UNIVERSITY
 OF QUEENSLAND

Department of Civil Engineering

 RESEARCH REPORT SERIES
A Second Generation Frontal Solution Program

FRY,

TA
1
G. BEER
. U4956
NO. 12
2
Research Report No. CE12
May, 1980.
200. 12

2

Fryer

CIVIL ENGINEERING RESEARCH REPORTS

This report is one of a continuing series of Research Reports published by the Department of Civil Engineering at the University of Queensland. This Department also publishes a continuing series of Bulletins. Lists of recently published titles in both of these series are provided inside the back cover of this report. Requests for copies of any of these documents should be addressed to the Departmental Secretary.

The interpretations and opinions expressed herein are solely those of the authors). Considerable care has been taken to ensure the accuracy of the material presented. Nevertheless, responsibility for the use of this material rests with the user.

Department of Civil Engineering, University of Queensland, St Lucia, Q 4067, Australia,
 [Tel:(07) 377-3342, Telex:UNIVQLD AA40315]

A SECOND GENERATION FRONTAL SOLUTION PROGRAM

by

G. Beer, Dip Ing Austria, MSc Lehigh, PhD, MIE Aust. Senior Research Assistant

RESEARCH REPORT NO. CE 12
Department of Civil Engineering
University of Queensland
May, 1980

Synopsis

A computer program for the assembly and solution of symmetric positive definite equations as met in the Finite Element analysis based on the Frontal Solution algorithm by Irons is presented.

The program features improved direct access blocked I/O and the use of Front partitioning which makes the problem size which can be solved practically independent of the size of the computer memory. In addition the use of fast vector processors is considered which should improve CPU times considerably.

CONTENTS

Page

1. INTRODUCTION AND MOTIVATION 1
2. STORAGE AND BUFFERING DURING ELIMINATION 3
3. PROGRAM STRATEGY 4
4. I/O OPERATIONS DURING ELIMINATION 5
5. OPTIMISATION OF I/O OPERATIONS AND CHOICE OF 7 FRONT PARTITION AND EQUATION BUFFER LENGTH
6. SHORT DESCRIPTION OF COMPUTER PROGRAM 8
7. SUBSTRUCTURING WITH THE FRONTAL SOLUTION 9
8. RE-SOLUTION 10
9. FURTHER FACILITIES OF THE COMPUTER PROGRAM AND 11 DISCARDED FACILITIES
9.1 Treatment of Constraints 11
9.2 Computation of the determinant 12
9.3 Check on Singularity and Indefiniteness 12
9.4 Check on accuracy of solution 13
10. CONCLUSIONS 13
APPENDIX A. LIST OF IMPORTANT ARRAYS AND VARIABLES
APPENDIX B. LISTING OF THE COMPUTER PROGRAM 17
APPENDIX C. TEST PROGRAM 18
APPENDIX D. NOMENCLATURE 38
APPENDIX E. REFERENCES 39
11.

INTRODUCTION

The Frontal Solution technique is based on the Gaussian Elimination method and was first published in 1970 by Irons (1).

Various authors $(2,3,4,5)$ have since pointed out various advantages of this technique. The main advantage over band or skyline (6) solvers seems to be a simplification in the data preparation as the nubmering of nodes is not restricted to minimise a band width. Also, since the node numbers are treated as "Nicknames", design changes (i.e. adding or removing elements) may be made without having to renumber the nodes. Solution time for the Frontal solver is now sensitive to the numbering of the Elements but the sequence is a natural one. The famous example of a ring structure is often mentioned in this context (1).

The main difference between the Frontal technique and a conventional band solution lies in the manner in which the structure stiffness coefficients are stored and in the order in which the equations are eliminated.

Consider, for example, a patch of 4 node/8 D.O.F. elements. in Fig. 1 in which the degrees of freedom are numbered from 1 to 18 .

The stiffness coefficients of Element I are stored in the order of appearance (local node numbering) and in the manner shown in Fig. la. Each variable has a "Destination" which determines the position of its coefficients in the front matrix. An asterisk, *, marks the equations which are already fully summed. These variable(s) can now be eliminated before the next element is assembled by treating the other equations with:

$$
\begin{equation*}
c_{i, j}^{\prime}=c_{i, j}-c_{n, j}^{*} \frac{c_{n, i}^{*}}{c_{n, n}^{*}} \tag{1}
\end{equation*}
$$

Where n is the destination of the variable to be eliminated and the * denotes the coefficients which are fully summed. The reader should note that it does not matter that the coefficients $c_{i, j}$ are not in their final form since only the order in which the coefficients are added is changed.

After elimination, variables 1 and 10 cease to be "active" and the corresponding equations are transferred into buffer storage ready for output on disk. The storage locations of these equations in the Front matrix are cleared (Fig. lb). On assembly of element $I I$ this space is re-used by Equation 3 and 6 (Fig. lc). The Front matrix thus contains only the coefficients of "active" variables.

With the principle involved explained the reader may complete the example making the following observations:
(1) Assembly and elimination order is governed by the order in which the variable coefficients are entered as one Element is assembled after the other. A variable is eliminated as soon as the coefficients are fully summed (i.e. on its last appearance). The position of the coefficients in the Front matrix is governed by the empty spaces available.
(2) The storage requirement for storing the "active" coefficients is determined by the largest address used. Because of symmetry only one half of the Front matrix has to be stored and the storage requirement may be computed from

$$
\begin{equation*}
\ell=m(m+1) / 2 \tag{2}
\end{equation*}
$$

Here m is the largest "Destination" of a variable (Front width).

In the original code Irons assumes that the Front matrix resides in central storage (Comment on the program listing: "if not, buy larger computer").

It can be seen that the storage requirement increases with the square of the Front width. This puts a severe limitation on the size of problems which can be solved on a special computer.

The purpose of this paper is to present a program where this limitation has been over-come making it possible to solve large 3-D problems on a mini computer. In addition, the
transfer of data to and from disk is improved by using a blocked direct access I/O mode.

The inner-most DO-loop of the Gauss elimination is written suitable for fast vector processors which have appeared on the market in recent years.

The resulting program should not only be an improvement in solution capability but also in performance.
2. Storage and buffering during elimination

Similar to the original code by Irons, a working vector ELPA is used. ELPA is divided into 3 main areas which contain: (1) Element stiffness matrix of the Element to be assembled; (2) Front matrix or a partition of the front matrix; (3) Buffer for the equations which have ceased to be "active".

Allocation of the space for these areas is completely flexible and will depend on the type of problem solved. Whereas the space of first area is fixed by the size of the element stiffness matrix, the space allocation for areas 2 and 3 must be adjusted to give optimal solution times within the core limitations of the computer used. This will be discussed in detail later.

The number of equation coefficients in the Front matrix for a particular Front width is computed from Equation 2 and if it is greater than the space available, the partitioning algorithm has to be activated.

