency of the occurrence of a 

negative diagonal element is determined and stored in NEG. If 

NEG is odd the sign of the determinant is positive otherwise 

negative. The variables DET and NEG are in Common block/ EIGEN/. 

9.3 Check on Singularity and Indefiniteness 

A check on singularity and indefiniteness is made during 

elimination. If the diagonal coefficient is less than or equal 

to zero an Error message is produced. Because of machine accuracy, 

the diagonal coefficient will not be exactly zero even for a 

singluar matrix. More appropriate checks have been suggested (6), 

that is, 

(l) Singularity 

d. < t. 
J J 

(9) 

(2) Indefiniteness 

(10) 

where dj is the j-th diagonal element at the j-th elimination 

stage and 

8£ r. 
J 

where £ is the smallest positive floating point number for which 

(l + £) > l on the computer used and rj is the norm of the j-th 

row of K. This can be easily implemented in Subroutine GAUSS if 

the machine accuracy £ is known. 
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9.4 Check on Accuracy of Solution 

In the original code by Irons a simple roundoff criterion 

was included. The author has found this criterion not entirely 

satisfactory because it is not sensitive to right hand sides and 

was found to register only if the difference in stiffness is too 

great between elements. 

A better a priori estimate of the matrix condition is the 

Eucledian condition number (6). But this also involves additional 

unproductive computation and may be expenside. 

The author favours the a pos t er ori estimate by one step 

of iterative refinement of the solution because it is a more 

productive method giving not only an estimate of the accuracy but 

also an improved solution. It only involves a re-solution and 

matrix multiplication. The iterative refinement may be made only 

for one load case and not repeated for the other load cases if 

the condition number is satisfactory. 

First, the load case is solved with the re-solution 

facility to give x~, the unrefine d result. Then the residual 

forces are worked out: 

F. - K .. xc:' 
]. l. J J 

(11) 

A second resolution with Rc:' as new right hand side will give the 
]. 

0 0 
error on xj, 6xj. 

The expression 

(12) 

provides an estimat e on the accuracy of the solution xj. 

10. CONCLUSIONS 

A computer program for the assembly and solution of a 

symme tric positive definite set of equations has been presented. 

The program is based on the Frontal Solution t echnique by Irons 

but uses frontal partitioning to make the problem size which can 



14. 

be solved practically indepe ndent of the memory size .of the 

computer used. 

In addition, a great deal of effort has been made to 

optimise the I/0 operations during partitioned elimination. Fast 

vector or pipeline processing has also been considered in the 

coding. 

The resulting program is an improvement, not only in 

capability but also in performance . The program should be useful 

not only in mini-computer applications but also for large 

c omputers, because a reduction or optimisation of the band width 

is not required in the Frontal solution. 

The solution time and storage requirement is influenced 

only by the numbering of the Elements which is a natural one. 
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STORAGE XN FRONT: 

STORAGE XN ELPA: 

+++P++++P++*++M++++++P 
LO L 

FIGURE 2 Storage o f c oefficients in l ong 
vector ELPA 
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LIST OF IMPORTANT ARRAYS AND VARIABLES 

main working s pace 

an indicator if a partition ~as ~een written at least 
once 

INDABL . ..... . . . . . ... indicator on the space avail ability in t he Front 
matrix also indicates in which partition space is 
available (coding: "+" occupied "-" v e f ree) 

LCDEST 

LUDEST 

list of coded element destinations 

list of uncoded element destinations (not entirely 
true since the des tinations are still coded with a 
"-" ve sign for variables ready f or elimination). 

LPAL ... ... . . .• ••.•.• l i st of ~rtition _limits 

LISTEQ •......•.....• list of ~tart addresses of ~uations in the buffer 
or on disk. L.ists address of pivot , block number 
and relative address in block for each element loop 

KURPA ............. .. current equation length 

LBLK . . .. . . . .. . . . . ... _length of phys i cal ~locl on disk (real words) 

NBLKA, NBLKE ... . . ... first and last ~locl currently in the equation buffer 

NPA, NPAC ..........• number of ~rtition to be swapped into core and 
number of ~rtition eurrently in core 

NELZ, LFRBUF, LEQBUF length of buffers for element stiffness matrix, 
Front matrix and equation buffer (real words) 
MUST BE DIVISIBLE BY THE BLOCK LENGTH . 
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APPENDIX B - LISTING OF THE COMPUTER PROGRAM 

SUBROUTINE PREFR 
c-----------------------------------------------------
c PREFRONT ROUTINE 
c-----------------------------------------------------

COMMON NIXC10000lrMAXPArNELEMZrLDESTC62l 
c--------------------------------------------------
c VARIABLES IN BLANK COMMON: 
C NIX WORKING SPACE 
C MAXPA MAX, FRONT WIDTH 
C NELEMZ NUMBER OF ELEMENTS 
C LDEST ELEMENT DESTINATIONS 
c-------------------------------------------------

COMMON /FILES/ NF6rNDIM6rNF7rNDIM7rNF8rNDIM8rNF9rNDIM9 
DIMENSION LVABLC601rMVABLC500lrLCDESTC601 
EQUIVALENCE CLPREQrLDEST(1)) 
EQUIVALENCE CKURELrLDESTC2>> 
EQUIVALENCE CLCDESTC1lrLDESTC3ll 
NIXEND= 2000 
CALL ICLARCMVABLr500l 
MAXPA=1 
NIZZ = 0 

c----------------------------------------------------
c PUT ALL ELEMENT NICKNAMES IN LONG VECTOR NIX 
c------------------------------------------------

DO 10 NELEM= 1rNELEMZ 
CALL GETELNCNELEMrKURELrLVABLl 
DO 8 I=1rKUREL 
NIC= LVABLCII 
NIZZ= NIZZ +1 
NIXCNIZZ>= -NIC 

8 CONTINUE 
NIXCNIXEND+1-NELEMI= NIZZ 

10 CONTINUE 
c-----------------------------------------------------
c PUT SUBSTRUCTURE NICKNAMESCIF ANY> AT THE END OF NIX 
c------------------------------------------------------

CALL GETSUNCKURELrLVABL> 
IFCKUREL ,EQ, Ol GOTO 11 
NIZS= NIZZ 
DO 9 I=lrKUREL 
NIC= LVABLCI> 
NIZZ= NIZZ+l 
NIXCNIZZ>= -NIC 

9 CONTINUE 
11 CONTINUE 

KURELS= KUREL 
LCUREQ= 0 
NVABZ= 0 

c--------- -------------------~--------------------
c FIND DESTINATIONS 
c--------------------------------------------------

N1= 1 
DO 26 NELEM=1rNELEMZ 
LPREQ= LCUREQ 
LCUREQ= NVABZ 
NIXE= NIXEND+l-NELEM 
NZ= NIXCNIXE> 
KUREL= NZ - N1 + 
DO 22 NEW= N1rNZ 
NEWA= NEW 



