
TA

A Second Generation Frontal

Solution Program

1
.U4956

G. BEER

Research Report No. CE12

May, 1980.

I II ~I Ill IIIIi 11111111111111111111111111111111 ~II
3 4067 03257 6364

CIVIL ENGINEERING RESEARCH REPORTS

This report is one of a continuing series of Research Reports published by
the Department of Civil Engineering at the University of Queensland. This
Department also publishes a continuing series of Bulletins. Lists of recently
published titles in both of these series are provided inside the back cover of
this report. Requests for copies of any of these documents should be addressed
to the Departmental Secretary.

The interpretations and opinions expressed herein are solely those of the
author(s). Considerable care has been taken to ensure the accuracy of the
material presented. Nevertheless, responsibility for the use of this material
rests with the user.

Department of Civil Engineering,
_ University of Queensland,

St Lucia, Q 4067, Australia,
[Tel:(07) 377-3342, Telex :UNIVQLD AA40315]

A SECOND GENERATION FRONTAL SOLUTION PROGRAM

by

G. Beer, Dip Ing Austria , MSc Le h igh, PhD, MIE Aust.

Se nior Re s e arch Assistant

RESEARCH REPORT NO. CE 12

Department of Civil Engi neering

University of Queensland

May, 1980

Synopsis

A c ompute r pr ogram for t he as s embly and

solution of symmetric positive de f ini te e quations

as met in t he Finite Element analysis based on t he

Fronta l Solution algorithm by I rons is pre s ented .

The pr ogram f ea t ures impr oved direct access

blocked I /0 and the u~e of Fron t parti t ioning ~hich

make s the problem size ~hich can be solved practical ly

independent of the size o f the computer memory .

In addition the use of fast vector processors i s

c onsidered ~hich s hou ld improve CPU times con siderably.

C1

·'

'-

CONTENTS

1. I NTRODUCTION AND MOTIVATION

2. STORAGE AND BUFFERING DURING ELIMINATION

3. PROGRAM STRATEGY

4 . I / 0 OPERATIONS DURING ELIMINATION

5. OPTIMISATION OF I / 0 OPERATIONS AND CHOICE OF
FRONT PARTITION AND EQUATION BUFFER LENGTH

6. SHORT DESCRIPTION OF COMPUTER PROGRAM

7. SUBSTRUCTURING WITH THE FRONTAL SOLUTION

8. RE-SOLUTION

9. FURTHER FACILITIES OF THE COMPUTER PROGRAM AND
DISCARDED FACILITIES

9.1 Treatment of Constraints

9.2 Computation of the determinant

9 .3 Check on Si ngularity and Indefiniteness

9 .4 Check on accuracy of s o luti on

10. CONCLUSIONS

APPENDIX A. LIST OF IMPORTANT ARRAYS AND VARIABLES

APPENDIX· B. LISTING OF THE COMPUTER PROGRAM

APPENDIX C. TEST PROGRAM

APPENDIX D. NOMENCLATURE

APPENDIX E. REFERENCES

Page

1

3

4

5

7

8

9

10

11

11

12

12

13

13

17

1 8

38

39

1.

l. INTRODUCTION

The Frontal Solution technique is based on the Gaussian

Elimination method and was first published in 1970 by Irons (1) •

Various authors (2,3,4,5) have since pointed out various

advantages of this technique. The main advantage over band or

skyline (6) solvers seems to be a simplification in the data

preparation as the nubmering of nodes is not restricted to

minimise a band width. Also, since the node numbers are treated

as "Nicknames", design changes (i.e. adding or removing elements)

may be made without having to renumber the nodes. Solution

time for the Frontal solver is now sensitive to the numbering

of the Elements but the sequence is a natural one. The famous

example of a ring structure is often mentioned in this context (1) .

The main difference between the Frontal technique and

a conventional band solution lies in the manner in which the

structure stiffness c o e fficient s are stored and in the order

in which t he equations are eliminated.

Consider, for example, a patch of 4 node/8 D.O.F.

elements. in Fig. 1 in which the degrees of freedom are numbered

from 1 to 18 .

The stiffness coeff icie nts of Eleme nt I are stored in

t he orde r of appearance (local node numbering) and in the manner

shown in Fig. la. Each variable has a "Destination" which

determines the position of its coefficients in the Front matrix.

An asterisk , *• marks the equations which are already fully

summed. These variable(s) can now be eliminated before the

next element is assembled by treating the other equations with:

c! .
~.]

c* .
c. . - c* . ~' 1
~.J n,J cn,n

(1)

Where n is the destination of the variable to be

eliminated and the * denotes the coeff icients which are f ully

s ummed . The reader should note that it does not matter that

the coefficie nts ci, j are not in their final form since only

the order in which the coefficients are added is changed.

.2.

After elimination, variables 1 and 10 cease to be

"active" and the corresponding equations are transferred into

buffer storage ready for output on disk. The storage locations

of these equations in the Front matrix are cleared (Fig. lb).

On assembly of element II this space is re-used by Equation 3

and 6 (Fig. lc). The Front matrix thus contains only the

coefficients of "active" variables.

With the principle involved explained the reader may

complete the example making the following observations:

(1) Assembly and elimination order is governed by the

order in which the variable coefficients are entered

as one Element is assembled after the other. A

variable is eliminated as soon as the coefficients

are fully summed (i.e. on its last appearance). The

position of the coefficients in the Front matrix is

governed by the empty spaces available.

(2) The storage requirement for storing the "active"

coefficients is determined by the largest address

used. Because of symmetry only one half of the

Front matrix has to be stored and the storage require­

ment may be computed from

m(m + 1) /2

Here m is the largest "Destination" of a variable

(Front width) .

In the original code Irons assumes that the Front

matrix resides in central storage (Comment on the program

listing: "if not, buy larger computer").

(2)

It can be seen that the storage requirement increases

with the square of the Front width. This puts a severe limitation

on the size of problems which can be solved on a special computer.

The purpose of this paper is to present a program

where this limitation has been over-come making it possible to

solve large 3-D problems on a mini computer. In addition, the

3.

transfer of data to and from disk is improved by using a

blocked direct access I/O mode.

The inner-most DO-loop of the Gauss elimination is

written suitable for fast vector processors which have appeared

on the market in recent years.

The resulting program should not only be an improvement

in solution capability but also in performance.

2. STORAGE AND BUFFERING DURING ELIMINATION

Similar to the original code by Irons, a working vector

ELPA is used. ELPA is divided into 3 main areas which contain:

(1) Element stiffness matrix of the Element to be assembled;

(2) Front matrix or a partition of the front matrix; (3) Buffer

for the equations which have ceased to be "active".

Allocation of the space for these areas i s completely

flexible and will depend on the type of problem solved. Whereas

the space of first area is fixed by the size of the element

stiffness matrix, the space allocation for areas 2 and 3 must

be adjusted to give optimal solution times within the core

limitations of the computer used. This will be discussed in

detail later.

The number of e quation c oe fficie nts in the Front matrix

for a particular Front width is computed from Equation 2 and

if it is greater than the space available, the partitioning

algorithm has to be activated.

The number of Equations ~£N which fit into a particular

N can be computed from the inequali ty

(3)

Here kN is the destination of the first equation in

partition N and n is the size of the storage space for the Front
p

matrix . Solution of Equation 3 gives

~£N = INT [- 2kN2- 1 +J[2kN2- lr + 2np] (4)

4.

Where INT means the truncation of the result. This

allows us to determine the limits of each partition i.e. partition

N can accommodate Equation kN to kN+l"

For a coefficient k, i (k < i) residing in partition N,

where

(5)

the address, ~ . is computed from (see Fig. 2),

Here ~0 specifies the start address of the space reserved for

the Front matrix.

3. PROGRAMMING STRATEGY

As long as the Front matrix is small and fits into core

the program strategy is simple and follows three basic steps

for each element:

(1) Read element stiffness matrix

(2) Assemble its coefficients into Front matrix

(3) Eliminate variables which are ready

The elimination essentially consists of two steps.

First, the equation coefficients of the variable which is to be

e liminated (n) are moved to the equation buffer. When the buffer

is full its contents are written on disk and the pointer reset

to the beginning of the buffer before the coefficients are moved

(It should be note d at this stage that all the coefficients to

the right of the minus sign in Equation 1 are now in the buffer) .