The number of Equations Δl_{N} which fit into a particular N can be computed from the inequality

$$
\begin{equation*}
\Delta l_{N}\left(\Delta \ell_{N}+1\right) / 2+\left(k_{N}-1\right)^{*} \Delta l_{N}<n_{p} \tag{3}
\end{equation*}
$$

Here k_{N} is the destination of the first equation in partition N and n_{p} is the size of the storage space for the Front matrix. Solution of Equation 3 gives

$$
\begin{equation*}
\Delta \ell_{N}=\operatorname{INT}\left[-\frac{2{k_{N}}_{N}-1}{2}+\sqrt{\left(\frac{2 \mathrm{k}_{\mathrm{N}}-1}{2}\right)^{2}+2 n_{\mathrm{p}}}\right) \tag{4}
\end{equation*}
$$

Where INT means the truncation of the result. This allows us to determine the limits of each partition i.e. partition N can accommodate Equation k_{N} to $\mathrm{k}_{\mathrm{N}+\mathrm{I}}$.

$$
\text { For a coefficient } k, i(k<i) \text { residing in partition } N \text {, }
$$ where

$$
\begin{equation*}
\mathrm{k}_{\mathrm{N}}<\mathrm{k}<\mathrm{k}_{\mathrm{N}+1} \tag{5}
\end{equation*}
$$

the address, ℓ, is computed from (see Fig. 2),

$$
\begin{equation*}
\ell=\ell_{0}+\left(k-k_{N}\right)\left(k_{N}-l\right)+\left(k-k_{N}\right)\left(k-k_{N}+l\right) / 2+i \tag{6}
\end{equation*}
$$

Here l_{0} specifies the start address of the space reserved for the Front matrix.

3. PROGRAMMING STRATEGY

As long as the Front matrix is small and fits into core the program strategy is simple and follows three basic steps for each element:
(1) Read element stiffness matrix
(2) Assemble its coefficients into Front matrix
(3) Eliminate variables which are ready

The elimination essentially consists of two steps. First, the equation coefficients of the variable which is to be eliminated (n) are moved to the equation buffer. When the buffer is full its contents are written on disk and the pointer reset to the beginning of the buffer before the coefficients are moved (It should be noted at this stage that all the coefficients to the right of the minus sign in Equation 1 are now in the buffer). Then all the equations in the Front matrix are modified by Equation 1.

When the current Front matrix becomes large and no longer fits in the allocated space, partitioning is invoked automatically. The program strategy becomes more complex and follows the following basic steps:
(1) Read Element stiffness matrix.
(2) Swap Partition 1 into core and assemble all coefficients which are resident in this partition.
(3) Eliminate variables which are ready in this partition (if any).
(4) Swap Partition 2 into core and assemble further coefficients.
(5) Modify all coefficients for the variables eliminated previsouly (if any) using the coefficients $c_{n \ell}^{*}$ in the Equation buffer. This is referred to as elimination of 'old variables' in the listing.
(6) Eliminate variables which are ready in this partition ('new variables').

Steps 4, 5 and 6 are repeated for all subsequent partitions to the last one. Note that at step 3 not all the coefficients $c_{n \ell}^{*}$ of the equation n are available and the equation in the buffer is still incomplete. Thus, additional coefficients have to be transferred in step 5.

Our work is not completed yet since some lower partitions have not been modified due to elimination of variables in higher partitions. So we have to retrack and modify the Equations which have not yet been modified using the coefficients $c_{n \ell}^{*}$ in the equation buffer.

4. I/O OPERATIONS DURING ELIMINATION

When the Front matrix is small and fits into the allocated space, the I / O operations are simple:
(1) Read the assembly information for each element (The 'destination vector' is coded to indicate when each variable is ready for elimination).
(2) Read Element stiffness matrix.
(3) Whenever the equation buffer is full, i.e. no further equation fits, write its contents onto disk.

In the present program, the standard Fortran READ is used for operations 1 and 2. For large amounts of data the speed of the I/O operation depends greatly on the transfer mode. It has been found by the author that on a Data General Eclipse minicomputer, the data transfer is 10 times faster when the machine dependent routines RDBLK nad WRBLK are used. The prerequisite for using these routines is that the number of coefficients to be transferred is divisible by the physical block size on disk (128 real numbers in this case). Since operation 3 may involve a large number of coefficients, a blocked I/O mode is used. The equation buffer is divided into a number of blocks and the space allocated for it should be a multiple of the block size. When the buffer is full it may, however, not always fill the last block completely. To avoid empty spaces on disk the last block is not written in this case, but the coefficients are rather transferred to core to the beginning of the buffer with new coefficients moved into the subsequent spaces.

In this context it should be noted that in core transfers are typically a factor of 10^{3} faster than out-of-core transfers (i.e. transfers to and from disk).

When the Front matrix becomes too large and no longer fits into core, I/O operations become more complex and frequent. The Front matrix has to be swapped in and out of core as required. Blocked I/O transfer now becomes essential and the programming critical since a program slowed down by too many I/O operations may no longer be competitive.

The aim is to reduce the I / O operations to a bare minimum even if this means that more in core operations are necessary to do this (see above statement about I/O transfer speeds).

The number of swapping operations on the partitions can be determined from the basic steps delineated in the last chapter and depends on the location of variables which are to be eliminated. In the worst case, we need ($2 \mathrm{~N}-\mathrm{l}$) swaps where N is the number of partitions currently used. This number is critical for the performance of the program as partitions usually involve a large number of coefficients. Ways to optimise the number of I / O operations are discussed in the next chapter.

A further complication arises which could endanger the economy of the program. For the basic step 5, (elimination of 'old variables') the coefficients $c_{n \ell}^{*}$ which are thought to reside in the equation buffer are needed. But in the meantime, I/O operation 3 (transfer of equation buffer on to disk when full) may have been carried out and the required coefficients may no longer be in core. Thus we must keep track of which coefficients are in core and which are on disk. If the coefficients are no longer in core they must be swapped into core and this requires additional I/O operations, the number of which depends greatly on the size of the equation buffer. If the buffer is very large then swapping of the equation buffer may occur only rarely.

5. OPTIMISATION OF I/O OPERATIONS AND CHOICE OF FRONT PARTITION AND EQUATION BUFFER LENGTH

When selecting the size of the buffer for the Front matrix, we must aim to avoid partitioning since it is expensive. If no partitioning is involved the equation buffer may be made small to accommodate a big Front matrix, the only restriction being that, the buffer has to be at least 2 blocks long and accommodate the largest equation. On the other hand, when partitioning of the Front is unavoidable because of core restrictions or size of problem, there is a case for decreasing the partition size in favour of a large equation buffer for the reasons explained in the last chapter.

To reduce the number of I / O operations further, a number of situations where swapping is not required is examined. Swapping of partitions is not required when:
(A) There are no coefficients to be assembled into the partition, and no variables have been eliminated yet in the current element loop.
(B) There are no coefficients to be assembled and the coefficients $c_{n \ell}^{*}\left(k_{N}<\ell>k_{N+1}\right)$ are zero.
(C) Swapping of the equation buffer is not required when the coefficients $c_{n \ell}^{*}\left(k_{N}<\ell>k_{N+1}\right)$ in the Front partition are zero.

A check on conditions C and B is made by Subroutine SAVES in the program.
6. SHORT DESCRIPTION OF COMPUTER PROGRAM

The program consists of two main subroutines PREFR and SFRONT. The subroutine PREFR works out the coded destinations of the variables and writes them onto disk. This program is essentially the same as published by Irons and is included for completeness. Subroutine SFRONT performs the assembly and reduction of the structure or substructure stiffness matrix as detailed in the last chapters.

It uses the following subroutines:

MOVE to move equation coefficients to buffer.
GAUSS ... to modify the coefficients in the Front matrix with Eq. (1).
ASSEMB ... to assemble stiffness coefficients into the Front matrix.
EMPDI to empty equation buffer on disk when full.
RESBUF ... to reset buffer pointer.
SWAPF to swap Front partitions in and out of core.
SAVES to save swaping (see last chapter).
UNCOD to uncode coded destinations (uses CODEST)
PALI to work out partition limits $\left(k_{N}, K_{N+1}\right)$.