) 

NIC= NIX<NEW> 
LDES= NIC 
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IF<NIC .GT, Ol GOTO 20 
LDES= 1 

14 CONTINUE 
IF<HVA8L<LDESl ,EQ, Ol GOTO 16 
LDES= LDES + 1 
IF<LDES .LE. HAXPAl GOTO 14 
HAXPA= LDES 

16 CONTINUE 
HVA8L<LDESl= 1 

c-----------------------------------------------c RECORD FIRSTrLAST AND INTERH. APPEARANCES 
c----------------------------------------------

KOUNT= 1000 
DO 18 LAS= NEWrNIZZ 
IF<NIX<LASl .NE. NICl GOTO 18 
NIX<LAS>= LDES 
KOUNT= KOUNT + 1000 
LAST= LAS 

18 CONTINUE 
NIX<LAST>= LDES + 1000 
lDES= LDES + KOUNT 
NIX<NEW>= LitES 

20 CONTINUE 
NZ1= NEW-N1+1 
LCDEST<NZ1l= LDES 

22 CONTINUE 
N1= NEWA+ 1 

c--------------------------------------------------c UPDATE HVA8LrCOUNT ELIMINATED VARIABLES 
C AND WRITE DESTINATIONS ON DISK 
c---------------------------------------------------

Do 24 KL=1rKUREL 
CALL CODEST<KL,NSTRESrLDESrLCDESTrKUREL) 
IF<NSTRES .NE. 0 .AND. NSTRES .NE. 1> GOTO 24 
HVABL<LDES>= 0 
NVABZ= NVA8Z+1 

24 CONTINUE 
WRITE<NF9'NELEM> <LDEST<I>ri=1tNDIH9l 

26 CONTINUE 
c-----------------------------------------------------------
c WRITE SUPERELEMENT DESTINATIONS ON DISK 
c-----------------------------------------~-----------------

25 
23 

NIZZ= NIZS 
KUREL=KURELS 
IF<KUREL ,EQ, Ol GOTO 23 
DO 25 KL=1rKUREL 
NIZZ= NIZZ + 1 
LCDEST<KL>= NIX<NIZZl - 1000 
CONTINUE 
CONTINUE 
NELEH= NELEHZ+1 
WRITE<NF9'NELEH> <LDEST<Iltl=1rNDIH9l 
RETURN 
END 
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SUBROUTINE SFRONT 
c------------------------------------------------
c 
c 
c 
c 
c 
c 
c 

S U P E R F R 0 N T 

A SECOND GENERATION FRONTAL SOLUTION PROGRAM 

G.BEER UNIVERSITY OF QUEENSLAND 1979 

c---------------------------------------------
coMMON ELPA<5000>•MAXPA,NELEMZ,LDEST<62) 

c------------------------------------------------------------
c VARIABLES IN BLANK COMMON l 
C ELPA WORKING SPACE 
C MAXPA MAXIMUM FRONT WIDTH <FROM PREFRONT> 
C NELEMZ NUMBER OF ACTIVE ELEMENTS 
C LDEST ELEMENT DESTINATIONS 
c-----------------------------------------------------------

EDUIVALENCE <KUREL•LDEST<2>> 
EQUIVALENCE <LCDEST(l),LDEST<3>> 
COMMON /EIGEN/ DET,NEG 
COMMON /PARTL/ NST,NEND 
COMMON /PARA/ LO,Ll 
COMMON /BLOKL/ LBLK 
COMMON /FILES/ NF6,NDIM6,NF7,NDIM7,NFB,NDIMBrNF9,NDIM9 
COMMON /IOCONV/ IREAD,IWRIT 
COMMON /EDL/ KURPA 
COMMON /ENDQN/ LASTBL 
COMMON /BUFSZE/ NELZrLFRBUFrLEQBUF,LFRBBLrLEQBBL 
COMMON /INCORE/ NBLKA,NBLKE 

c---------------------------------------------------------
c CURRENT COMPILATION IS FOR: 
c 
c 
c 
c 
c 

ELEMENT SIZE= 60 D,O,F, 
MAXIMUM FRONT WIDTH= 500 
MAXIMUM NUMBER OF PARTITIONS= 50 

C DIMENSION FOR LISTED= 50 t 60*3 = 230 
c------------------------------------------------------

c 

DIMENSION LUDEST<60) 
DIMENSION LCDEST<60> 
DIMENSION INDABL<500> 
DIMENSION HBWR<50) 
DIMENSION LPAL<51) 
DIMENSION LISTEG<230> 

MAX NUMBER OF PARTITIONS THIS COMPILATION: 
MAXPAR= 50 

C SIZE OF ELPAl 
LSIZE= 5000 
IF<NELZtLFRBUFtLEGBUF .GT. LSIZE> CALL ERROR<O,,LSIZE,3> 
LFRBBL= LFRBUF/LBLK 
LEDBBL= LEDBUF/LBLK 

c-------------------------------------------------
c ELPA ADRESSES 
c----------------------------------------------------
c START OF FRONT MATRIX 

LO= NELZ 
C START OF EQUATION BUFFER 

Ll= NELZ + LFRBUF 
C CLEAR ARRAYS AND WORK OUT PARTITION LIMITS 
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CALL CLEAR<ELPA•1,LSIZE> 
CALL PALI<MAXPAR,MAXPA,INDABL•LPAL,NOPAR> 
PRINT 3002,MAXPA,NOPAR 

3002 FORMAT(//' MAXIMUM FRONT WIDTH='•l5/ 
1 ' MAX. NO, OF PARTITIONS=',I 5//) 

CALL ICLAR<HBWR,NDPAR> 
DET= o. 
NEG= 0 
NBLK= 0 
NBLKA= 1 
NBLKE= LEQBBL 
lEO= L1 
NPAC= 1 
DO 1 HELEM= l•NELEMZ 
TYPE 3003,NELEM 

3003 FORMAT<I5> 
C READ CODED ELEMENT DESTINATIONS 

READ<NF9'NELEM> <LDEST< J >,I=1•NDIM9> 
C UNCODE AND UPDATE SPACE INDICATOR 

CALL UNCOD<LCDEST,KUREL,LUDEST,INDABL,MAXPA,NDPAR> 
C READ ELEMENT STIFFNESS 

READ<NF6'1) <ELPA<I>•I=1•NDIM6 > 
NVAR= 0 
III= 1 
DO 2 NPA=1•NDPAR 

C FIRST EQUATION IN PARTITION NPA 
NST= LPAL<NPA> + 1 

C LAST EQUATION IN PARTITION 
NEND= LPAL<NPA + 1> 
IF<NEND .GT, KURPA> NEND= KURPA 
NVA= 0 
LISTEQ<III> = 0 
I= III 

c------------------------------------------------
c ASSEMBLY 
c-----------------------------------------------