Then all the equations in the Front matrix are modified by

Equation 1.

When the current Front matrix becomes large and no longer

fits in the allocated space, partitioning is invoked automatically.

The program strategy becomes more complex and follows the following

basic steps:

5.

(1) Read Element stiffness matrix.

(2) Swap Partition 1 into core and assemble all

coefficients which are resident in this partition.

(3) Eliminate variables which are ready in this

partition (if any).

(4) Swap Partition 2 into core and assemble further

coefficients.

(5) Modify all coefficients for the variables

eliminated previsouly (if any) using the

coefficients c~2 in the Equation buffer. This

is referred to as elimination of 'old variables'

in the listing.

(6) Elimi nate variables which are ready in this

partition ('new variables').

Steps 4, 5 and 6 are repeated for all subsequent partitions

to the last one. Note that at step 3 not all the coefficients

c~2 of the equation n are available and the equation in the buffer

is still incomplete. Thus, additional coefficients have to be

transferred in step 5.

Our work is not completed y et since some lower partitions

have not been modified due to elimination of variables in higher

partitions. So we have to retrack and modify the Equations which

have not yet been modifie d using the coefficients c~2 in the

e quation buffer.

4. I/O OPERATIONS DURING ELIMINATION

When the Front matrix is small and fits into the allocated

space , the I / 0 operations are simple:

(1) Read the assembly information for each element

(The 'destination vector ' is coded to indicate when

each variable is ready for elimination) .

(2) Read Element stiffness matrix .

(3) Whenever the equation buffer is full, i.e. no

further equation fits, write its contents onto

disk.

6.

In the present program, the standard. Fortran READ is

used for operations 1 and 2. For large amounts of data the speed

of the I/0 operation depends greatly on the transfer mode. It

has b een found by the author that on a Data General Eclipse mini­

computer, the data transfer is 10 times faster when the machine

dependent routines RDBLK nad WRBLK are used. The prerequisite

for using these routines is that the number of coefficients to

be transferred is divisible by the physical block size on disk

(128 real numbers in this case). Since operation 3 may involve

a large number of coefficients, a blocked I/0 mode is used. The

equation buffer is divided into a number of blocks and the space

allocated for it should be a multiple of the block size. When

the buffer is full it may, however, not always fill the last block

completely. To avoid empty spaces on disk the last block is not

written in this·case, but the coefficients are rather transferred

to core to the beginning of the buffer with new coefficients moved

into the subsequent spaces.

In this context it should be noted that in core transfers

are typically a factor of 10 3 faster than out-of-core transfers

(i.e. transfers to and from disk).

When the Front matrix becomes too large and no longer fits

into core, I/0 operations become more complex and frequent. The

Front matrix has to be swapped in and out of core as required.

Blocked I/0 transf~r now becomes essential and the programming

critical since a program slowed down by too many I/0 operations

may no longer be competitive .

The aim is to reduce the I/0 operations to a bare minimum

even if this means that more in core operations are necessary to

do this (see above statement about I/0 transfer speeds).

The number of swapping operations on the partitions can

be determined from the basic steps delineated in the last chapter

and depends on the location of variables which are to be eliminated.

In the worst case, we need (2N - 1) swaps where N is the number

of partitions currently used. This number is critical for the

performance of the program as partitions usually involve a large

number of coefficients . Ways to optimise the number of I/0

operations are discussed in the next chapter.

7.

A further complication arises which could endanger the

economy of the program. For the basic step 5, (elimination of

* 'old variables') the coefficients cn2 which are though t to reside

in the equation buffer are needed. But in the meantime, I/0

operation 3 (transfer of equation buffer on to disk when full)

may have been carried out and the required coefficients may no

longe r be in core. Thus we must k e ep track of which coefficients

are in core and which are on disk. If the coefficients are no

longer in core they must be swapped into core and this requires

additional I / 0 operations, the number of which depends greatly

on the size of the equation buffer. If the buffer is very large

then swapping of the equation buffer may occur only rarely.

5. OPTIMISATION OF 1/0 OPERATIONS AND CHOICE OF FRONT
PARTITION AND EQUATION BUFFER LENGTH

When selecting the size of the buffer for the Front matrix,

we must a im to avoid partitioning since it is expensive . If no

partitioning is involved the equation buffe r may b e made small

to accommodate a big Front matrix, the only restriction being

that, the buffer has to be at least 2 blocks long and accommodate

the largest equation. On the other hand, when partitioning of

the Front is unavoidable because of core restrictions or size of

p roblem, there is a case for decreasing the partition size in

favour of a large equ a tio n buffer for the reasons e xplained in

the last c ha pte r.

To reduce the number of I / 0 operations further, a number

of situations where swapping is not required is examined. Swapping

of partitions is not require d when:

(A) There are no coeffic i e n t s to be assembled into the

partition, and no variables have been eliminated yet

in the current element loop.

(B) There are no coefficients to be assembled and the

coefficients c~2 (kN < 2 > kN+l) are zero.

(C) Swapping of the equation buffer is not required when

the coe fficients c~2 (kN < 2 > kN+l) i n the Front

partition are ze ro .

8 0

A check on conditions C and B is made by Subroutine SAVES

in the program.

6. SHORT DESCRIPTION OF COMPUTER PROGRAM

The program consists of two main subroutines PREFR and

SFRONT. The subroutine PREFR works out the coded desti nations

of the variables and writes them onto disk. This program is

essentially the same as published by Irons and is included for

completeness. Subroutine SFRONT performs the assembl y and

reduction of the structure or substructure stiffness ma trix as

d e tailed in the last c hapters.

It uses the following subroutines:

MOVE to~ equation coefficients to buffer.

GAUSS ...• to modify the coefficients in the Front ma trix with

Eq. (1).

ASSEMB ... to a ssemble stiffness coeffic i e nts into the Front

matrix.

EMPDI to empty equation buffer on disk when full.

RESBUF 0 0 0 to reset buffer pointer.

SWAPF to swap ~ront partitions in and out· of core.

SAVES to ~ ~waping (see last chapter) .

UN COD to uncode coded destinations (uses CODEST)

PALl to work out partition limits (kN' KN+l).

In addition the following function s are used:

LADDR(M)

LADST (I,J)

is the l ocal address in the current Front

partition of a coefficient M, M.

is the l ocal address of a coefficien t i,j in

the Element stiffness matrix.

Subroutines are also used to clear integer and r eal arrays and

write error messages.

The blocked I/0 operations are performed by subroutine

BLKIO which has a machine dependent coding. Files are opened and

channel numbers assigned by FILO which is also machine dependent.

9.

The fast vector operations are performed by subroutine

SVECT. When a computer with vector processor is used, the

appropriate coding as given in the Users Manual of the machine

should be inserted here. For use on machines without this

capability the Standard Fortran coding may be used as shown.

The computer program is listed in Appendix B. A list

of some important arrays and variables is given in Appendix A.

In addition, a program is included to test and demonstrate the

substructure capability of the sub-routine SFRONT in Appendix C.

7. SUBSTRUCTURING WITH THE FRONTAL SOLUTION

For very large structures, it is often desirable to

divide the mesh into several smaller meshes or substructures.

These are treated as large elements and the boundary stiffness

matrix obtained by e limination of the 'internal' degrees offreedom.

The substructuring has the following main advantages:

(l) The process of solving the structure is a continuous

one and errors may be detected at substructure level.

Remedial actions need only to be taken in the particular

substructure involved .

(2) Sometimes a structure consists of many subareas having

a similar geometry. Thus the stiffness matrix of a

particular type of substructure may be computed only

once and the main structure assembled with as frequent

re-use of the substructure stiffness as possible.

(3) For excavation type of problems in rock or soi l mechanics

the substructuring technique offers additional advantages.

By defining the rock or soil mass in the full excavation

as one large substructure and the material to be excavated

at each stage as smaller substructures the analysis of

each excavation stage just requires the assembly of

substructure stiffnesses and the solution for the sub­

structure boundary degrees of freedom.

10.