In addition the following functions are used:

LADDR (M) is the local address in the current Front partition of a coefficient M, M.
LADST(I,J) .. is the local address of a coefficient i,j in the Element stiffness matrix.

Subroutines are also used to clear integer and real arrays and write error messages.

The blocked I/O operations are performed by subroutine BLKIO which has a machine dependent coding. Files are opened and channel numbers assigned by FILO which is also machine dependent.

The fast vector operations are performed by subroutine SVECT. When a computer with vector processor is used, the appropriate coding as given in the Users Manual of the machine should be inserted here. For use on machines without this capability the standard Fortran coding may be used as shown.

The computer program is listed in Appendix B. A list of some important arrays and variables is given in Appendix A. In addition, a program is included to test and demonstrate the substructure capability of the sub-routine SFRONT in Appendix C.
7. SUBSTRUCTURING WITH THE FRONTAL SOLUTION

For very large structures, it is often desirable to divide the mesh into several smaller meshes or substructures. These are treated as large elements and the boundary stiffness matrix obtained by elimination of the 'internal' degrees of freedom.

The substructuring has the following main advantages:
(1) The process of solving the structure is a continuous one and errors may be detected at substructure level. Remedial actions need only to be taken in the particular substructure involved.
(2) Sometimes a structure consists of many subareas having a similar geometry. Thus the stiffness matrix of a particular type of substructure may be computed only once and the main structure assembled with as frequent re-use of the substructure stiffness as possible.
(3) For excavation type of problems in rock or soil mechanics the substructuring technique offers additional advantages. By defining the rock or soil mass in the full excavation as one large substructure and the material to be excavated at each stage as smaller substructures the analysis of each excavation stage just requires the assembly of substructure stiffnesses and the solution for the substructure boundary degrees of freedom.

Substructuring with the Front Solution is relatively simple. All that has to be done is to suspend the elimination of selected variables at the boundary of the substructure. The coefficients which remain in the Front matrix after the elimination of all other variables then constitute the stiffness coefficients for the super element. After suitable reordering, the stiffness matrices of all super elements can be obtained and assembled in the usual manner to solve for the complete structure.

Thus, substructuring involves the basic steps.
(I) The PREFRONT subroutine read the substructure "Nicknames" into the vector NIX. This will modify the coding of the destinations of the substructure variables in such a way as to prevent their elimination.
(2) Perform the usual assembly and elimination for all elements which make up the substructure.
(3) Remove zero rows and columns from the Front matrix and reorder to obtain the substructure stiffness matrix in condensed form.

After this has been done for all substructures, perform the assembly and elimination in the usual way but this time involving all substructures which make up the structure to be analysed.

The substructuring capability is demonstrated with a test program in Appendix II where the substructure consists of a regular assembly of 4 node/8 degrees of freedom Elements.

8. RE-SOLUTION

Once the global stiffness matrix has been reduced and stored a re-solution for as many load cases as desired can be made.

It is convenient to separate the resolution and back substitution part completely from the reduction of the left hand
side in order to have as much space available as possible. Because the size of the vector needed for each load case is only MAXPA no partitioning of the Front should be required even for large problems and the basic procedures are as follows:-
(1) Read the Element right hand side (RHS) into the first part of ELPA.
(2) Assemble into the space reserved for the Front-RHS.
(3) Reduce RHS using the coefficients c_{n}^{*} on disk i.e. modify the Front RHS with

$$
\begin{equation*}
F_{i}^{1}=F_{i}-\frac{c_{i n}^{*}}{c_{n, m}^{\star}} F_{n}^{*} \tag{7}
\end{equation*}
$$

The procedure is exactly the same as a nonpartitioned reduction except that vectors are involved instead of matrices.

The results are obtained in Element form by back substitution i.e.

$$
\begin{equation*}
x_{n}=\frac{1}{c_{n n}^{*}}\left[\varepsilon_{i=n} c_{n, i}-F_{n}^{*}\right] \tag{8}
\end{equation*}
$$

in the same manner as by Irons.

9. FURTHER FACILITIES OF THE COMPUTER PROGRAM AND DISCARDED FACILITIES

This section deals with features which are included in the present program and facilities which have not been considered but can be implemented easily.
9.1 Treatment of Constraints

In the present program a restrained degree of freedom is treated by setting the corresponding destination to zero and thereby preventing the assembly of the corresponding equation.

This is the simplest and most economical way. Various other types of constraints, as shown by Irons (1) can be easily implemented.

9.2 Computation of the Determinant of the Structure Stiffness Matrix

This is often required for vibration and stability analysis and is incorporated by additional coding in Subroutine GAUSS. After elimination the value of $\log _{10} / \mathrm{K} /$ is stored in the variable DET. In addition the frequency of the occurrence of a negative diagonal element is determined and stored in NEG. If NEG is odd the sign of the determinant is positive otherwise negative. The variables DET and NEG are in Common block/ EIGEN/.
9.3 Check on Singularity and Indefiniteness

A check on singularity and indefiniteness is made during elimination. If the diagonal coefficient is less than or equal to zero an Error message is produced. Because of machine accuracy, the diagonal coefficient will not be exactly zero even for a singluar matrix. More appropriate checks have been suggested (6), that is,
(1) Singularity

$$
\begin{equation*}
d_{j}<t_{j} \tag{9}
\end{equation*}
$$

(2) Indefiniteness

$$
\begin{equation*}
d_{j}<-t_{j} \tag{10}
\end{equation*}
$$

where d_{j} is the j-th diagonal element at the j-th elimination stage and

$$
t_{j}=8 \varepsilon r_{j}
$$

where ε is the smallest positive floating point number for which $(1+\varepsilon)>1$ on the computer used and r_{j} is the norm of the j-th row of K. This can be easily implemented in Subroutine GAUSS if the machine accuracy ε is known.

9.4 Check on Accuracy of Solution

In the original code by Irons a simple roundoff criterion was included. The author has found this criterion not entirely satisfactory because it is not sensitive to right hand sides and was found to register only if the difference in stiffness is too great between elements.

A better a priori estimate of the matrix condition is the Eucledian condition number (6). But this also involves additional unproductive computation and may be expenside.

The author favours the a posterori estimate by one step of iterative refinement of the solution because it is a more productive method giving not only an estimate of the accuracy but also an improved solution. It only involves a re-solution and matrix multiplication. The iterative refinement may be made only for one load case and not repeated for the other load cases if the condition number is satisfactory.

First, the load case is solved with the re-solution facility to give x_{i}^{O}, the unrefined result. Then the residual forces are worked out:

$$
\begin{equation*}
R_{i}^{o}=F_{i}-K_{i j} x_{j}^{o} \tag{li}
\end{equation*}
$$

A second resolution with $\mathrm{R}_{\mathrm{i}}^{0}$ as new right hand side will give the error on $x_{j}^{o}, \Delta x_{j}^{o}$.

The expression

$$
\begin{equation*}
\left|\left|\Delta \mathbf{x}_{j}^{o}\right|\right| /\left|\left|\mathbf{x}_{j}^{o}\right|\right| \tag{12}
\end{equation*}
$$

provides an estimate on the accuracy of the solution x_{j}^{0}.

10. CONCLUSIONS

A computer program for the assembly and solution of a symmetric positive definite set of equations has been presented. The program is based on the Frontal Solution technique by Irons but uses frontal partitioning to make the problem size which can
be solved practically independent of the memory size of the computer used.

In addition, a great deal of effort has been made to optimise the I / O operations during partitioned elimination. Fast vector or pipeline processing has also been considered in the coding.