Do 4 HV=1•KUREL 
IRDY= 0 
LDES= LUDEST<HV > 
I F<LDES> 21,4,20 

21 CONTINUE 
LDES= -LDES 
IRDY= 1 

20 CONTINUE 
LPA= INDABL<LDES> 
IF<LPA .NE. NPA> GOTO 4 
CALL SWAPF<NPArNPAC,HBWR> 
CALL ASSEMB <LDESrLUDESTrNU,KUREL> 
IF<IRDY , EQ, 0) GO TO 4 
NUA= NVA + 1 
NUAR= NVAR + 1 
LISTEO<III>= NUA 
I= I + 1 
LI STEQ <I> = LDES 
I= I+2 

4 CONTINUE 
c--------------------------------------------------------------
c ELIMINATION OF OLD VARIABLES <THOSE EL I MINATED IN PREVIOUS PART! 
C-------- ------------ -------- - - --- - --- - - - --- - --- ---- - - - --- - --- - -TIONS> 

IF<NPA ,EQ, 1> GOTO 5 
IF<NVAR ,EQ, 0) GOTO 5 



ICYCL= 1 
NEW= 0 
I= 0 
NPAM= NPA-1 
DO 6 Nf'=1rNPAM 
I= I + 1 
NVA= LISTEGC I) 
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IFCNVA .EG. 0) GOTO 6 
CALL SWAPFCNPArNPACrHBWR) 
DO 7 N=1rNVA 
I= I+1 
LDES= LISTEGC I) 
I= It1 
NNBLK= LISTEG<I> 
I= I+1 
LIEG" LISTEGC I> 
IFCLASDES .EG, LDES> GOTO 77 
CALL SAVES<LDESriEGriCYCLrJES> 
IFCJES .EG, 1) GOTO 7 

77 CONTINUE 
CALL RESBUFCIEGrNBLKrNNBLKrLIEGriCYCL> 
CALL MOVE<NEWrLDESriEG> 
CALL GAUSS<NEWrLDESriEQ) 

7 CONTINUE 
6 CONTINUE 
5 CONTINUE 

c--------------------------··-----------------
c ELIMINATION OF NEW VARIABLES <THOSE TO BE ELIMINATED IN CURRENT 
C--- ---------------~----------------------- PARTITION) 

NEW= 1 
NVA= LI STEG <II I> 
I= III 
IFCNVA ,EG, O> GOTO 44 
DO 45 N=1rNVA 
I= I + 1 
LDES= LISTEG<I> 
LASI•ES= LDES 
LEG= IEG-Ll 
IBLK= LEG/LBLK + 1 
NNBLK= NBLK + IBLK 
LIEG= LEG - CIBLK-1>*LBLK 
I= I + 1 
LISTEG<I>= NNBLK 
I= I + 1 
LISTEGC I>= LIEG 
CALL EHPDI<IEGrNBLK> 
CALL HOVECNEW•LDESriEG> 
CALL GAUSSCNEWrLDES,IEG> 
INDABLCLDES>= -INDABLCLDES> 

45 CONTINUE 
C ADDRESS OF LAST COEFFICIENT IN EQUATION BUFFER 

LEG= lEG- L1 
IBLK= CLEG-1)/LBLK + 1 
LASTBL= NBLK + IBLK 
NDADD= LEG - CIBLK-1>*LBLK 

44 CONTINUE 
III= I+1 

2 CONTINUE 
LASTP= NDPAR-1 

c--------------------------------------------------------------
c NOW RETRACK AND HODIFY EQUATIONS IN LOWER 
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C PARTITIONS NOT YET HODIFIED 
c-------------------------------------------------------------

IF<LASTP .EQ, 0) GOTO a 
ICYCL= 2 
NEW= 0 
DO 9 NPA=1rLASTP 
NST= LPAL<NPA> + 1 
NEND= LPAL<NPA + 1) 
IF<NEND ,GT. KURPAl NEND=KURPA 
I= LISTEQ(1l*3 + 1 
DO 10 NP=2rNDPAR 
I= I + 1 
NVA= LISTEQ<Il 
IF<NP .GT. NPAl GOTO 99 
I= I + NVA*3 
GOTO 10 

99 CONTINUE 
IF<NVA ,EQ, 0) GOTO 10 
DO 11 N= 1 r NVA 
I= I + 1 
LDES= LISTEG<Il 
I= I + 1 
NNBLK= LISTEG<Il 
I= I + 1 
LIEG= LlSTEQ(Il 
CALL RESBUF<IEGrNBLKrNNBLKrLIEGriCYCLl 
CALL SAVES<LDESriEGriCYCLrJESl 
IF<JES ,EQ, 1l GOTO 11 
CALL SWAPF<NPArNPACrHBWRl 
CALL GAUSS<NEWrLDESriEQl 

11 CONTINUE 
10 CONTINUE 

9 CONTINUE 
a CONTINUE 
1 CONTINUE 

c---------------------------------··--------------------
c WRITE CONTENTS OF EQUATION BUFFER IF NECESSARY 
c------------------------------------------·-----------

IF<NBLK .GE, LASTBLl RETURN 
NBLOKS= LASTBL-NBLK 
CALL BLKIO<IWRITrNF7rNBLK+1rNBLOKSrELPArL1+1l 

c---------------------------------------------------
c CONDENSE AND REORDER SUBSTRUCTURE STIFFNESS HATRIX IF REGUIREI1 
c-------------------------------------------~---------

NELEH= NELEHZ + 1 
READ<NF9'NELEH> <LDEST<Ilri=1rNDIH9l 
IF(KUREL ,EQ, 0) RETURN 
DO 200 NPA= 1rNOPAR 
CALL SWAPF<NPArNPACrHBWRl 
NPAC= 0 
NST= LPAL<NPAl + 1 
NEND= LPAL<NPAt1l 
IF<NEND .GT.KURPAl NEND= KURPA 
L=O 
DO 201 I=lrKUREL 
IDES= LCDEST<Il 
DO 202 K=1ri 
L= L+1 
KDES= LCDEST<Kl 
LDES= HAXO<IDESrKDESl 
HDES= HINO<IDESrKDESl 
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LPA; INDABL<LDES l 
IF<LPA .NE, NPA> GOTO 202 
LL; LADDR<LDES-11 t MDES 
ELPA<L>; ELPA<LLl 

202 CONTINUE 
201 CONTINUE 
200 CONTINUE 

C PRINT SUBSTRUCTURE STIFFNESS 
PRINT 3001r(KrK=1rKURELl 

3001 FORMAT(//' CONDENSED SUBSTRUCTURE STIFFNESS MATRIX:'I/4Xr 20I6l 
LA=1 
LE=1 
DO 203 K=1rKUREL 
PRINT 3000rKr<ELPA<L>• L=LArLE> 
LA= LEtl 
LE= LAtK 