Substructuring with the Front Solution is relatively

simple. All that has to be done is to suspend the elimination

of selected variables at the boundary of the substructure. The

coefficients which remain in the Front matrix after the elimination

of all other variables then constitute the stiffness coefficients

for the super element. After suitable reordering, the stiffness

matrices of all super elements can be obtained and assembled in

the usual manner to solve for the complete structure.

Thus, substructuring involves the basic steps.

(1) The PREFRONT subroutine read the substructure "Nicknames"

into the vector NIX. This will modify the coding of the

destinations of the substructure variables in such a way

as to prevent their elimination.

(2) Perform the usual assembly and elimination for all elements

which make up the substructure.

(3) Remove zero rows and columns from the Front matrix and

reorder to obtain the substructure stiffness matrix in

condensed form.

After this has been done for all substructures, perform

the assembly and elimination in the usual way but this time

involving all substructures which make up the structure to be

analysed.

The substructuring capability is demonstrated with a test

program in Appendix II where the substructure consists of a regular

assembly of 4 node/8 degrees of freedom Elements.

8. RE-SOLUTION

Once the global stiffness matrix has been reduced and

stored a re-solution for as many load cases as desired can be

made.

It is convenient to separate the resolution and back

substitution part completely from the reduction of the left hand

11.

side in order to have as much space available as possible.

Because the size of the vector needed for each load case is only

MAXPA no partitioning of the Front should be required even for

large problems and the basic procedures are as follows:-

(1)

(2)

(3)

Read the Element right hand side (RHS) into the

first part of ELPA.

Assemble into the space reserved for the Front-RHS.

* Reduce RHS using the coefficients en on disk

i.e . modify the Front RHS with

* 1 c.
* F . F . - 1n F 1 1 * n c n,m

(7)

The procedure is exactly the same as a non­

partitioned reduction except that v ectors are involved instead

of matrices.

Th e results are obtained i n Element form by back

substitution i.e.

in the same manner as by Irons .

9. FURTHER FACILITIES OF THE COMPUTER PROGRAM
AND DISCARDED FACILITIES

This section deal s with features which are i ncluded

in the p r esent p rogram and facilities which have not been

considered but can be implemented easily.

9.1 Treatment of Constraints

(8)

In the prese nt program a restrained degree of freedom

is tre ated by setting the corresponding destination to zero and

t h e r e by preventing the assembly of the corresponding equation.

12.

This is the simplest and most economical way. Various other

types of constraints, as shown by Irons {l) can be easily

implemented.

9.2 Computation of the Determinant of the Structure

Stiffness Matrix

This is often required for vibration and stability

analysis and is incorporated by additional coding in Subroutine

GAUSS. After elimination the value of log10/K/ is stored in the

variable DET. In addition the frequency of the occurrence of a

negative diagonal element is determined and stored in NEG. If

NEG is odd the sign of the determinant is positive otherwise

negative. The variables DET and NEG are in Common block/ EIGEN/.

9.3 Check on Singularity and Indefiniteness

A check on singularity and indefiniteness is made during

elimination. If the diagonal coefficient is less than or equal

to zero an Error message is produced. Because of machine accuracy,

the diagonal coefficient will not be exactly zero even for a

singluar matrix. More appropriate checks have been suggested (6),

that is,

(l) Singularity

d. < t.
J J

(9)

(2) Indefiniteness

(10)

where dj is the j-th diagonal element at the j-th elimination

stage and

8£ r.
J

where £ is the smallest positive floating point number for which

(l + £) > l on the computer used and rj is the norm of the j-th

row of K. This can be easily implemented in Subroutine GAUSS if

the machine accuracy £ is known.

13.

9.4 Check on Accuracy of Solution

In the original code by Irons a simple roundoff criterion

was included. The author has found this criterion not entirely

satisfactory because it is not sensitive to right hand sides and

was found to register only if the difference in stiffness is too

great between elements.

A better a priori estimate of the matrix condition is the

Eucledian condition number (6). But this also involves additional

unproductive computation and may be expenside.

The author favours the a pos t er ori estimate by one step

of iterative refinement of the solution because it is a more

productive method giving not only an estimate of the accuracy but

also an improved solution. It only involves a re-solution and

matrix multiplication. The iterative refinement may be made only

for one load case and not repeated for the other load cases if

the condition number is satisfactory.

First, the load case is solved with the re-solution

facility to give x~, the unrefine d result. Then the residual

forces are worked out:

F. - K .. xc:'
]. l. J J

(11)

A second resolution with Rc:' as new right hand side will give the
].

0 0
error on xj, 6xj.

The expression

(12)

provides an estimat e on the accuracy of the solution xj.

10. CONCLUSIONS

A computer program for the assembly and solution of a

symme tric positive definite set of equations has been presented.

The program is based on the Frontal Solution t echnique by Irons

but uses frontal partitioning to make the problem size which can

14.

be solved practically indepe ndent of the memory size .of the

computer used.

In addition, a great deal of effort has been made to

optimise the I/0 operations during partitioned elimination. Fast

vector or pipeline processing has also been considered in the

coding.

The resulting program is an improvement, not only in

capability but also in performance . The program should be useful

not only in mini-computer applications but also for large

c omputers, because a reduction or optimisation of the band width

is not required in the Frontal solution.

The solution time and storage requirement is influenced

only by the numbering of the Elements which is a natural one.

7
16

4
13

1
10

EQUATION

1
2
5
4

10
11
14
13

EQUATION

0
2
5
4
0

11
14
13

EQUATION

[]
2
5
4

ffi) '
11
14
13
11
12

F I GURE 1

m

ill

8
17

5
14

2
11

DESTINATION

1*
2
3
4
5*
6
7
8

15.

(a)

DESTINATION

1
2
3
4
5
6
7
8

(b)

DESTINATION

1
2
3
4
5
6
7
8
9

10

(c)

1m

!ill

9
18

6
15

3
12

+ non-zero entry
P diagonal
0 zero coeff.

1 2 3 4 5 6 7 8
p
+ p
+ + p
+ + + p
+ + + + p
+ + + + + p
+ + + + + + p
+ + + + + + + p

1 2 3 4 5 6 7 8

0
0 p
0 + p
0 + + p
0 0 0 0 0
0 + + + 0 p
0 + + + 0 + p
0 + + + 0 + + p

1 2 3 4 5 6 .7 8 9 10
p
+ p
+ + p
0 + + p
+ + + 0 p
+ + + + + p
+ + + + + + p
0 + + + 0 + + p
+ + + 0 + + + 0 p
+ + + 0 + + + 0 + p

Stor age o f stiffness c oefficie nts
during Frontal solution

16 .

STORAGE XN FRONT:

STORAGE XN ELPA:

+++P++++P++*++M++++++P
LO L

FIGURE 2 Storage o f c oefficients in l ong
vector ELPA

APPENDIX A

ELPA

HBWR

17.

LIST OF IMPORTANT ARRAYS AND VARIABLES

main working s pace

an indicator if a partition ~as ~een written at least
once

INDABL indicator on the space avail ability in t he Front
matrix also indicates in which partition space is
available (coding: "+" occupied "-" v e f ree)

LCDEST

LUDEST

list of coded element destinations

list of uncoded element destinations (not entirely
true since the des tinations are still coded with a
"-" ve sign for variables ready f or elimination).

LPAL• ••.•.• l i st of ~rtition _limits

LISTEQ •......•.....• list of ~tart addresses of ~uations in the buffer
or on disk. L.ists address of pivot , block number
and relative address in block for each element loop

KURPA current equation length

LBLK _length of phys i cal ~locl on disk (real words)

NBLKA, NBLKE first and last ~locl currently in the equation buffer

NPA, NPAC• number of ~rtition to be swapped into core and
number of ~rtition eurrently in core

NELZ, LFRBUF, LEQBUF length of buffers for element stiffness matrix,
Front matrix and equation buffer (real words)
MUST BE DIVISIBLE BY THE BLOCK LENGTH .

18.