The resulting program is an improvement, not only in capability but also in performance. The program should be useful not only in mini-computer applications but also for large computers, because a reduction or optimisation of the band width is not required in the Frontal solution.

The solution time and storage requirement is influenced only by the numbering of the Elements which is a natural one.

(a)

(b)

FIGURE 1 : Storage of stiffness coefficients during Frontal solution

STORAGE IN FRONT:

STORAGEINELFA:

FIGURE 2 : Storage of coefficients in long vector ELPA

APPENDIX A - LIST OF IMPORTANT ARRAYS AND VARIABLES

SUBROUTINE PREFR

```
Clon
```

```
            NIC=NIX(NEW)
        LDES=NIC
        IF(NIC .GT. O) GOTO 20
        LDES=1
    14 CONTINUE
        IF(MUABL(LDES) .EQ, O) GOTO 16
        LDES = LDES + 1
        IF(LDES .LE. MAXFA) GOTO 14
        MAXPA= LDES
    16 CONTINUE
        MUABL(LDES)=1
C-----------------------------------------
C------------------------------------------------------
            KOUNT = 1000
            IO 18 LAS= NEW,NIZZ
            IF(NIX(LAS) .NE.NIC) GOTO 18
            NIX(LAS)= LDES
            KOUNT= KOUNT + 1000
            LAST = LAS
    18 CONTINUE
            NIX(LAST)= LDES + 1000
            LDES= LIIES + KOUNT
            NIX(NEW)= LIES
    20 CONTINUE
            NZ1=NEW-N1+1
            LCDEST(NZI)= LDES
    22 CONTINUE
    N1= NEWA+ 1
C-------------------------------------------------------
C UPDATE MUABL,COUNT ELIMINATEI UARIABLES
C AND WRITE DESTINATIONS ON IISK
C------------------------
            CALL CODEST(KL,NSTRES,LDES,LCDEST,KUREL)
            IF(NSTRES .NE. O .AND. NSTRES .NE, 1) GOTO 24
            MUABL(LDES)=0
            NUABZ = NUABZ+1
    24 CONTINUE
            WRITE(NFG'NELEM) (LDEST(I),I=1,NDIM9)
    26 CONTINUE
C-WRITE SUPERELEMENT DESTINATIONS ON DISK
            NIZZ= NIZS
            KUREL=KURELS
            IF(KUREL .EQ. O) GOTO 23
            DO 25 KL=1,KUREL
            NIZZ=NIZZ + 1
            LCDEST(KL)= NIX(NIZZ) - 1000
    25 CONTINUE
    23 CONTINUE
            NELEM= NELEMZ +1
            WRITE(NF9'NELEM) (LDEST(I),I=1,NDIM9)
            RETURN
            END
```

SUBROUTINE SFRONT


```
            CALL CLEAR(ELFA,1,LSIZE)
            CALL PALI(MAXFAR,MAXPA,INDABL,LFAL,NOPAR)
            PRINT 3002,MAXPA;NOPAR
3002 FORMAT(//' MAXIMUM FRONT WIDTH=',15/
    1 ' MAX. NO. OF PARTITIONS=',I5//)
        CALL ICLAR(HBWR,NDPAR)
        DET= 0.
        NEG=0
        NBLK=0
        NBLK゙A=1
        NBLKE= LEQBBL
        IEQ= L1
        NPAC=1
        HO 1 NELEM= 1,NELEMZ
        TYPE 3003,NELEM
    3003 FORMAT<I5)
C READ CODED ELEMENT DESTINATIONS
        READ(NFG'NELEM) (LHEST(I),I=1,NIIMO)
C UNCODE AND UFDATE SPACE INDICATOR
        CALL UNCOD(LCDEST,KUUEL,LUDEST,INIAEL,MAXFA,NDFAR)
C READ ELEMENT STIFFNESS
        REAI(NF6'1) (ELPA(I),I=1,NIIM6)
        NUAR=0
        III=1
        IO 2 NPA=1,NDFAR
C FIRST EQUATION IN PARTITION NFA
        NST= LPAL(NF'A) + 1
C LAST EQUATION IN PARTITION
        NEND= LPAL (NF'A + 1)
        IF(NEND ,GT. KURFA) NEND= KURPA
        NVA= O
        LISTEQ(III)=0
        I= III
C-----------------------------------------------------------
C ASSEMBLY
C---------------------
            IRDY= 0
            LDES= LUDEST(NU)
            IF(LINES) 21,4,20
    21 CONTINUE
        LDES= -LDES
        IRIM = 1
        CONTINUE
        LPA= INDAEL(LDES)
        IF(LFA .NE. NPA) GOTO A
        CALL SWAFF(NF'A,NFAC,HBWF)
        CALL ASSEMB(LIIES,LUDEST,NU,KUREL)
        IF(IRIIY .EQ. O) GOTO 4
        NUA=NVA + 1
        NUAR= NUAR + 1
        LISTEQ(III)= NVA
        I= I + 1
        LISTEQ(I)= LDES
        I= I+2
        4 CONTINUE
C---~---------------------------------------------------------------------
C ELIMINATION OF OLD UARIABLES (THOSE ELIMINATEII IN PREUIOUS PARTI
C-------------------------------------------------------------------------------NNS)
    IF(NPA .EG. 1) GOTO 5
    IF(NUAR .EQ. O) GOTD 5
```

```
            ICYCL= 1
            NEW=0
            I= O
            NFAK= NPA-1
            DO 6 NF=1,NPAM
            I= I + 1
            NUA= LISTEQ(I)
            IF(NUA ,EQ. O) GOTO 6
            CALL SWAPF(NPA,NPAC,HEWR)
            DO }7\textrm{N}=1,NU
            I= I+1
            LDES= LISTEQ(I)
            I= I+1
            NNBLK= LISTEQ(I)
            I= I +1
            LIEQ= LISTEQ(I)
            IF(LASDES .EQ. LDES) GOTO 77
            CALL SAUES(LDES,IEQ,ICYCL,JES)
            IF(JES .EQ. 1) GOTO 7
    77 CONTINUE
            CALL RESBUF(IEQ,NBLK,NNBLK,LIEQ,ICYCL)
            CALL MOVE(NEW,LDES;IEQ)
            CALL GAUSS(NEW,LDES,IEQ)
            7 CONTINUE
            6 CONTINUE
            5 CONTINUE
C------------------------------------------------------
C ELIMINATION OF NEW VARIABLES (THOSE TO BE ELIMINATEII IN CURFENT
C-----~--------------------------------------- PARTITION)
            NEW=1
            NUA= LISTEQ(III)
            I= III
            IF(NVA,EQ, O) GOTO 44
            DO 45 N=1,NUA
            I= I + 1
            LDES= LISTEQ(I)
            LASNES = LDES
            LEQ= IEQ-L1
            IBLK= LEQ/LBLK + 1
            NNBLK= NBLK + IBLK
            LIEQ= LEQ - (IBLK-1)*LBLK
            I= I + I
            LISTEQ(I)= NNBLK
            I= I + I
            LISTEQ(I)= LIEQ
            CALL EMFILI(IEQ,NBLK)
            CALL MOUE(NEW,LIIES,IEQ)
            CALL GAUSS(NEW,LIES,IEQ)
            INDABL(LDES) = - INIIABL(LDES)
    45 CONTINUE
C ADIRESS OF LAST COEFFICIENT IN EQUATION BUFFER
            LEQ=IEQ-L1
            IBLK= (LEQ-1)/LBLK + 1
            LASTBL = NBLK + IELK
            NDADD= LEQ - (IBLK-1)*L.BLK
    44 CONTINUE
            III= I+1
            2 CONTINUE
            LASTP= NDPAF-1
C NOW RETRACK AND MOLIFY EQUATIQNS IN LOWEF
```

```
C PARTITIONS NOT YET MODIFIED
C------------------------
        ICYCL=2
        NEW= O
        DO }9\mathrm{ NPA=1,LASTP
        NST= LF'AL(NFA) + 1
        NENII= LF'AL(NF'A + 1)
        IF(NEND ,GT, KURPA) NENI=KURPA
        I= LISTEQ(1)*3 + 1
        DO 10 NP=2,NDPAF
        I= I + 1
        NUA= LISTEQ(I)
        IF(NP .GT. NPA) GOTO 99
        I= I + NUA*3
        GOTO 10
        99 CONTINUE
        IF(NUA ,EQ. O) GOTO 10
        DO 11 N=1,NUA
        I= I + 1
        LDES= LISTEQ(I)
        I= I + 1
        NNBLK= LISTEQ(I)
        I= I + 1
        LIEQ= LISTEQ(I)
        CALL RESBUF(IEQ,NBLK,NNELK,LIEQ,ICYCL)
        CALL SAUES(LDES,IEG,ICYCL,JES)
        IF(JES .EQ. 1) GOTD 11
        CALL SWAPF(NFA,NPAC,HBWK)
        CALL GAUSS(NEW,LHES,IEQ)
        CONTINUE
    10 CONTINUE
        9 CONTINUE
        8 CONTINUE
        1 CONTINUE
```



```
C WRITE CONTENTS OF EQUATION BUFFER IF NECESSARY
        IF\NBLK .GE. LASTAL) RETURN
        NELOKS= LASTBL-NELK
        CALL BLKIO(IWRIT,NF7,NELK+1,NFLOKS,ELFA,L1+1)
C----------------NENS AND REORDER SUBSTRUCTURE STIFFNESS MATRIX IF FEQUIREI
    NELEM=NELEMZ + 1
    READ(NFG'NELEM) (LUEST(I),I=1,NDIM9)
    IF(KUREL .EQ, O) RETURN
    IO 200 NF'A= 1,NOPAR
    CALL SWAFF(NPA,NPAC,HBWR)
    NPAC= 0
    NST= LPAL(NPA) + 1
    NEND= LF'AL(NPA+1)
    IF(NEND .GT.KURFA) NEND= KURPA
    L=0
    IOO 201 I=1,KUREL
    IUES= LCDEST(I)
    DO 202 K=1,I
    L=L+1
    KDES= LCDEST(K)
    LDES = MAXO(IDES,N゙DES)
    MDES= MINO(IDES,NDES)
```

```
            LPA= INUABL(LDES)
            IF(LFA .NE. NFA) GOTO 202
            LL= LADDR(LDES-1) + MIES
            ELPA(L)= ELPA(LL)
            202
            201 CONTINUE
            200 CONTINUE
C PRINT SUBSTRUCTURE STIFFNESS
            PRINT 3001,(K,K=1,K゙UREL)
                    3001 FORMAT(//' CONDENSEII SUBSTRUCTURE STIFFNESS MATRIX:'//4X,20I6)
            LA=1
            LE=1
            IID 203 K=1,KUREL
            PRINT 3000,K,(ELPA(L),L=LA,LE)
            LA=LE+1
            LE=LA+K
            203 CONTINUE
                    3000 FORMAT(1X,I3,20F6.2)
            FRINT 3004,IIET,NEG
                    3004 FORMAT(//' LOG10 OF DETERMINANT=',F15.4/
                            1
            RETURN
            END
            SUBROUTINE MOUE(NEW,LIES,IEQ)
Clon
```