203 CONTINUE 
3000 FORMAT<1Xri3r20F6. 2l 

PRINT 3004rDETrNEG 
3004 FORMAT(// ' LOG10 OF DETERMINANT='rF15 . 4/ 

1 ' NO OF NEGATIVE PIVOTS= ' ri5//) 
RETURN 
END 
SUBROUTINE HOVE<NEWrLDESr i EQl 

c--------------------------------------------------
c 
C TO HOVE EQUATION COEFFICIENTS FROM FRONT PARTITION TO EQUATION 
C BUFFER 
C NEW=1 NEW 'EQUATION 
C NEW=O OLD EQUATION 
c 
C LDES DESTINATION OF VARIABLE TO BE ELIMINATED 
c 
C IEQ CURRENT ADDRESS OF BUFFER PONTER 
c 
c-----------------------------------------------------

coHHON ELPA<1> 
COHHON /PARTL/ NSTrNEND 
COMMON /EQL/ KURPA 
COMMON /PARA/ LOrLl 
IF<NEW .EO. Ol GOTO 

C NEW EQUATION 
L= LADDR(LDES-ll 
H= IEQ 
DO 2 J=lrLDES 
L= Ltl 
H=M+l 
ELPA<H> = ELPA (L l 
ELPA< L> = 0, 

2 CONTINUE 
IF(LDES .EO. NEND> GOTO 7 
N1= LDES t 1 
K= 0 
DO 3 J=N 1, NENII 
K=K t 1 
L= L t LI•ES 
H= H t 1 
ELPA<M> = ELPA<Ll 
ELPA<U= Q, 

L= L t K 
3 CONTINUE 
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7 CONTINUE 
NDEQN= lEO t KURPA 
IF<H ,EQ, NDEQN) GOTO 5 
H1= Ht1 
DO 6 I=H1,NDEQN 
ELPA<I>= O. 

6 CONTINUE 
H= NDEQN 

5 CONTINUE 
ELPA<H t 1> = LDES 
ELPA<H t 2>= KURPA 
RETURN 

C OLD EQUATION 
1 CONTINUE 

L= LDES t LO 
H= lEO t NST - 1 
NREST= NST 
DO 4 J=NST•NEND 
H= Ht1 
ELPA<H>= ELPA<L) 
ELPA<U= o, 
L= L t NREST 
NREST= NREST t 1 

4 CONTINUE 
RETURN 
END 
SUBROUTINE GAUSS<NEW,LDES,IEQ) 

c-----------------·-------------------------------------
c 
C HODIFIES ALL EQUATIONS OF PARTITION NPA 
C <ELIHINATION OF VARIABLE LDES> 
c 
C lEO ADDRESS OF EQUATION BUFFER POINTER 
c 
c-----------------------------------------------------

COMHON ELPA(1) 
COHHON /EIGEN/ DET•NEG 
COHHON /EQL/ KURPA 
COMMON /PARA/ LO•L1 
COHHON /PARTL/ NST,NEND 
NDIAG= IEQ t LDES 
PIVOT= ELPA<NDIAG> 
ELPA<NDIAGl= o, 

C CHECK FOR SINGULARITY AND WORK OUT DETERMINANT 
IF<NEW .EO. Ol GOTO 2 
PIVO= ABS<PIVOT> 
DET= DET t ALOG10(PIVO> 
IF<PIVO .LT. 1.E-20) CALL ERROR<PIVOT,LDES,2> 
IF<PIVOT .GT. 0,) GOTO 2 
NEG= NEG t 1 
CALL ERROR<PIVOT,LDES,1l 

2 CONTINUE 
L= LO 
HI= IEO t NST- 1 
DO 1 I=NSTrNEND 
HI= HI t 1 
CONS= ELPA<HI ) 
IF<CONS ,EQ, Q,) GOTO 3 
CONS= CONS/PIVOT 
H= lEO 

C CALL VECTOR PROCESSOR 
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CALL SVECT<ELPA,CONS•L•M•I> 
GOTO 1 

3 CONTINUE 
L= L + I 
CONTINUE 
ELPA<NDIAG>= PIVOT 

C MOVE BUFFER POINTER TO END OF EQUATION 
lEG= lEG + KURPA + 2 
RETURN 
END 
SUBROUTINE UNCOD<LCDEST,KUREL•LUDEST,INDABL•MAXPA•NDPAR> 

c---------------------------------··----------------------------------c UNCODES DESTINATION VECTOR LCDEST AND 
C UPDATES SPACE INDICATOR INDABL 
c-----------------------------------------·----------------------------

DIMENSION LCDEST<KUREL> 
DIMENSION LUDEST<KUREL> 
COMMON /EQL/ KURPA 
DIMENSION INDABL<MAXPA> 
DO 1 K=1•KUREL 
IRDY= 0 
CALL CODEST(K,NSTRES•LDES,LCDEST,KUREL> 

, IF<LDES ,EQ, Ol GOTO 3 
IF<NSTRES .NE, 0 .AND, NSTRES.NE. 1> GOTO 2 

C VARIABLE LDES CAN BE ELIMINATED 
IRDY= 1 

2 CONTINUE 
NPA= IABS<INDABL<LDES>> 
INDABL<LDES>= NPA 

3 CONTINUE 
IF<IRDY ,EQ, 1) LDES= -LDES 
LUDEST<K>= LilES 

.1 CONTINUE 
CURRENT EQUATION LENGTH 

H= MAXPA 
5 CONTINUE 

IF<INDABL<M> .GT, Ol GOTO 4 
M= M-1 
GOTO 5 

4 CONTINUE 
KURPA= M 
NDPAR= INDABL<KURPA> 
RETURN 
END 
SUBROUTINE PALI<MAXPAR•HAXPA•INDABL,Lf'AL,NDf'ARl 

c----------------------------------------------------------------
c SETS UP PARTITION LIMIT ARRAY LPAL 
C DEPENDING ON SIZE OF FRONT BUFFER LFRBUF 
C AND MAXPA ( MAXIMUM FRONT WIDTH l 
C TOTAL NUMBER OF PARTITIONS REQUIRED: NDPAR 
c----------------------------------------------------------------

DIMENSION INDABL<MAXPA>•LPAL<MAXPAR> 
COMMON /BUFSZE/ NELZ•LFRBUF,LEGBUF 
LPAL< 1 >= 0 
DO 1 NPA=1•MAXPAR 
FAC= 2* LPAL<NPA> t 1 
FAC1= 2*LFRBUF 
LDSPD= SGRT<.25*FAC*FAC + FAC1l - ,5*FAC 
LPAL<NPA + 1>= LPAL<NPA> t LDSPD 
IF<LPAL<NPA t 1> .GE, MAXPA) GOTO 2 
CONTINUE 