APPENDIX B - LISTING OF THE COMPUTER PROGRAM

SUBROUTINE PREFR
c---
c PREFRONT ROUTINE
c---

COMMON NIXC10000lrMAXPArNELEMZrLDESTC62l
c--
c VARIABLES IN BLANK COMMON:
C NIX WORKING SPACE
C MAXPA MAX, FRONT WIDTH
C NELEMZ NUMBER OF ELEMENTS
C LDEST ELEMENT DESTINATIONS
c---

COMMON /FILES/ NF6rNDIM6rNF7rNDIM7rNF8rNDIM8rNF9rNDIM9
DIMENSION LVABLC601rMVABLC500lrLCDESTC601
EQUIVALENCE CLPREQrLDEST(1))
EQUIVALENCE CKURELrLDESTC2>>
EQUIVALENCE CLCDESTC1lrLDESTC3ll
NIXEND= 2000
CALL ICLARCMVABLr500l
MAXPA=1
NIZZ = 0

c--
c PUT ALL ELEMENT NICKNAMES IN LONG VECTOR NIX
c--

DO 10 NELEM= 1rNELEMZ
CALL GETELNCNELEMrKURELrLVABLl
DO 8 I=1rKUREL
NIC= LVABLCII
NIZZ= NIZZ +1
NIXCNIZZ>= -NIC

8 CONTINUE
NIXCNIXEND+1-NELEMI= NIZZ

10 CONTINUE
c---
c PUT SUBSTRUCTURE NICKNAMESCIF ANY> AT THE END OF NIX
c--

CALL GETSUNCKURELrLVABL>
IFCKUREL ,EQ, Ol GOTO 11
NIZS= NIZZ
DO 9 I=lrKUREL
NIC= LVABLCI>
NIZZ= NIZZ+l
NIXCNIZZ>= -NIC

9 CONTINUE
11 CONTINUE

KURELS= KUREL
LCUREQ= 0
NVABZ= 0

c--------- -------------------~--------------------
c FIND DESTINATIONS
c--

N1= 1
DO 26 NELEM=1rNELEMZ
LPREQ= LCUREQ
LCUREQ= NVABZ
NIXE= NIXEND+l-NELEM
NZ= NIXCNIXE>
KUREL= NZ - N1 +
DO 22 NEW= N1rNZ
NEWA= NEW

)

NIC= NIX<NEW>
LDES= NIC

19.

IF<NIC .GT, Ol GOTO 20
LDES= 1

14 CONTINUE
IF<HVA8L<LDESl ,EQ, Ol GOTO 16
LDES= LDES + 1
IF<LDES .LE. HAXPAl GOTO 14
HAXPA= LDES

16 CONTINUE
HVA8L<LDESl= 1

c---c RECORD FIRSTrLAST AND INTERH. APPEARANCES
c--

KOUNT= 1000
DO 18 LAS= NEWrNIZZ
IF<NIX<LASl .NE. NICl GOTO 18
NIX<LAS>= LDES
KOUNT= KOUNT + 1000
LAST= LAS

18 CONTINUE
NIX<LAST>= LDES + 1000
lDES= LDES + KOUNT
NIX<NEW>= LitES

20 CONTINUE
NZ1= NEW-N1+1
LCDEST<NZ1l= LDES

22 CONTINUE
N1= NEWA+ 1

c--c UPDATE HVA8LrCOUNT ELIMINATED VARIABLES
C AND WRITE DESTINATIONS ON DISK
c---

Do 24 KL=1rKUREL
CALL CODEST<KL,NSTRESrLDESrLCDESTrKUREL)
IF<NSTRES .NE. 0 .AND. NSTRES .NE. 1> GOTO 24
HVABL<LDES>= 0
NVABZ= NVA8Z+1

24 CONTINUE
WRITE<NF9'NELEM> <LDEST<I>ri=1tNDIH9l

26 CONTINUE
c---
c WRITE SUPERELEMENT DESTINATIONS ON DISK
c---~-----------------

25
23

NIZZ= NIZS
KUREL=KURELS
IF<KUREL ,EQ, Ol GOTO 23
DO 25 KL=1rKUREL
NIZZ= NIZZ + 1
LCDEST<KL>= NIX<NIZZl - 1000
CONTINUE
CONTINUE
NELEH= NELEHZ+1
WRITE<NF9'NELEH> <LDEST<Iltl=1rNDIH9l
RETURN
END

20.

SUBROUTINE SFRONT
c--
c
c
c
c
c
c
c

S U P E R F R 0 N T

A SECOND GENERATION FRONTAL SOLUTION PROGRAM

G.BEER UNIVERSITY OF QUEENSLAND 1979

c---
coMMON ELPA<5000>•MAXPA,NELEMZ,LDEST<62)

c--
c VARIABLES IN BLANK COMMON l
C ELPA WORKING SPACE
C MAXPA MAXIMUM FRONT WIDTH <FROM PREFRONT>
C NELEMZ NUMBER OF ACTIVE ELEMENTS
C LDEST ELEMENT DESTINATIONS
c---

EDUIVALENCE <KUREL•LDEST<2>>
EQUIVALENCE <LCDEST(l),LDEST<3>>
COMMON /EIGEN/ DET,NEG
COMMON /PARTL/ NST,NEND
COMMON /PARA/ LO,Ll
COMMON /BLOKL/ LBLK
COMMON /FILES/ NF6,NDIM6,NF7,NDIM7,NFB,NDIMBrNF9,NDIM9
COMMON /IOCONV/ IREAD,IWRIT
COMMON /EDL/ KURPA
COMMON /ENDQN/ LASTBL
COMMON /BUFSZE/ NELZrLFRBUFrLEQBUF,LFRBBLrLEQBBL
COMMON /INCORE/ NBLKA,NBLKE

c---
c CURRENT COMPILATION IS FOR:
c
c
c
c
c

ELEMENT SIZE= 60 D,O,F,
MAXIMUM FRONT WIDTH= 500
MAXIMUM NUMBER OF PARTITIONS= 50

C DIMENSION FOR LISTED= 50 t 60*3 = 230
c--

c

DIMENSION LUDEST<60)
DIMENSION LCDEST<60>
DIMENSION INDABL<500>
DIMENSION HBWR<50)
DIMENSION LPAL<51)
DIMENSION LISTEG<230>

MAX NUMBER OF PARTITIONS THIS COMPILATION:
MAXPAR= 50

C SIZE OF ELPAl
LSIZE= 5000
IF<NELZtLFRBUFtLEGBUF .GT. LSIZE> CALL ERROR<O,,LSIZE,3>
LFRBBL= LFRBUF/LBLK
LEDBBL= LEDBUF/LBLK

c---
c ELPA ADRESSES
c--
c START OF FRONT MATRIX

LO= NELZ
C START OF EQUATION BUFFER

Ll= NELZ + LFRBUF
C CLEAR ARRAYS AND WORK OUT PARTITION LIMITS

21.

CALL CLEAR<ELPA•1,LSIZE>
CALL PALI<MAXPAR,MAXPA,INDABL•LPAL,NOPAR>
PRINT 3002,MAXPA,NOPAR

3002 FORMAT(//' MAXIMUM FRONT WIDTH='•l5/
1 ' MAX. NO, OF PARTITIONS=',I 5//)

CALL ICLAR<HBWR,NDPAR>
DET= o.
NEG= 0
NBLK= 0
NBLKA= 1
NBLKE= LEQBBL
lEO= L1
NPAC= 1
DO 1 HELEM= l•NELEMZ
TYPE 3003,NELEM

3003 FORMAT<I5>
C READ CODED ELEMENT DESTINATIONS

READ<NF9'NELEM> <LDEST< J >,I=1•NDIM9>
C UNCODE AND UPDATE SPACE INDICATOR

CALL UNCOD<LCDEST,KUREL,LUDEST,INDABL,MAXPA,NDPAR>
C READ ELEMENT STIFFNESS

READ<NF6'1) <ELPA<I>•I=1•NDIM6 >
NVAR= 0
III= 1
DO 2 NPA=1•NDPAR

C FIRST EQUATION IN PARTITION NPA
NST= LPAL<NPA> + 1

C LAST EQUATION IN PARTITION
NEND= LPAL<NPA + 1>
IF<NEND .GT, KURPA> NEND= KURPA
NVA= 0
LISTEQ<III> = 0
I= III

c--
c ASSEMBLY
c---

Do 4 HV=1•KUREL
IRDY= 0
LDES= LUDEST<HV >
I F<LDES> 21,4,20

21 CONTINUE
LDES= -LDES
IRDY= 1

20 CONTINUE
LPA= INDABL<LDES>
IF<LPA .NE. NPA> GOTO 4
CALL SWAPF<NPArNPAC,HBWR>
CALL ASSEMB <LDESrLUDESTrNU,KUREL>
IF<IRDY , EQ, 0) GO TO 4
NUA= NVA + 1
NUAR= NVAR + 1
LISTEO<III>= NUA
I= I + 1
LI STEQ <I> = LDES
I= I+2

4 CONTINUE
c--
c ELIMINATION OF OLD VARIABLES <THOSE EL I MINATED IN PREVIOUS PART!
C-------- ------------ -------- - - --- - --- - - - --- - --- ---- - - - --- - --- - -TIONS>

IF<NPA ,EQ, 1> GOTO 5
IF<NVAR ,EQ, 0) GOTO 5

ICYCL= 1
NEW= 0
I= 0
NPAM= NPA-1
DO 6 Nf'=1rNPAM
I= I + 1
NVA= LISTEGC I)

22.