7 CONTINUE
NIEQN= IEQ + KURFA IF(M .EQ. NDEQN) GOTO 5 $M 1=M+1$ DO $6 I=M 1$, NDEQN $\operatorname{ELPA}(I)=0$.
6 CONTINUE
$M=$ NDEQN
5 CONTINUE
ELPA (M + 1) = LIIES
$\operatorname{ELPA}(M+2)=K U R P A$
RETURN
C --- OLD EQUATION
1 CONTINUE
L= LDES + LO
$M=I E Q+N S T-1$
NREST = NST
DO 4 J=NST,NENI
$M=M+1$
$\operatorname{ELFA}(M)=E L F \cdot A(L)$
$\operatorname{ELPA}(L)=0$.
$L=L+N R E S T$
NREST $=$ NREST +1
4 CONTINUE
RETURN
END
SUBFOUTINE GAUSS(NEW,LDES,IEQ)

```
C CALL UECTOR PROCESSOK
```

```
            CALL SUECT(ELPA,CONS,L,M,I)
            GOTO 1
    3
        CONTINUE
        L=L + I
    1 CONTINUE
        ELFA(NDIAG)= PIVOT
C MOUE BUFFER POINTER TO END OF EQUATION
        IEQ= IEQ + KURPA + 2
        RETURN
        END
        SUBROUTINE UNCOD(LCDEST,KUREL,LUDEST,INLABL,MAXFA,NDPAF)
C------------------------------------
C UPDATES SPACE INDICATOR INUABL
C--------------------------------
    DIMENSION LUDEST(KUREL)
    COMMON /EQL/ KURPA
    IIMENSION INIABL(MAXFA)
    DO 1 K=1,KUREL
    IRDY=0
    CALL CODEST(K,NSTRES,LIIES,LCDEST,KUREL)
    IF(LDES .EQ. O) GOTO 3
    IF(NSTRES .NE. O ,ANII.NSTRES.NE. 1) GOTO 2
C --- UARIABLE LDES CAN BE ELIMINATEI
    IRDY= 1
    2 CONTINUE
    NPA= IABS(INIABL(LIIES))
    INDABL(LUES)= NPA
    3 CONTINUE
    IF(IRIY .EQ, 1) LDES= -LDES
    LUDEST(K)= LUES
    1 CONTINUE
CURRENT EQUATION LENGTH
    M= MAXPA
    5 CONTINUE
    IF(INIABL(M) .GT. O) GOTO 4
    M=M-1
    GOTO 5
    4 CONTINUE
    KURF'A=M
    NDFAR= INIUABL(KURPA)
    RETURN
    END
    SUBFOUTINE FALI(MAXFAF,MAXFA,INIAEL,LFAL,NIIFAR)
C-----------------------------------------------------------------------
C SETS UF PARTITION LIMIT ARRAY LFAL
C DEPENDING ON SIZE OF FRONT BUFFEF LFRBUF
C AND MAXPA ( MAXIMUM FRONT WIDTH )
C TOTAL NUMBER DF F'ARTITIONS REQUIREII: NIIFAR
```



```
    COMMON /BUFSZE/ NELZ,LFRBUF,LEQBUF
    LFAL(1)=0
    IO 1 NPA=1,MAXPAR
    FAC= 2* LPAL(NFA) + 1
    FAC1= 2*LFRBUF
    LDSPI= SQRT(.25*FAC*FAC + FAC1) - .5*FAC
    LPAL(NPA + 1)= LPAL(NFA) + LDSPI
    IF(LPAL(NPA + 1) .GE. MAXFA) GOTO 2
    CONTINUE
```

```
            CALL ERROR(O.,NF'A,4)
            2 CONTINUE
            LPAL(NPA+1)= MAXPA
            NDPAR= NPA
C----------------------------------------------------------------------------
C SET UP ARRAY INNABL COIING: "+"-VE=OCCUPIED;"-"VE=FREE
C----------------------------------------------------------------------------
            DO 3 M=1,MAXPA
            IO 4 NPA=1,NDPAR
            IF(M .LE. LPAL(NFA+1)) GOTO 5
            4 CONTINUE
            5 CONTINUE
            INDABL (M) = -NFA
            3 CONTINUE
            RETURN
            END
            SUBROUTINE ASSEMB(LDES,LUDEST,NU,KUREL)
```



```
            COMMON ELPA(1)
            DIMENSION LUDEST(KUREL)
            LL= LADDR(LDES-1)
                    IIO 1 K=1,KUREL
                    II= LUDEST(K)
            IF(II) 2,1,3
            2 CONTINUE
            II= -II
    3 CONTINUE
            IF(II .GT, LDES) GOTO 1
            L= LADST(K,NU)
            LF=LL + II
            ELPA(LF)= ELPA(LF) + ELPA(L)
            1 CONTINUE
            RETURN
            END
            FUNCTION LADDR(M)
C-----------------------------------NM COMPUTES THE ADDRESS OF COEFF M,M IN CURRENT PARTITION
C-----------------------------------------------------------------
    COMMON /PARA/ LO,LI
                            COMMON /PARTL/ NST,NENI
            NS= NST -1
            MR= M-NS
            LALIDR=MF*NS + MR*(MR+1)/2t LO
            RETURN
            END
            FUNCTION LADST(I,J)
C-----------------------------------------------------
C COMPUTES ADRESS OF COEFF I,J IN ELEMENT STIFFNESS MATRIX
C--------------------------------------------------------------
    II= MAXO(I,J)
    JJ= MINO(I,j)
    LADST= JJ + II*(II-1)/2.
    RETURN
    END
    SUBROUTINE EMPDI(IEQ,NBLK)
C------~----------------------------------------------------
C EMPTIES EQUATION BUFFER ONTO DISK WHEN FULL
C
```

```
C IEQ ... BUFFER FOINTER
C NBLK ... NUMBER OF BLOCKS WRITTEN
C----------------------------------------------------------------------
    COMMON ELPA(1)
    COMMON /PARA/ LO,L1
    COMMON /EQL/ KURPA
    COMMON /INCORE/ NBLKA,NBLKE
    COMMON /BLOKL/ LELK
    COMMON /FILES/ NFG,NIIMG,NF7,NIIM7,NFB,NIIMB,NF9,NDIM9
    COMMON /IOCONU/ IREAD,IWRIT
    COMMON /EUFSZE/ NELZ,LFREUF,LEQBUF,LFRBBL,LEQBBL
CHECK IF ANOTHER EQUATION FITS
    NDEQN= IEQ + KURPA + 2-L1
    IF(NDEQN ,LT. LEQEUF) RETURN
C -- DOES NOT FIT >> WRITE BUFFER ONTO IIISK
    NBLOKS= (IEQ-L1)/LBLK
    CALL BLKIO(IWRIT,NF7,NBLK + 1,NBLOKS,ELFA,L1+1)
C MOVE LAST BLOCK AT THE BEGINNING OF BUFFER IF NOT COMPLETELY FULL
    LEQE= IEQ
    LEQ= NELOKS *LBLK + L1
    IEQ= L1
    IF(LEQ .ER. LEQE) GOTO 10
    LEQ=LEQ + 1
    DO 1 I=LEQ,LEQE
    IEQ=IEQ + I
    ELPA(IEQ)== ELPA(I)
    1 CONTINUE
    10 CONTINUE
    NBLK= NBLK + NBLOKS
    NELKA= NELK + 1
    NBLKE= NBLK + LEQBBL
    RETURN
    END
    SUEROUTINE RESEUF(IEQ,NBLK,NNELK,LIEQ,ICYCL)
```



```
C AND SWAPS(ICYCL=1) OR READS(ICYCL=2) BLOCKS IF NECESSARY
C
C-----------------------------------------------------------------------------
    COMMON ELPA(1)
    COMMON /FARA/ LO.L1
    COMMON /ELOKL/ LBLK
    COMMON /EQL/ KURFA
    COMMON /INCORE/ NBLKA,NBLKE
    COMMON /FILES/ NF6,NIIM6,NF7,NDIM7,NF8,NDIM8,NF9,NIIM9
    COMMON /IOCONU/ IREAD,IWRIT
    COMMON /BUFSZE/ NELZ,LFFBUF,LEQBUF,LFFBBL,LEQEBL
    COMMON /ENDQN / LASTBL
C----..---~---------------------------------------------------------------
C IS EQUATION STILL IN CORE ?
C--------------------------------NBLK
    LEQ= LIEQ + KURPA + 2
    LEQB= (LEQ-1)/LBLK
    NDBLK= NNBLK + LEQB
    IF(NDBLK .LE, NBLKE) GOTO 1
C----------------------------------------------------------------------------
C NO - SWAP BLOCKS
C-----------------
    2 CONTINUE
    IF(ICYCL .EQ. 2) GOTO 4
```

```
    NBLKEN= NBLKE
        IF(NBLKEN .LT. LASTBL) GOTO 3
        NBLKEN= LASTBL
        3 CONTINUE
        NBLOKS= NBLKEN-NBLKA + 1
        CALL BLKIO(IWRIT,NF7,NBLKA,NBLOKS,ELFPA,LI+1)
        CONTINUE
        NBLOKS = LEQBEL
        LIMBLK = LASTEL - NNBLK + 1
        IF(NBLOKS ,GT, LIMBLK) NBLOKS= LIMBLK
        CALL BLKIO(IREAD,NF7,NNBLK,NBLOKS,ELFA,L1+1)
        NBLKA= NNBLK
        NBLKE=NNBLK + NBLOKS - 1
        NBLK= NBLKA - 1
        IEQ= LIEQ + L1
        RETURN
        1 CONTINUE
        IEQ= (NNBLK-NBLKA)*LBLK + LIEQ + L1
        RETURN
        END
        SUBROUTINE SWAPF(NFA,NPAC,HBWR)
```



```
C NPA ... NEW PARTITION
C NPA ... NEW PARTITION 
C----------------------------------------------------------------------------
    COMMON ELPA(1)
    DIMENSION HBWR(1)
        COMMON /PARA/ LO,L1,L2
        COMMON /FILES/ NFG,NDIMG,NF7,NDIMT,NF8,NDIMB,NF9,NDIM9
        COMMON /IOCONU/ IREAD,IWRIT
        COMMON /BLOKL/ LELK
        IF(NPA ,EQ. NFAC) RETURN
        NBLKS8= NDIM8/LBLK
        IF(NPAC.EQ. O) GOTO 1
        NFROM= (NFAC-1)*NBLKSS + 1
        CALL BLKIO(IWRIT,NF8,NFROM,NELKS8,ELPA,LO+1)
        HBWR(NPAC)=1
    1 CONTINUE
        IF(NF'A ,EQ, O) RETURN
        NFROM= (NPA-1)*NBLKSE + 1
        IF(HBWR(NFA) ,EQ. 1) CALL BLKIO(IREAD,NF8,NFROM,NELKSB,ELPA,
        IF(HBWR(NPA),EQ. O) CALL CLEAR(ELFA,LO+1,L1) LO+1)
        NPAC= NPA
        RETURN
        END
        SUBROUTINE CODEST(K,NSTRES,LDES,LCDEST,KUREL)
C------------------------------------
C-------------------------------------------------------------------------
    IIMENSIDN LCDEST(KUREL)
    LDES = LCDEST (K)
    DO 2 NSTRES= 1,32000
    IF(LDES .LT. 1000) GOTO 4
    LDES= LDES - 1000
    2 CONTINUE
    4 CONTINUE
    NSTRES = NSTRES - 2
    RETURN
    END
```

```
            SUEROUTINE CLEAR(ARRAY,NST,NEN)
            DIMENSION ARRAY(NEN)
            IO 1 N=NST,NEN
            ARRAY(N)=0.
```