CALL ERROR<O.oNPAo41 
2 CONTINUE 

LPAL<NPA+ll= MAXPA 
NDPAR= NPA 
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c----------------------------------------------------------------
c SET UP ARRAY INDABL I CODING: '+'-VE=OCCUPIED;'-'VE=F REE 
c-----------------------------------------------------------·---

no 3 M=1oMAXPA 
DO 4 NPA=loNDPAR 
IF<M .LE. LPAL<NPA+111 GOTO 5 

4 CONTINUE 
5 CONTINUE 

INDABL<MI= -NPA 
3 CONTINUE 

RETURN 
END 
SUBROUTINE ASSEMB<LDESoLUDESToNVoKUREL> 

c---------------------------------------------------------------
c ASSEMBLES EQUATION LDES INTO CURRENT FRONT PARTITION 
c 
c--------------------------------------------------------------

coMMON ELPA<l> 
DIMENSION LUDEST<KUREL> 
LL= LADDR<LDES-11 
DO 1 K=1oKUREL 
II= LUDEST<K> 
IF<II> 2ob3 

2 CONTINUE 
II= -II 

3 CONTINUE 
IF<II ,GT, LDES> GOTO 1 
L= LADST<KoNVl 
LF=LL + II 
ELPA<LF>= ELPA<LF> + ELPA<LI 
CONTINUE 
RETURN 
END 
FUNCTION LADDR<M> 

c-------------------------------------------------------
c COMPUTES THE ADDRESS OF COEFF MrM IN CURRENT PARTITION 
c-----------------------------------------------------

coMMON /PARA/ LOrL1 
COMMON /PARTL/ NSToNEND 
NS= NST -1 
HR= H-NS 
LADDR= MR*NS + HR*<MR+ll / 2+ LO 
RETURN 
END 
FUNCTION LADST<IrJ) 

c------------------------------------------------------
c COMPUTES ADRESS OF COEFF IrJ IN ELEMENT STIFFNESS MATRIX 
c----------------------------------------------------

II= MAXO<IoJ) 
JJ= MINO<IoJ) 
LADST= JJ + II*<II-11/2, 
RETURN 
END 
SUBROUTINE EMPDI<IEQoNBLK> 

c--------------------------------------------------------
c EMPTIES EQUATION BUFFER ONTO DISK WHEN FULL 
c 
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C IEQ BUFFER POINTER 
C NBLK NUMBER OF BLOCKS WRITTEN 
c-------------------------------------------------------

coHHON ELPA<l> 
COMMON /PARA/ LO•L1 
COMMON /EGL/ KURPA 
COMMON /INCORE/ NBLKA•NBLKE 
COMMON /BLOKL/ LBLK 
COMMON /FILES/ NF6,NDIM6,NF7•NDIH7,NF8rNDIMS,NF9•NDIH9 
COMMON /IOCONV/ IREAD,IWRIT 
COMMON /BUFSZE/ NELZ•LFRBUFrLEGBUF,LFRBBL•LEGBBL 

CHECK IF ANOTHER EQUATION FITS 
NDEGN= IEQ + KURPA + 2 - L1 
IF<NDEGN .LT. LEGBUF> RETURN 

C DOES NOT FIT >> WRITE BUFFER ONTO DISK 
NBLOKS= <IEG-L1l/LBLK 
CALL BLKIO(IWRIT,NF7,NBLK + 1•NBLOKS,ELPArL1+11 

C HOVE LAST BLOCK AT THE BEGINNING OF BUFFER IF NOT COMPLETELY FULL 
LEGE= IEQ 
LEG= NBLOKS *LBLK + L1 
IEG= L1 
IF<LEQ .EG. LEGE> GOTO 10 
LEG= LEG + 1 
DO 1 I=LEGrLEQE 
lEG= IEG + 1 
ELPA<IEG>= ELPA<I> 

1 CONTINUE 
10 CONTINUE 

NBLK= NBLK + .NBLOKS 
NBLKA= NBLK + 1 
NBLKE= NBLK + LEGBBL 
RETURN 
END 
SUBROUTINE RESBUF<IEG,NBLK•NNBLK•LIEQ,ICYCL> 

c---------------------------------------------------------------
c RESETS BUFFER POINTER IEG TO LIEG IN BLOCK NNBLK 
C AND SWAPS<ICYCL=1> OR READS<ICYCL=2> BLOCKS IF NECESSARY 
c 
c-----------------------------------------------------------

coHHON ELPA<1> 
COMMON /PARA/ LO,L1 
COMMON /BLOKL/ LBLK 
COMMON /EGL/ KURPA 
COMMON /INCORE/ NBLKA,NBLKE 
COMMON /FILES/ NF6rNDIM6rNF7,NDIH7,NFB,NDIMB,NF9rNDIM9 
COMMON /IOCONV/ IREAD,IWRIT 
COMMON /BUFSZE/ NELZrLFRBUFrLEGBUFrLFRBBL,LEQBBL 
COMMON /ENDGN I LASTBL 

c--------------------------------------------------------------
c IS EQUATION STILL IN CORE ? 
c------------------------------------------------------------

IF<NNBLK ,LT. NBLKA> GOTO 2 
LEG= LIED + KURPA + 2 
LEGB= (LEG-11/LBLK 
NDBLK= NNBLK + LEGB 
IF<NDBLK .LE, NBLKE> GOTO 1 

c--------------------------------------------------------------
c NO SWAP BLOCKS 
c-----------------------------------------------------------·--

2 CONTINUE 
IF<ICYCL ,EQ, 21 GOTO 4 
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NBLKEN= NBLKE 
IF<NBLKEN .LT. LASTBL> GOTO 3 
NBLKEN= LASTBL 