IFCNVA .EG. 0) GOTO 6
CALL SWAPFCNPArNPACrHBWR)
DO 7 N=1rNVA
I= I+1
LDES= LISTEGC I)
I= It1
NNBLK= LISTEG<I>
I= I+1
LIEG" LISTEGC I>
IFCLASDES .EG, LDES> GOTO 77
CALL SAVES<LDESriEGriCYCLrJES>
IFCJES .EG, 1) GOTO 7

77 CONTINUE
CALL RESBUFCIEGrNBLKrNNBLKrLIEGriCYCL>
CALL MOVE<NEWrLDESriEG>
CALL GAUSS<NEWrLDESriEQ)

7 CONTINUE
6 CONTINUE
5 CONTINUE

c--------------------------··-----------------
c ELIMINATION OF NEW VARIABLES <THOSE TO BE ELIMINATED IN CURRENT
C--- ---------------~----------------------- PARTITION)

NEW= 1
NVA= LI STEG <II I>
I= III
IFCNVA ,EG, O> GOTO 44
DO 45 N=1rNVA
I= I + 1
LDES= LISTEG<I>
LASI•ES= LDES
LEG= IEG-Ll
IBLK= LEG/LBLK + 1
NNBLK= NBLK + IBLK
LIEG= LEG - CIBLK-1>*LBLK
I= I + 1
LISTEG<I>= NNBLK
I= I + 1
LISTEGC I>= LIEG
CALL EHPDI<IEGrNBLK>
CALL HOVECNEW•LDESriEG>
CALL GAUSSCNEWrLDES,IEG>
INDABLCLDES>= -INDABLCLDES>

45 CONTINUE
C ADDRESS OF LAST COEFFICIENT IN EQUATION BUFFER

LEG= lEG- L1
IBLK= CLEG-1)/LBLK + 1
LASTBL= NBLK + IBLK
NDADD= LEG - CIBLK-1>*LBLK

44 CONTINUE
III= I+1

2 CONTINUE
LASTP= NDPAR-1

c--
c NOW RETRACK AND HODIFY EQUATIONS IN LOWER

23.

C PARTITIONS NOT YET HODIFIED
c---

IF<LASTP .EQ, 0) GOTO a
ICYCL= 2
NEW= 0
DO 9 NPA=1rLASTP
NST= LPAL<NPA> + 1
NEND= LPAL<NPA + 1)
IF<NEND ,GT. KURPAl NEND=KURPA
I= LISTEQ(1l*3 + 1
DO 10 NP=2rNDPAR
I= I + 1
NVA= LISTEQ<Il
IF<NP .GT. NPAl GOTO 99
I= I + NVA*3
GOTO 10

99 CONTINUE
IF<NVA ,EQ, 0) GOTO 10
DO 11 N= 1 r NVA
I= I + 1
LDES= LISTEG<Il
I= I + 1
NNBLK= LISTEG<Il
I= I + 1
LIEG= LlSTEQ(Il
CALL RESBUF<IEGrNBLKrNNBLKrLIEGriCYCLl
CALL SAVES<LDESriEGriCYCLrJESl
IF<JES ,EQ, 1l GOTO 11
CALL SWAPF<NPArNPACrHBWRl
CALL GAUSS<NEWrLDESriEQl

11 CONTINUE
10 CONTINUE

9 CONTINUE
a CONTINUE
1 CONTINUE

c---------------------------------··--------------------
c WRITE CONTENTS OF EQUATION BUFFER IF NECESSARY
c--·-----------

IF<NBLK .GE, LASTBLl RETURN
NBLOKS= LASTBL-NBLK
CALL BLKIO<IWRITrNF7rNBLK+1rNBLOKSrELPArL1+1l

c---
c CONDENSE AND REORDER SUBSTRUCTURE STIFFNESS HATRIX IF REGUIREI1
c---~---------

NELEH= NELEHZ + 1
READ<NF9'NELEH> <LDEST<Ilri=1rNDIH9l
IF(KUREL ,EQ, 0) RETURN
DO 200 NPA= 1rNOPAR
CALL SWAPF<NPArNPACrHBWRl
NPAC= 0
NST= LPAL<NPAl + 1
NEND= LPAL<NPAt1l
IF<NEND .GT.KURPAl NEND= KURPA
L=O
DO 201 I=lrKUREL
IDES= LCDEST<Il
DO 202 K=1ri
L= L+1
KDES= LCDEST<Kl
LDES= HAXO<IDESrKDESl
HDES= HINO<IDESrKDESl

24.

LPA; INDABL<LDES l
IF<LPA .NE, NPA> GOTO 202
LL; LADDR<LDES-11 t MDES
ELPA<L>; ELPA<LLl

202 CONTINUE
201 CONTINUE
200 CONTINUE

C PRINT SUBSTRUCTURE STIFFNESS
PRINT 3001r(KrK=1rKURELl

3001 FORMAT(//' CONDENSED SUBSTRUCTURE STIFFNESS MATRIX:'I/4Xr 20I6l
LA=1
LE=1
DO 203 K=1rKUREL
PRINT 3000rKr<ELPA<L>• L=LArLE>
LA= LEtl
LE= LAtK

203 CONTINUE
3000 FORMAT<1Xri3r20F6. 2l

PRINT 3004rDETrNEG
3004 FORMAT(// ' LOG10 OF DETERMINANT='rF15 . 4/

1 ' NO OF NEGATIVE PIVOTS= ' ri5//)
RETURN
END
SUBROUTINE HOVE<NEWrLDESr i EQl

c--
c
C TO HOVE EQUATION COEFFICIENTS FROM FRONT PARTITION TO EQUATION
C BUFFER
C NEW=1 NEW 'EQUATION
C NEW=O OLD EQUATION
c
C LDES DESTINATION OF VARIABLE TO BE ELIMINATED
c
C IEQ CURRENT ADDRESS OF BUFFER PONTER
c
c---

coHHON ELPA<1>
COHHON /PARTL/ NSTrNEND
COMMON /EQL/ KURPA
COMMON /PARA/ LOrLl
IF<NEW .EO. Ol GOTO

C NEW EQUATION
L= LADDR(LDES-ll
H= IEQ
DO 2 J=lrLDES
L= Ltl
H=M+l
ELPA<H> = ELPA (L l
ELPA< L> = 0,

2 CONTINUE
IF(LDES .EO. NEND> GOTO 7
N1= LDES t 1
K= 0
DO 3 J=N 1, NENII
K=K t 1
L= L t LI•ES
H= H t 1
ELPA<M> = ELPA<Ll
ELPA<U= Q,

L= L t K
3 CONTINUE

25.