CONTINUE
RETURN
END
SUBRQUTINE ERROR(F,I,N)
GOTO (1,2,3) ,N
CONTINUE
PRINT 2000,F,I
FORMAT(/' *** NEGATIUE PIVOT (',E15.5,') AT IIESTINATIDN',IS) RETURN
2 CONTINUE
PRINT 2001,F,I
2001 FORMAT (//' SINGULARITY CHECK:'/
1 ' NEAR ZERO OR ZERO PIUOT (',E15.5,') AT DESTINATION',IS) STOP
3 CONTINUE
PRINT 2002,I
FORMAT(//' *** IIIMENSION OF ELPA (',I5,') TOD SMALL')
STOP
4 CONTINUE
PRINT 2003,I
FORMAT(//' *** MAXIMUM NUMEER OF PARTITIONS (',I5,') ECCEEDED')
STOP
RETURN
END
SUBROUTINE SAUES(LIIES,IEQ,ICYCL,JES)
C TO SAVE ON COMPUTATION ANI SWAFFING TIME
C FOR ZERO COEFFICIENTS
C---------------------
COMMON /PARTL/ NST,NENI
COMMON /PARA/ LO,L1,L2
IF(ICYCL .ER. 2) GOTO 1
$L=L D E S+L O$
NREST $=$ NST
no 2 J=NST,NEND
IF(ELPA(L) .NE. O.) GOTO 3
L= L + NREST
NREST=NREST + 1
2 CONTINUE
JES=1
RETUKN
3 CONTINUE
JES = 0
RETURN
1 CONTINUE
$M I=I E Q+N S T-1$
DO 4 I = NST,NENL
$M I=M I+1$
IF(ELFA(MI) +NE. O.) GOTO 5