3 CONTINUE 
NBLOKS= NBLKEN-NBLKA t 1 
CALL BLKIO<IWRIT,NF7,NBLKA,NBLOKS,ELPA,L1+1> 

4 CONTINUE 
NBLOKS= LEG£18L 
LIMIILK= LASTIIL - NNBLK + 1 
IF<NIILOKS .GT. LIMBLK> NBLOKS= LIMBLK 
CALL BLKIO<IREAD,NF7,NN£1LK•NBLOKS,ELPA•Llt1> 
NBLKA= NNBLK 
NBLKE= NNBLK + NBLOKS - 1 
NBLK= NBLKA - 1 
lEG= LIED + L1 
RETURN 
CONTINUE 
lEG= <NNBLK - NBLKA>*LBLK + LIED t L1 
RETURN 
END 
SUBROUTINE SWAPF<NPA,NPAC,HBWR> 

c------------------------------------------------------------
c SWAPS FRONT PARTITIONS IN AND OUT OF CORE AS REQUIRED 
c 
C NPA NEW PARTITION 
C NPAC CURRENT PARTITION 
c------------------------------------------------------------

coMHON ELPA<l> 
DIHENSION HBWR<1> 
COMMON /PARA/ LO•L1•L2 
COMMON /FILES/ NF6,NDIM6,NF7•NDIM7,NFS,NDIMB,NF9•NDIH9 
COMMON /IOCONV/ IREAD•IWRIT 
COMMON /IILOKL/ LBLK 
IF<NPA ,EQ, NPAC> RETURN 
NBLKSB= NDIMS/LIILK 
IF<NPAC .EG, 0) GOTO 1 
NFROM= <NPAC-1>*NIILKSB + 1 
CALL BLKIO<IWRIT,NFB•NFROH,NBLKSB,ELPA,LO+l> 
HBWR<NPAC)= 1 
CONTINUE 
IF<NPA ,EQ, O> RETURN 
NFROM= <NPA-1>*NBLKS8 + 1 
IF<HIIWR<NPA> .EG, 1) CALL IILKIO<IREAD,NFB,NFROM,NIILKSS,ELPA• 
IF<HBWR<NPA) ,EQ, O> CALL CLEAR<ELPA,L0+1•L1> LOti) 
NPAC= NPA 
RETURN 
END 
SUBROUTINE CODEST(K,NSTRES•LDES•LCDEST,KUREL> 

c----------------------------------------------------------------
c INTERPRETS CODED ELEMENT DESTINATIONS 
c----------------------------------------------------------------

DIMENSION LCDEST<KUREL> 
LDES= LCDEST<K> 
DO 2 NSTRES= 1•32000 
IF<LDES .LT. 1000) GOTO 4 
LDES= LDES - 1000 

2 CONTINUE 
4 CONTINUE 

NSTRES= NSTRES - 2 
RETURN 
END 
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SUBROUTINE CLEAR<ARRAY,NST,NEN> 
DIMENSION ARRAY<NEN> 
DO 1 N=NST,NEN 
ARRAY<N>= o. 
CONTINUE 
RETURN 
END 
SUBROUTINE ICLAR<IARR,NEN> 
DIMENSION IARR<NEN> 
DO 1 N=1•NEN 
IARR<N>= 0 
CONTINUE 
RETURN 
END 
SUBROUTINE ERROR<F•I•N> 
GOTO <1•2•3> •N 
CONTINUE 
PRINT 2000,F.I 

2000 FORMAT(/' ***NEGATIVE PIVOT <'•E15.5,') AT DESTINATION',I5> 
RETURN 

2 CONTINUE 
PRINT 2001•F•I 

2001 FORMAT(//' SINGULARITY CHECKl'/ 
1 'NEAR ZERO OR ZERO PIVOT <'•E15.5,') AT DESTINATION',I5> 

STOP 
3 CONTINUE 

PRINT 2002•I 
2002 FORMAT(//' ***DIMENSION OF ELPA (',I5•'> TOO SMALL') 

STOP 
4 CONTINUE 

PRINT 2003.! 
2003 FORMAT(//' ***MAXIMUM NUMBER OF PARTITIONS (',!5,') ECCEEDED'l 

STOP 
RETURN 
END 
SUBROUTINE SAVES<LDEStiEQ,ICYCL,JESl 

c------------~-------------------------------------------------
c TO SAVE ON COMPUTATION AND SWAPPING TIME 
C FOR ZERO COEFFICIENTS 
c----------------------------------------------------------

coMMON ELPA<1> 
COMMON /PARTL/ NST,NEND 
COMMON /PARA/ LOtLloL2 
IF<ICYCL ,EQ, 2> GOTO 1 
L= LDES + LO 
NREST= NST 
DO 2 J=NST•NEND 
IF<ELPA<L> .NE. 0,) GOTO 3 
L= L + NREST 
NREST=NREST + 1 

2 CONTINUE 
JES=1 
RETURN 

3 CONTINUE 
JES= 0 
RETURN 

1 CONTINUE 
HI= IEQ + NST-1 
DO 4 I= NST,NEND 
HI= MI+l 
IF<ELPA<Mll .NE. O. l GOTO 5 



4 

5 

CONTINUE 
JES:o 1 
RETURN 
CONTINUE 
JES=O 
RETURN 
END 
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SUBROUTINE SVECT<VECTORrCONSrllrl2rN) 
c-----------------------------------··------------------------
c FAST VECTOR PROCESSING ROUTINE TO PERFORM 
c 
c 
c 
c 
c 
c 
c 
c 
c 

VECTOR<Il>= VECTOR<Il) - VECTOR(I2l*CONS 

VECTOR 
CONS 
11 
12 
N 

VECTOR 
SCALAR 

START ADitRESS 
START ADitRESS 2 

NUMBER OF OPERATIONS 

C MACHINE DEPENDENT CODING SHOULD BE USED IN ACTUAL IMPLEMENTATION 
C ON A GIVEN MACHINE. 
C CODING SHOWN IS STANDARD FORTRAN 
c-------------------------------------------------------------------

DIMENSION VECTOR<l> 
DO 2 J=lrN 
Il" 11+1 
I2= I2+1 
VECTOR<Il>" VECTOR<Il> - VECTOR<I2>*CONS 

2 CONTINUE 
RETURN 
END 
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SUBROUTINE BLKIO<IRWrLUNrNBLArNBLOKSrBUFFERriADDl 
c-------------------------------------------------------------------
c SUBROUTINE TO READ/WRITE DIRECTLY INTO BUFFER 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

IRW 

LUN 
NBLA 
NBLOKS 
BUFFER 
IADD 

SWITCH FOR READ/WRITE 
IRW=1 READ 
IRW=2 WRITE 

LOGICAL UNIT NUMBER 
FIRST BLOCK 

NUMBER OF BLOCKS TO BE READ/WRITTEN 
BUFFER 

START ADDRES IN BUFFER 

c-----------------------------------------------------------------

c 

coMMON /10/ IPAR<6lrlSTAT<2> 
COMMON /BLOKL/ LBLK 
DIMENSION BUFFER<ll 

INSERT MACHINE DEPENDENT CODING HERE 
RETURN 
END 
SUBROUTINE F I LO 

c----------------------------------------------- ---------~-
c SUBROUTINE TO ASSIGN CHANNEL NUMBERS 
C AND OPEN DIRECT ACCESS AND BLOCKED FILES 
c 
c 
c 
c 
c 
c 
c 