7 CONTINUE
NDEQN= lEO t KURPA
IF<H ,EQ, NDEQN) GOTO 5
H1= Ht1
DO 6 I=H1,NDEQN
ELPA<I>= O.

6 CONTINUE
H= NDEQN

5 CONTINUE
ELPA<H t 1> = LDES
ELPA<H t 2>= KURPA
RETURN

C OLD EQUATION
1 CONTINUE

L= LDES t LO
H= lEO t NST - 1
NREST= NST
DO 4 J=NST•NEND
H= Ht1
ELPA<H>= ELPA<L)
ELPA<U= o,
L= L t NREST
NREST= NREST t 1

4 CONTINUE
RETURN
END
SUBROUTINE GAUSS<NEW,LDES,IEQ)

c-----------------·-------------------------------------
c
C HODIFIES ALL EQUATIONS OF PARTITION NPA
C <ELIHINATION OF VARIABLE LDES>
c
C lEO ADDRESS OF EQUATION BUFFER POINTER
c
c---

COMHON ELPA(1)
COHHON /EIGEN/ DET•NEG
COHHON /EQL/ KURPA
COMMON /PARA/ LO•L1
COHHON /PARTL/ NST,NEND
NDIAG= IEQ t LDES
PIVOT= ELPA<NDIAG>
ELPA<NDIAGl= o,

C CHECK FOR SINGULARITY AND WORK OUT DETERMINANT
IF<NEW .EO. Ol GOTO 2
PIVO= ABS<PIVOT>
DET= DET t ALOG10(PIVO>
IF<PIVO .LT. 1.E-20) CALL ERROR<PIVOT,LDES,2>
IF<PIVOT .GT. 0,) GOTO 2
NEG= NEG t 1
CALL ERROR<PIVOT,LDES,1l

2 CONTINUE
L= LO
HI= IEO t NST- 1
DO 1 I=NSTrNEND
HI= HI t 1
CONS= ELPA<HI)
IF<CONS ,EQ, Q,) GOTO 3
CONS= CONS/PIVOT
H= lEO

C CALL VECTOR PROCESSOR

26.

CALL SVECT<ELPA,CONS•L•M•I>
GOTO 1

3 CONTINUE
L= L + I
CONTINUE
ELPA<NDIAG>= PIVOT

C MOVE BUFFER POINTER TO END OF EQUATION
lEG= lEG + KURPA + 2
RETURN
END
SUBROUTINE UNCOD<LCDEST,KUREL•LUDEST,INDABL•MAXPA•NDPAR>

c---------------------------------··----------------------------------c UNCODES DESTINATION VECTOR LCDEST AND
C UPDATES SPACE INDICATOR INDABL
c---·----------------------------

DIMENSION LCDEST<KUREL>
DIMENSION LUDEST<KUREL>
COMMON /EQL/ KURPA
DIMENSION INDABL<MAXPA>
DO 1 K=1•KUREL
IRDY= 0
CALL CODEST(K,NSTRES•LDES,LCDEST,KUREL>

, IF<LDES ,EQ, Ol GOTO 3
IF<NSTRES .NE, 0 .AND, NSTRES.NE. 1> GOTO 2

C VARIABLE LDES CAN BE ELIMINATED
IRDY= 1

2 CONTINUE
NPA= IABS<INDABL<LDES>>
INDABL<LDES>= NPA

3 CONTINUE
IF<IRDY ,EQ, 1) LDES= -LDES
LUDEST<K>= LilES

.1 CONTINUE
CURRENT EQUATION LENGTH

H= MAXPA
5 CONTINUE

IF<INDABL<M> .GT, Ol GOTO 4
M= M-1
GOTO 5

4 CONTINUE
KURPA= M
NDPAR= INDABL<KURPA>
RETURN
END
SUBROUTINE PALI<MAXPAR•HAXPA•INDABL,Lf'AL,NDf'ARl

c--
c SETS UP PARTITION LIMIT ARRAY LPAL
C DEPENDING ON SIZE OF FRONT BUFFER LFRBUF
C AND MAXPA (MAXIMUM FRONT WIDTH l
C TOTAL NUMBER OF PARTITIONS REQUIRED: NDPAR
c--

DIMENSION INDABL<MAXPA>•LPAL<MAXPAR>
COMMON /BUFSZE/ NELZ•LFRBUF,LEGBUF
LPAL< 1 >= 0
DO 1 NPA=1•MAXPAR
FAC= 2* LPAL<NPA> t 1
FAC1= 2*LFRBUF
LDSPD= SGRT<.25*FAC*FAC + FAC1l - ,5*FAC
LPAL<NPA + 1>= LPAL<NPA> t LDSPD
IF<LPAL<NPA t 1> .GE, MAXPA) GOTO 2
CONTINUE

CALL ERROR<O.oNPAo41
2 CONTINUE

LPAL<NPA+ll= MAXPA
NDPAR= NPA

27.

c--
c SET UP ARRAY INDABL I CODING: '+'-VE=OCCUPIED;'-'VE=F REE
c---·---

no 3 M=1oMAXPA
DO 4 NPA=loNDPAR
IF<M .LE. LPAL<NPA+111 GOTO 5

4 CONTINUE
5 CONTINUE

INDABL<MI= -NPA
3 CONTINUE

RETURN
END
SUBROUTINE ASSEMB<LDESoLUDESToNVoKUREL>

c---
c ASSEMBLES EQUATION LDES INTO CURRENT FRONT PARTITION
c
c--

coMMON ELPA<l>
DIMENSION LUDEST<KUREL>
LL= LADDR<LDES-11
DO 1 K=1oKUREL
II= LUDEST<K>
IF<II> 2ob3

2 CONTINUE
II= -II

3 CONTINUE
IF<II ,GT, LDES> GOTO 1
L= LADST<KoNVl
LF=LL + II
ELPA<LF>= ELPA<LF> + ELPA<LI
CONTINUE
RETURN
END
FUNCTION LADDR<M>

c---
c COMPUTES THE ADDRESS OF COEFF MrM IN CURRENT PARTITION
c---

coMMON /PARA/ LOrL1
COMMON /PARTL/ NSToNEND
NS= NST -1
HR= H-NS
LADDR= MR*NS + HR*<MR+ll / 2+ LO
RETURN
END
FUNCTION LADST<IrJ)

c--
c COMPUTES ADRESS OF COEFF IrJ IN ELEMENT STIFFNESS MATRIX
c--

II= MAXO<IoJ)
JJ= MINO<IoJ)
LADST= JJ + II*<II-11/2,
RETURN
END
SUBROUTINE EMPDI<IEQoNBLK>

c--
c EMPTIES EQUATION BUFFER ONTO DISK WHEN FULL
c

28.

C IEQ BUFFER POINTER
C NBLK NUMBER OF BLOCKS WRITTEN
c---

coHHON ELPA<l>
COMMON /PARA/ LO•L1
COMMON /EGL/ KURPA
COMMON /INCORE/ NBLKA•NBLKE
COMMON /BLOKL/ LBLK
COMMON /FILES/ NF6,NDIM6,NF7•NDIH7,NF8rNDIMS,NF9•NDIH9
COMMON /IOCONV/ IREAD,IWRIT
COMMON /BUFSZE/ NELZ•LFRBUFrLEGBUF,LFRBBL•LEGBBL

CHECK IF ANOTHER EQUATION FITS
NDEGN= IEQ + KURPA + 2 - L1
IF<NDEGN .LT. LEGBUF> RETURN

C DOES NOT FIT >> WRITE BUFFER ONTO DISK
NBLOKS= <IEG-L1l/LBLK
CALL BLKIO(IWRIT,NF7,NBLK + 1•NBLOKS,ELPArL1+11

C HOVE LAST BLOCK AT THE BEGINNING OF BUFFER IF NOT COMPLETELY FULL
LEGE= IEQ
LEG= NBLOKS *LBLK + L1
IEG= L1
IF<LEQ .EG. LEGE> GOTO 10
LEG= LEG + 1
DO 1 I=LEGrLEQE
lEG= IEG + 1
ELPA<IEG>= ELPA<I>

1 CONTINUE
10 CONTINUE

NBLK= NBLK + .NBLOKS
NBLKA= NBLK + 1
NBLKE= NBLK + LEGBBL
RETURN
END
SUBROUTINE RESBUF<IEG,NBLK•NNBLK•LIEQ,ICYCL>

c---
c RESETS BUFFER POINTER IEG TO LIEG IN BLOCK NNBLK
C AND SWAPS<ICYCL=1> OR READS<ICYCL=2> BLOCKS IF NECESSARY
c
c---

coHHON ELPA<1>
COMMON /PARA/ LO,L1
COMMON /BLOKL/ LBLK
COMMON /EGL/ KURPA
COMMON /INCORE/ NBLKA,NBLKE
COMMON /FILES/ NF6rNDIM6rNF7,NDIH7,NFB,NDIMB,NF9rNDIM9
COMMON /IOCONV/ IREAD,IWRIT
COMMON /BUFSZE/ NELZrLFRBUFrLEGBUFrLFRBBL,LEQBBL
COMMON /ENDGN I LASTBL

c--
c IS EQUATION STILL IN CORE ?
c--

IF<NNBLK ,LT. NBLKA> GOTO 2
LEG= LIED + KURPA + 2
LEGB= (LEG-11/LBLK
NDBLK= NNBLK + LEGB
IF<NDBLK .LE, NBLKE> GOTO 1

c--
c NO SWAP BLOCKS
c---·--

2 CONTINUE
IF<ICYCL ,EQ, 21 GOTO 4

29.