4 CONTINUE
$J E S=1$
RETURN
5 CONTINUE
JES=0
RETURN
END
SUEROUTINE SUEET(UECTOR,CONS,II,I2,N)

SUBROUTINE BLKIO(IRW,LUN,NBLA,NBLOKS,BUFFER,IADD)

APPENDIX C - TEST PROGRAM

In the following a test program is listed which can be used to test the subroutines PREFR and SFRONT. The example is a substructure condensation for a regular patch of square 4 node/8 d.o.F. Elements. The stiffness matrix of the Elements is read in and all the nodes except the 4 corner nodes of the super element are condensed out. Results can be obtained for different mesh and buffer sizes

[substructure nodes
o element nodes

```
C-----------------------------------------------------------------
C PROGRAM TO TEST OUT SUBROUTINE SFRONT
C---------------------------------------------------------------------
    COMMON ELPA(5000),MAXPA,NELEMZ,LDEST(62)
    COMMON /BUFSZE/ NELZ,LFRBUF,LEQBUF,LFRBEL,LEQBBL
    COMMON /MESH/ NROWS,NCOLS,NODES
    COMMON /BLOKL/ LBLK
    COMMON /FILES/ NF6,NUIMG,NF7,NIIM7,NF8,NDIME,NF9,NDIM9
    NCR=7
    CALL ASSIGN(NCR,'INFUT')
    NELZ= 36
    READ(NCR,1000) NROWS,NCOLS
1000 FORMAT(16I5)
    NELEMZ= NROWS*NCOLS
    NODES=(NCOLS+1)*(NROWS+1)
    NDOFS= NODES*2
    READ(NCR,1000) LFRBUF,LEQBUF,LBLK
    CALL FILO
    READ(NCR,1000) ISTIF
    IF(ISTIF ,NE, 1) GOTO 1
    READ(NCR,1001) (ELFA(N),N=1,NELZ)
1 0 0 1
    FORMAT (8F10.0)
    WRITE (NFG'1) (ELPA(I),I=1,NELZ)
    GOTO 2
    CONTINUE
    READ(NF6'1) (ELPA(I),I=1,NELZ)
    CONTINUE
    FRINT 3000
3000 FDRMAT(1H1//' *** SUBSTRUCTURE CONDENSATION EXAMFLE ***')
    PRINT 3001,NROWS,NCOLS
    FORMAT(//' NUMEER DF ELEMENT ROWS=',I5/
    ' NUMBER OF ELEMENT COLUMNS=',IS)
    PRINT 3002,NELEMZ,NODES,NDOFS
3002 FORMAT(' NUMBER OF ELEMENTS=',I5/
    1 ' NUMBER OF NODES =',IS/
    1 , NUMBER OF D.O.F. =',I5)
    PRINT 3003,LFRBUF,LEQBUF
3003 FORMAT(' SIZE OF FRONT BUFFER =',I5/
    , SIZE OF EQUATION BUFFER=',I5)
    PRINT 3004,(K,K=1,8)
3004 FORMAT(//' ELEMENT STIFFNESS MATRIX:'//4X,20I6)
    LA= 1
    LE= 1
    IO 200 K=1,8
    PRINT 3005,K,(ELFA(L),L=LA,LE)
    LA=LE+1
    LE=LA+K
    200 CONTINUE
3005 FORMAT(1X,I3,20F6.2)
    CALL PREFR
    CALL SFRONT
    STOP
    END
```

SUBROUTINE GETELN(NELEM,KUREL,LUABL)

*** SUBSTRUCTURE CDNDENSATION EXAMPLE ***

```
NUMBER OF ELEMENT ROWS= 2
NUMBER OF ELEMENT COLUMNS = 10
NUMBER OF ELEMENTS= 20
NUMBER OF NOHES = 33
NUMBER OF I.O.F. = 66
SIZE OF FRONT BUFFER = 512
SIZE OF EQUATION BUFFER= 256
```

ELEMENT STIFFNESS MATRIX:

	1	2	3	4	5	6	7	8
1	5.00							
2	-2.50	5.00						
3	-2.50	0.00	5.00					
4	0.00	-2.50	-2.50	5.00				
5	1.25	1.25	-1.25	-1.25	5.00			
6	-1.25	-1.25	1.25	1.25	0.00	5.00		
7	-1.25	-1.25	1.25	1.25	-2.50	-2.50	5.00	
8	1.25	1.25	-1.25	-1.25	-2.50	-2.50	0.00	5.00

MAXIMUM FRONT WIDTH= 30

MAX. NO. DF PARTITIONS = 1

CONDENSED SUBSTRUCTURE STIFFNESS MATRIX:

	1	2	3	4	5	6	7	8
1	1.12							
2	-0.08	1.12						
3	-0.74	-0.29	1.12					
4	-0.29	-0.74	-0.08	1.12				
5	0.21	-0.01	-0.21	0.01	2.05			
6	0.01	-0.21	-0.01	0.21	0.01	2.05		
7	-0.21	0.01	0.21	-0.01	-0.05	-2.01	2.05	
8	-0.01	0.21	0.01	-0.21	-2.01	-0.05	0.01	2.05

LOG10 DF DETERMINANT = 55.9191

NO OF NEGATIUE PIVOTS= 0

*** SUBSTRUCTURE CONDENSATIDN EXAMPLE ***

```
NUMBER OF ELEMENT ROWS= 2
NUMBER OF ELEMENT COLUMNS= 10
NUMBER OF ELEMENTS= 20
NUMBER OF NODES = 33
NUMEER OF D.O.F. = 66
SIZE OF FRONT BUFFER = 256
SIZE OF EQUATION BUFFER= 256
```