CHANNELt 
NF6 
NF9 
NF7 
NFB 

SIZE 
NELZ 

D.o.F. ·+ 2 
LBLK 
LBLK 

CONTENTS 
ELEMENT STIFFNESS 
ELEMENT DESTINATIONS 
BLOCKED EQUATIONS 
BLOCKED PARTITIONS 

c---------------------------------------------------------

c 

coMMON /FILES/ NF6rNDIM6rNF7rNDIH7rNFBrNDIMSrNF9rNDIM9 
COMMON /BUFSZE/ NELZrLFRBUFrLEQBUF 
COMMON /IOCONV/ IREADriWRIT 
COMMON /BLOKL/ LBLK 
IREAD= 1 
IWRIT= 2 

INSERT MACHINE DEPENDENT CODING HERE 
RETURN 
END 
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APPENDIX C TEST PROGRAM 

In the following a test program is listed which can be used to 

test the subroutines PREFR and SFRONT. The example is a substructure 

condensation for a regular patch of square 4 node/8 d.o.F. Elements. The 

stiffness matrix of the Elements is read in and all the nodes except the 

4 corner nodes of the super element are condensed out. Results can be 

obtained for different mesh and buffer sizes 

NROWS 

NCOLS 

[] substructure nodes 

o element nodes 
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c-------------------------------------------------------
c PROGRAM TO TEST OUT SUBROUTINE SFRONT 
c--------------------------------------------------------

1000 

1001 

1 

2 

3000 

3001 
1 

3002 
1 
1 

3003 
1 

3004 

200 
3005 

coMMON ELPAC5000>rMAXPArNELEHZrLDESTC62> 
COMMON /BUFSZE/ NELZrLFRBUFrLEQBUFrLFRBBLrLEQBBL 
COMMON /MESH/ NROWSrNCOLSrNODES 
COMMON /BLOKL/ LBLK 
COMMON /FILES/ NF6rNDIM6rNF7rNDIM7rNF8rNDIM8rNF9rNDIM9 
NCR= 7 
CALL ASSIGNCNCRr'INPUT') 
NELZ= 36 
READCNCRr1000> NROWSrNCOLS 
FORMATC16I5> 
NELEMZ= NROWS*NCOLS 
NODES= CNCOLS+l>*<NROWS+l> 
NDOFS= NODES*2 
READ<NCRr1000) LFRBUFrLEQBUFrLBLK 
CALL FILO 
READ<NCRr1000> ISTIF 
IFCISTIF .NE. 1> GOTO 1 
READCNCRrlOOl) <ELPA<N>rN=1rNELZ> 
FORMAT<8F10.0) 
WRITE <NF6'1) <ELPA<I>ri=1rNELZ> 
GOTO 2 
CONTINUE 
READ<NF6'1) <ELPACI)ri=1rNELZ) 
CONTINUE 
PRINT 3000 
FORMATC1H1//' *** SUBSTRUCTURE CONDENSATION EXAMPLE ***'> 
PRINT 3001rNROWSrNCOLS 
FORMAT(//' NUMBER OF ELEMENT ROWS='riS/ 

' NUMBER OF ELEMENT COLUMNS='riS> 
PRINT 3002rNELEMZrNODESrNDOFS 
FORMAT<' NUMBER OF ELEMENTS='riS/ 

'NUMBER OF NODES ='riS/ 
' NUMBER OF D.O.F, ='riS> 

PRINT 3003rLFRBUFrLEGBUF 
FORMAT<' SIZE OF FRONT BUFFER ='riS/ 

' SIZE OF EQUATION BUFFER='riS> 
PRINT 3004rCKrK=1r8) 
FORMAT(//' ELEMENT STIFFNESS MATRIXl'//4Xr2016) 
LA= 1 
LE= 1 
DO 200 K=1r8 
PRINT 3005rKrCELPA<L>rL=LArLE> 
LA=LE+1 
LE= LA+K 
CONTINUE 
FORMATC1Xrl3r20F6.2> 
CALL PREFR 
CALL SFRONT 
STOP 
END 
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SUBROUTINE GETELN<NELEM•KUREL•LVABL> 
c---------------------------------------------------------c THIS IS A DUMMY SUBROUTINE FOR TESTING SFRONT 
C IT CREATES CONNECTIVITY DATA FOR A REGULAR 
C ASSEMBLY OF 4 NODE/8 D.O.F. ELEMENTS 
c 
c 
c 
c 
c 

NROWS 
NCOLS 
NODES 

NUMBER OF ELEHENT ROWS 
NUMBER OF ELEMENT COLUMNS 
NUMBER OF NODES 

c------------------------------~-------------------------

1 

DIMENSION LVABL<8> 
COMMON /MESH/ NROWS,NCOLS•NODES 
KUREL= 8 
NROW= <NELEM-1l/NCOLS t 1 
NCOL= NELEM - NCOLS*<NROW-1> 
NCOL1= NCOLS t 1 
LVABL<1>= NCOL t 
LVABL<2>= NCOL t 
LVABL<J>= NCOL t 
LVABL<4>= NCOL + 
DO 1 N=:S•8 

< NROW-1 > *NCOLl 
1 t <NROW-1l*NCOL1 
1 + NROW*NCOLl 
NROW*NCOLl 

LVABL<N>= LVABL<N-4> t NODES 
CONTINUE 
RETURN 
END 
SUBROUTINE GETSUN<KUREL•LVABL> 

c-----------------------------------------------------c THIS IS A DUMMY SUBROUTINE TO TEST THE SUBSTRUCTURING 
C CAPABILITIES OF SFRONT, 
C IT CREATES CONNECTIVITY DATA FOR A 
C 4 NODE/8 D.O.F, SUPERELEMENT 
c 
c-----------------------------------------------------

DIHENSION LVABL<B> 
COMMON /MESH/ NROWS,NCOLS,NODES 
KUREL= B 
NCOL1= NCOLS t 1 
LVABL<l>= 1 
LVABL<2>= NCOL1 
LVABL<J>= NODES 
LVABL<4>= NCOLl*NROWS + 1 
DO 1 N=:S•B 
LVABL<N>= LVABL<N-4) + NODES 
CONTINUE 
RETURN 
END 
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*** SUBSTRUCTURE CONDENSATION EXAMPLE *** 

NUMBER OF ELEMENT ROWS= 2 
NUMBER OF ELEMENT COLUMNS= 10 
NUMBER OF ELEMENTS= 20 
NUMBER OF NODES 33 
NUMBER OF D.O.F. 66 
SIZE OF FRONT BUFFER 512 
SIZE Oi= EQUATION BUFFER= 256 

ELEMENT STIFFNESS MATRIX: 

1 2 3 4 5 6 7 8 
1 5.00 
2 -2.50 5.00 
3 -2.50 o.oo 5.00 
4 o.oo - 2.50 -2.50 5.00 
5 1. 25 1.25 -1.25 -1.25 5.00 
6 - 1.25 -1.25 1.25 1. 25 o.oo 5.00 
7 -1.25 -1.25 1.25 1.25 -2.50 ~2.50 5.00 
8 1.25 1.25 -1.25 -1.25 - 2.50 -2.50 o.oo 5.00 