NBLKEN= NBLKE
IF<NBLKEN .LT. LASTBL> GOTO 3
NBLKEN= LASTBL

3 CONTINUE
NBLOKS= NBLKEN-NBLKA t 1
CALL BLKIO<IWRIT,NF7,NBLKA,NBLOKS,ELPA,L1+1>

4 CONTINUE
NBLOKS= LEG£18L
LIMIILK= LASTIIL - NNBLK + 1
IF<NIILOKS .GT. LIMBLK> NBLOKS= LIMBLK
CALL BLKIO<IREAD,NF7,NN£1LK•NBLOKS,ELPA•Llt1>
NBLKA= NNBLK
NBLKE= NNBLK + NBLOKS - 1
NBLK= NBLKA - 1
lEG= LIED + L1
RETURN
CONTINUE
lEG= <NNBLK - NBLKA>*LBLK + LIED t L1
RETURN
END
SUBROUTINE SWAPF<NPA,NPAC,HBWR>

c--
c SWAPS FRONT PARTITIONS IN AND OUT OF CORE AS REQUIRED
c
C NPA NEW PARTITION
C NPAC CURRENT PARTITION
c--

coMHON ELPA<l>
DIHENSION HBWR<1>
COMMON /PARA/ LO•L1•L2
COMMON /FILES/ NF6,NDIM6,NF7•NDIM7,NFS,NDIMB,NF9•NDIH9
COMMON /IOCONV/ IREAD•IWRIT
COMMON /IILOKL/ LBLK
IF<NPA ,EQ, NPAC> RETURN
NBLKSB= NDIMS/LIILK
IF<NPAC .EG, 0) GOTO 1
NFROM= <NPAC-1>*NIILKSB + 1
CALL BLKIO<IWRIT,NFB•NFROH,NBLKSB,ELPA,LO+l>
HBWR<NPAC)= 1
CONTINUE
IF<NPA ,EQ, O> RETURN
NFROM= <NPA-1>*NBLKS8 + 1
IF<HIIWR<NPA> .EG, 1) CALL IILKIO<IREAD,NFB,NFROM,NIILKSS,ELPA•
IF<HBWR<NPA) ,EQ, O> CALL CLEAR<ELPA,L0+1•L1> LOti)
NPAC= NPA
RETURN
END
SUBROUTINE CODEST(K,NSTRES•LDES•LCDEST,KUREL>

c--
c INTERPRETS CODED ELEMENT DESTINATIONS
c--

DIMENSION LCDEST<KUREL>
LDES= LCDEST<K>
DO 2 NSTRES= 1•32000
IF<LDES .LT. 1000) GOTO 4
LDES= LDES - 1000

2 CONTINUE
4 CONTINUE

NSTRES= NSTRES - 2
RETURN
END

30.

SUBROUTINE CLEAR<ARRAY,NST,NEN>
DIMENSION ARRAY<NEN>
DO 1 N=NST,NEN
ARRAY<N>= o.
CONTINUE
RETURN
END
SUBROUTINE ICLAR<IARR,NEN>
DIMENSION IARR<NEN>
DO 1 N=1•NEN
IARR<N>= 0
CONTINUE
RETURN
END
SUBROUTINE ERROR<F•I•N>
GOTO <1•2•3> •N
CONTINUE
PRINT 2000,F.I

2000 FORMAT(/' ***NEGATIVE PIVOT <'•E15.5,') AT DESTINATION',I5>
RETURN

2 CONTINUE
PRINT 2001•F•I

2001 FORMAT(//' SINGULARITY CHECKl'/
1 'NEAR ZERO OR ZERO PIVOT <'•E15.5,') AT DESTINATION',I5>

STOP
3 CONTINUE

PRINT 2002•I
2002 FORMAT(//' ***DIMENSION OF ELPA (',I5•'> TOO SMALL')

STOP
4 CONTINUE

PRINT 2003.!
2003 FORMAT(//' ***MAXIMUM NUMBER OF PARTITIONS (',!5,') ECCEEDED'l

STOP
RETURN
END
SUBROUTINE SAVES<LDEStiEQ,ICYCL,JESl

c------------~---
c TO SAVE ON COMPUTATION AND SWAPPING TIME
C FOR ZERO COEFFICIENTS
c--

coMMON ELPA<1>
COMMON /PARTL/ NST,NEND
COMMON /PARA/ LOtLloL2
IF<ICYCL ,EQ, 2> GOTO 1
L= LDES + LO
NREST= NST
DO 2 J=NST•NEND
IF<ELPA<L> .NE. 0,) GOTO 3
L= L + NREST
NREST=NREST + 1

2 CONTINUE
JES=1
RETURN

3 CONTINUE
JES= 0
RETURN

1 CONTINUE
HI= IEQ + NST-1
DO 4 I= NST,NEND
HI= MI+l
IF<ELPA<Mll .NE. O. l GOTO 5

4

5

CONTINUE
JES:o 1
RETURN
CONTINUE
JES=O
RETURN
END

31.

SUBROUTINE SVECT<VECTORrCONSrllrl2rN)
c-----------------------------------··------------------------
c FAST VECTOR PROCESSING ROUTINE TO PERFORM
c
c
c
c
c
c
c
c
c

VECTOR<Il>= VECTOR<Il) - VECTOR(I2l*CONS

VECTOR
CONS
11
12
N

VECTOR
SCALAR

START ADitRESS
START ADitRESS 2

NUMBER OF OPERATIONS

C MACHINE DEPENDENT CODING SHOULD BE USED IN ACTUAL IMPLEMENTATION
C ON A GIVEN MACHINE.
C CODING SHOWN IS STANDARD FORTRAN
c---

DIMENSION VECTOR<l>
DO 2 J=lrN
Il" 11+1
I2= I2+1
VECTOR<Il>" VECTOR<Il> - VECTOR<I2>*CONS

2 CONTINUE
RETURN
END

32.

SUBROUTINE BLKIO<IRWrLUNrNBLArNBLOKSrBUFFERriADDl
c---
c SUBROUTINE TO READ/WRITE DIRECTLY INTO BUFFER
c
c
c
c
c
c
c
c
c
c

IRW

LUN
NBLA
NBLOKS
BUFFER
IADD

SWITCH FOR READ/WRITE
IRW=1 READ
IRW=2 WRITE

LOGICAL UNIT NUMBER
FIRST BLOCK

NUMBER OF BLOCKS TO BE READ/WRITTEN
BUFFER

START ADDRES IN BUFFER

c---

c

coMMON /10/ IPAR<6lrlSTAT<2>
COMMON /BLOKL/ LBLK
DIMENSION BUFFER<ll

INSERT MACHINE DEPENDENT CODING HERE
RETURN
END
SUBROUTINE F I LO

c--- ---------~-
c SUBROUTINE TO ASSIGN CHANNEL NUMBERS
C AND OPEN DIRECT ACCESS AND BLOCKED FILES
c
c
c
c
c
c
c

CHANNELt
NF6
NF9
NF7
NFB

SIZE
NELZ

D.o.F. ·+ 2
LBLK
LBLK

CONTENTS
ELEMENT STIFFNESS
ELEMENT DESTINATIONS
BLOCKED EQUATIONS
BLOCKED PARTITIONS

c---

c

coMMON /FILES/ NF6rNDIM6rNF7rNDIH7rNFBrNDIMSrNF9rNDIM9
COMMON /BUFSZE/ NELZrLFRBUFrLEQBUF
COMMON /IOCONV/ IREADriWRIT
COMMON /BLOKL/ LBLK
IREAD= 1
IWRIT= 2

INSERT MACHINE DEPENDENT CODING HERE
RETURN
END

33.