ELEMENT STIFFNESS MATRIX:

	1	2	3	4	5	6	7	8
1	5.00							
2	-2.50	5.00						
3	-2.50	0.00	5.00					
4	0.00	-2.50	-2.50	5.00				
5	1.25	1.25	-1.25	-1.25	5.00			
6	-1.25	-1.25	1.25	1.25	0.00	5.00		
7	-1.25	-1.25	1.25	1.25	-2.50	-2.50	5.00	
8	1.25	1.25	-1.25	-1.25	-2.50	-2.50	0.00	5.00

MAXIMUM FRONT WIDTH= 30
MAX. NO. OF PARTITIONS = 2

CONDENSED SUESTRUCTURE STIFFNESS MATRIX:

	1	2	3	4	5	6	7	8
1.1 .12								
$2-0.08 \quad 1.12$								
3	-0.74	-0.29	1.12					
4	-0.29	-0.74	-0.08	1.12				
$5 \quad 0.21-0.01-0.21 \quad 0.01 \quad 2.05$								
$6 \quad 0.01-0.21-0.01 \quad 0.21 \quad 0.01 \quad 2.05$								
$\begin{array}{llllllllll}7 & -0.21 & 0.01 & 0.21 & -0.01 & -0.05 & -2.01 & 2.05\end{array}$								
8-0.01 0.21 0.01-0.21-2.01-0.05 0.01 2.05								
LOG1	0 OF	DETERM	INANT=		55.9	91		
NO O	OF NEG	ATIUE	PIVOTS	0				

APPENDIX D - NOMENCLATURE

Symbol Meaning

${ }^{c} 1 \mathrm{j}$	Equation coefficient
ℓ	Address of coefficient in long vector ELPA
$\ell{ }_{0}$	Start address in ELPA of space reserved for the Front matrix
m	Front width
$\Delta \ell_{N}$	Number of Equations in partition N
k_{N}	"destination" of first equation in partition N
n_{p}	Size of storage space for the Front matrix
k, i	Coefficlent indexes
F_{1}	Coefficient on right hand side
x_{n}	Variable
R_{i}	Residual
$\mathrm{K}_{i j}$	Structure stiffness coefficient
$\Delta \mathrm{x}_{\mathrm{j}}$	error on Solution for x_{j}

APPENDIX E - REFERENCES

1. IRONS, Bruce M. "A Frontal Solution Technique for Finite Element Analysis", Int. Jnl. Num. Meth. Engng., Vol. 2, pp. 5-32, 1970.
2. LIGHT, M.F. and LUXMORE, "Application of the Front Solution to two and three-dimensional Elasto-plastic Crack Problems", Int. Jnt. Num. Meth. Engng., Vo1. 11, pp. 393-395, 1977.
3. HOOD, P. "Frontal Solution Program for Unsymmetric Matrices", Int. Jnl. Num. Meth. Engng., Vol. 10, pp. 379-399, 1976.
4. NATARAJAN, R. "Front Solution Program for Transmission Tower Analysis", Computers and Structures, Vol. 5, pp. 59-64, 1975.
5. ALIZADEH, A. and WILL, G.T. "A Substructurab Frontal Solver and its Application to Localized Material Non-linearity", Computer and Structures, Vol. 10, pp. 225-231, 1979.
6. FELIPA, C.A. "Solution of Linear Equations with Skyline-Stored Symetric Matrix", Computers and Structures, Vo1. 5, pp. 13-29, 1975.
$\left.\begin{array}{ll}\text { CE } & \text { Title } \\ \text { No. }\end{array} \quad \begin{array}{l}\text { Flood Frequency Analysis: Logistic Method } \\ \text { for Incorporating Probable Maximum Flood }\end{array}\right\}$

Author(s)	Date
BRADY, D.K.	$\begin{aligned} & \text { February, } \\ & 1979 \end{aligned}$
ISAACS, L.T.	$\begin{aligned} & \text { March, } \\ & 1979 \end{aligned}$
BEHAN, J.E. \& O^{\prime} CONNOR, C.	$\begin{aligned} & \text { April } \\ & 1979 \end{aligned}$
KITIPORNCHAI, S.	May, 1979
$\begin{aligned} & \text { MEEK, J.L. \& } \\ & \text { BROWN, P.L.D. } \end{aligned}$	$\begin{aligned} & \text { November, } \\ & 1979 \end{aligned}$
$\begin{aligned} & \text { CARTER, J.P., } \\ & \text { BOOKER, J.R. \& } \\ & \text { WROTH, C.P. } \end{aligned}$	$\begin{aligned} & \text { December, } \\ & 1979 \end{aligned}$
KAZEMIPOUR, A.K. \& APELT, C.J.	$\begin{aligned} & \text { February, } \\ & 1980 \end{aligned}$
O^{\prime} CONNOR, C.	$\begin{aligned} & \text { February, } \\ & 1980 \end{aligned}$
KAZEMIPOUR, A.K. \& APELT, C.J.	$\begin{aligned} & \text { April, } \\ & 1980 \end{aligned}$
$\begin{aligned} & \text { BEER, G. \& } \\ & \text { MEEK, J.L. } \end{aligned}$	$\begin{aligned} & \text { April, } \\ & 1980 \end{aligned}$
 KITIPORNCHAI, S.	$\begin{aligned} & \text { Apri1, } \\ & 1980 \end{aligned}$
BEER, G.	May, 1980
0^{\prime} CONNOR, C.	May, 1980
GOURLAY, M.R.	June, 1980

CURRENT CIVIL ENGINEERING BULLETINS

4 Brittle Fracture of Steel - Performance of ND18 and SAA A1 structural steels: C. O'Connor (1964)

5 Buckling in Steel Structures - 1. The use of a characteristic imperfect shape and its application to the buckling of an isolated column: C. O'Connor (1965)

6 Buckling in Steel Structures - 2. The use of a characteristic imperfect shape in the design of determinate plane trusses against buckling in their plane: C. O'Connor (1965)

7 Wave Generated Currents - Some observations made in fixed bed hydraulic models: M.R. Gourlay (1965)

8 Brittle Fracture of Steel - 2. Theoretical stress distributions in a partially yielded, non-uniform, polycrystalline material: C. O'Connor (1966)

9 Analysis by Computer -- Programmes for frame and grid structures: J.L. Meek (1967)

10 Force Analysis of Fixed Support Rigid Frames: J.L. Meek and R. Owen (1968)

11 Analysis by Computer -- Axisymetric solution of elasto-plastic problems by finite element methods: J.L. Meek and G. Carey (1969)

12 Ground Water Hydrology: J.R. Watkins (1969)

13 Land use prediction in transportation planning: S. Golding and K.B. Davidson (1969)

14 Finite Element Methods - Two dimensional seepage with a free surface: L.T. Isaacs (1971)

15 Transportation Gravity Models: A.T.C. Philbrick (1971)

16 Wave Climate at Moffat Beach: M.R. Gourlay (1973)

17 Quantitative Evaluation of Traffic Assignment Methods: C. Lucas and K.B. Davidson (1974)

18 Planning and Evaluation of a High Speed Brisbane-Gold Coast Rail Link: K.B. Davidson, et al. (1974)

19 Brisbane Airport Development Floodway Studies: C.J. Apelt (1977)

20 Numbers of Engineering Graduates in Queensland: C. O'Connor (1977)