MAXIMUM FRONT l!IIDTH= 30 
MAX, NO. OF PARTITIONS= 1 

CONDENSED SUBSTRUCTURE STIFFNESS MATRIX: 

2 3 4 5 6 7 8 
1 1.12 
2 -0.08 1.12 
3 -0.74 -0.29 1.12 
4 -0.29 -0.74 -o.o8 1.12 
5 0.21 -0.01 -0.21 0.01 2.05 
6 0.01 -0.21 - 0.01 0.21 0.01 2.05 
7 -0.21 0.01 0.21 -0.01 -0.05 -2.01 2.05 
8 -0.01 0.21 0.01 -0.21 -2.01 -0.05 0.01 2.os 

LOG10 OF DETERMINANT= 55.9191 
NO OF NEGATIVE PIVOTS= 0 
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*** SUBSTRUCTURE CONDENSATION EXAMPLE *** 
NUMBER OF ELEMENT ROWS= 2 
NUMBER OF ELEMENT COLUMNS= 10 
NUMBER OF ELEMENTS= 20 
NUMBER OF NODES 33 
NUMBER OF D.O.F. 66 
SIZE OF FRONT BUFFER 256 
SIZE OF EQUATION BUFFER= 256 

ELEMENT STIFFNESS MATRIX: 

1 2 3 4 5 
1 5.00 
2 -2.50 5.00 
3 -2.50 o.oo 5.00 
4 o.oo -2.50 -2.50 5.00 
5 1.25 1.25 -1.25 -1.25 5.00 
6 -1.25 -1.25 1.25 1.25 o.oo 
7 -1.25 -1.25 1.25 1.25 -2.50 
8 1.25 1.25 -1.25 -1.25 -2.50 

MAXIMUM FRONT WIDTH= 30 
MAX. NO. OF PARTITIONS= 2 

CONDENSED SUBSTRUCTURE STIFFNESS 

1 2 3 4 5 
1 1.12 
2 -0.08 1.12 
3 -0.74 -0.29 1.12 
4 -0.29 -0.74 -0.08 1.12 
5 0.21 -0.01 -0.21 0.01 2.05 
6 0.01 -0 •. 21 -0.01 0.21 0.01 
7 -0.21 0.01 0.21 -0.01 - 0.05 
8 -0.01 0.21 0.01 -0.21 -2.01 

6 

5.00 
-2.50 
-2.50 

MATRIX: 

6 

2.05 
-2.01 
-o.o5 

LOG10 OF DETERMINANT= 55.9191 
NO OF NEGATIVE PIVOTS= 0 

7 8 

s.oo 
o.oo s.oo 

7 8 

2.05 
0.01 2.05 
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NOMENCLATURE 

Equation coefficient 

Address of coefficien t in long vector ELPA 

Start address i n ELPA of space r eser ved for the Front matrix 

Front width 

Number of Equations in partition N 

"destination" of first equation in partition N 

Size of s torage space for the Front matrix 

Coefficient indexes 

Coefficient on right hand side 

Variable 

Residual 

Structure stiffness coefficient 

er ·ror on· Solution for x. 
J 
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CIVIL ENGINEERING RESEARCH REPORTS 
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Flood Frequency Analysis: Logis tic Method 
for Incorporating Probable Maximum Flood 

Adjust ment of Phreatic Line in Seepage 
Analysis by Finite Element Met hod 

Creep Buckling of Reinforced Concrete 
Columns 

Buckling Properties of Monosymmetric 
I-Beams 

El asto-Plastic Anal ysis of Cable Net 
Structur es 

A Critical State Soil Model for Cyclic 
Loading 

Resistance to Flow in I rregular Channels 

An Appraisal of the Ontario Equival ent 
Base Length 

Shape Effects on Resistance to Flow in 
Smooth Rectangular Channels 

The Analysis of Thermal Stress I nvolving 
Non- Linear Material Behaviour 

Buckl ing Approximations for La t er all y 
Cont i nuous Elastic !-Beams 

A Second Generation Frontal Solution 
Program 

Combined Stiffness for Beam and Column 
Braces 

Beaches:- Profiles, Pr ocesses and 
Permeability 

Author(s ) 

BRADY, D.K. 

ISAACS, L.T. 

BEHAN , J.E. & 
O'CONNOR, C. 

KITIPORNCHAI , S. 
& TRAHAIR, N.S. 

MEEK, J .L. & 
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KITIPORNCHAI, S. 
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1979 

December, 
1979 
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February, 
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April, 
1980 

April, 
1980 

May , 
1980 

May, 
1980 

June, 
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CURRENT CIVIL ENGINEERING BULLETINS 

4 Brittle Fracture of Steel -- Perform­
ance of ND 18 and SAA A 1 structural 
steels: C. O 'Connor (1964) 

5 Buckling in Steel Structures- 1. The 
use of a characteristic imperfect shape 
and its application to the buckling of 

an isolated column: C. O'Connor 
(1965) 

6 Buckling in Steel Structures - 2. The 

use of a characteristic imperfect shape 
in the design of determinate plane 

trusses against buckling in their plane: 
C. O'Connor (1965) 

7 Wave Generated Currents - Some 

observations made in fixed · bed hy­

draulic models: M.R. Gourlay (1965) 

8 Brittle Fracture of Steel - 2. Theoret­

ical stress distributions in a partially 
yielded, non-uniform, polycrystalline 
material: C. O 'Connor (1966) 

9 Analysis by Computer -- Programm es 
for frame and grid structures: J.L. 
Meek (1967) 

10 Force Analysis of Fixed Support Rigid 
Frames: J.L. Meek and R. Owen 
(1968) 

11 Analysis by Computer - - Axisy­
metric solution of elasto-plastic pro­
blems by finite element methods: 
J.L. Meek and G. Carey (1969) 

12 Ground Water Hydrology: J .R. Watkins 
(1969) 

13 Land use prediction in transportation 
planning: S. Golding and K.B. David­
son (1969) 

14 Finite Element Methods Two 
dimensional seepage with a free sur­
face: L. T. Isaacs (1971) 

15 Transportation Gravity Models: A. T.C. 
Philbrick (1971) 

16 Wave Climate at Moffat Beach: M .R. 
Gourlay (1973) 

17 Quantitative Evaluation of Traffic 
Assignment Methods: C. Lucas and 
K.B. Davidson (1974) 

18 Planning and Evaluation of a High 
Speed Brisbane-Gold Coast Rail Link: 
K .B. Davidson, eta/. (1974 ) 

19 Brisbane Airport Development Flood­
way Studies: C.J. Apelt (1977) 

20 Numbers of Engineering Graduates in 
Queensland: C. O 'Connor (1977) 