APPENDIX C TEST PROGRAM

In the following a test program is listed which can be used to

test the subroutines PREFR and SFRONT. The example is a substructure

condensation for a regular patch of square 4 node/8 d.o.F. Elements. The

stiffness matrix of the Elements is read in and all the nodes except the

4 corner nodes of the super element are condensed out. Results can be

obtained for different mesh and buffer sizes

NROWS

NCOLS

[] substructure nodes

o element nodes

34.

c---
c PROGRAM TO TEST OUT SUBROUTINE SFRONT
c--

1000

1001

1

2

3000

3001
1

3002
1
1

3003
1

3004

200
3005

coMMON ELPAC5000>rMAXPArNELEHZrLDESTC62>
COMMON /BUFSZE/ NELZrLFRBUFrLEQBUFrLFRBBLrLEQBBL
COMMON /MESH/ NROWSrNCOLSrNODES
COMMON /BLOKL/ LBLK
COMMON /FILES/ NF6rNDIM6rNF7rNDIM7rNF8rNDIM8rNF9rNDIM9
NCR= 7
CALL ASSIGNCNCRr'INPUT')
NELZ= 36
READCNCRr1000> NROWSrNCOLS
FORMATC16I5>
NELEMZ= NROWS*NCOLS
NODES= CNCOLS+l>*<NROWS+l>
NDOFS= NODES*2
READ<NCRr1000) LFRBUFrLEQBUFrLBLK
CALL FILO
READ<NCRr1000> ISTIF
IFCISTIF .NE. 1> GOTO 1
READCNCRrlOOl) <ELPA<N>rN=1rNELZ>
FORMAT<8F10.0)
WRITE <NF6'1) <ELPA<I>ri=1rNELZ>
GOTO 2
CONTINUE
READ<NF6'1) <ELPACI)ri=1rNELZ)
CONTINUE
PRINT 3000
FORMATC1H1//' *** SUBSTRUCTURE CONDENSATION EXAMPLE ***'>
PRINT 3001rNROWSrNCOLS
FORMAT(//' NUMBER OF ELEMENT ROWS='riS/

' NUMBER OF ELEMENT COLUMNS='riS>
PRINT 3002rNELEMZrNODESrNDOFS
FORMAT<' NUMBER OF ELEMENTS='riS/

'NUMBER OF NODES ='riS/
' NUMBER OF D.O.F, ='riS>

PRINT 3003rLFRBUFrLEGBUF
FORMAT<' SIZE OF FRONT BUFFER ='riS/

' SIZE OF EQUATION BUFFER='riS>
PRINT 3004rCKrK=1r8)
FORMAT(//' ELEMENT STIFFNESS MATRIXl'//4Xr2016)
LA= 1
LE= 1
DO 200 K=1r8
PRINT 3005rKrCELPA<L>rL=LArLE>
LA=LE+1
LE= LA+K
CONTINUE
FORMATC1Xrl3r20F6.2>
CALL PREFR
CALL SFRONT
STOP
END

35.

SUBROUTINE GETELN<NELEM•KUREL•LVABL>
c---c THIS IS A DUMMY SUBROUTINE FOR TESTING SFRONT
C IT CREATES CONNECTIVITY DATA FOR A REGULAR
C ASSEMBLY OF 4 NODE/8 D.O.F. ELEMENTS
c
c
c
c
c

NROWS
NCOLS
NODES

NUMBER OF ELEHENT ROWS
NUMBER OF ELEMENT COLUMNS
NUMBER OF NODES

c------------------------------~-------------------------

1

DIMENSION LVABL<8>
COMMON /MESH/ NROWS,NCOLS•NODES
KUREL= 8
NROW= <NELEM-1l/NCOLS t 1
NCOL= NELEM - NCOLS*<NROW-1>
NCOL1= NCOLS t 1
LVABL<1>= NCOL t
LVABL<2>= NCOL t
LVABL<J>= NCOL t
LVABL<4>= NCOL +
DO 1 N=:S•8

< NROW-1 > *NCOLl
1 t <NROW-1l*NCOL1
1 + NROW*NCOLl
NROW*NCOLl

LVABL<N>= LVABL<N-4> t NODES
CONTINUE
RETURN
END
SUBROUTINE GETSUN<KUREL•LVABL>

c---c THIS IS A DUMMY SUBROUTINE TO TEST THE SUBSTRUCTURING
C CAPABILITIES OF SFRONT,
C IT CREATES CONNECTIVITY DATA FOR A
C 4 NODE/8 D.O.F, SUPERELEMENT
c
c---

DIHENSION LVABL
COMMON /MESH/ NROWS,NCOLS,NODES
KUREL= B
NCOL1= NCOLS t 1
LVABL<l>= 1
LVABL<2>= NCOL1
LVABL<J>= NODES
LVABL<4>= NCOLl*NROWS + 1
DO 1 N=:S•B
LVABL<N>= LVABL<N-4) + NODES
CONTINUE
RETURN
END

36.

*** SUBSTRUCTURE CONDENSATION EXAMPLE ***

NUMBER OF ELEMENT ROWS= 2
NUMBER OF ELEMENT COLUMNS= 10
NUMBER OF ELEMENTS= 20
NUMBER OF NODES 33
NUMBER OF D.O.F. 66
SIZE OF FRONT BUFFER 512
SIZE Oi= EQUATION BUFFER= 256

ELEMENT STIFFNESS MATRIX:

1 2 3 4 5 6 7 8
1 5.00
2 -2.50 5.00
3 -2.50 o.oo 5.00
4 o.oo - 2.50 -2.50 5.00
5 1. 25 1.25 -1.25 -1.25 5.00
6 - 1.25 -1.25 1.25 1. 25 o.oo 5.00
7 -1.25 -1.25 1.25 1.25 -2.50 ~2.50 5.00
8 1.25 1.25 -1.25 -1.25 - 2.50 -2.50 o.oo 5.00

MAXIMUM FRONT l!IIDTH= 30
MAX, NO. OF PARTITIONS= 1

CONDENSED SUBSTRUCTURE STIFFNESS MATRIX:

2 3 4 5 6 7 8
1 1.12
2 -0.08 1.12
3 -0.74 -0.29 1.12
4 -0.29 -0.74 -o.o8 1.12
5 0.21 -0.01 -0.21 0.01 2.05
6 0.01 -0.21 - 0.01 0.21 0.01 2.05
7 -0.21 0.01 0.21 -0.01 -0.05 -2.01 2.05
8 -0.01 0.21 0.01 -0.21 -2.01 -0.05 0.01 2.os

LOG10 OF DETERMINANT= 55.9191
NO OF NEGATIVE PIVOTS= 0

37.

*** SUBSTRUCTURE CONDENSATION EXAMPLE ***
NUMBER OF ELEMENT ROWS= 2
NUMBER OF ELEMENT COLUMNS= 10
NUMBER OF ELEMENTS= 20
NUMBER OF NODES 33
NUMBER OF D.O.F. 66
SIZE OF FRONT BUFFER 256
SIZE OF EQUATION BUFFER= 256

ELEMENT STIFFNESS MATRIX:

1 2 3 4 5
1 5.00
2 -2.50 5.00
3 -2.50 o.oo 5.00
4 o.oo -2.50 -2.50 5.00
5 1.25 1.25 -1.25 -1.25 5.00
6 -1.25 -1.25 1.25 1.25 o.oo
7 -1.25 -1.25 1.25 1.25 -2.50
8 1.25 1.25 -1.25 -1.25 -2.50

MAXIMUM FRONT WIDTH= 30
MAX. NO. OF PARTITIONS= 2

CONDENSED SUBSTRUCTURE STIFFNESS

1 2 3 4 5
1 1.12
2 -0.08 1.12
3 -0.74 -0.29 1.12
4 -0.29 -0.74 -0.08 1.12
5 0.21 -0.01 -0.21 0.01 2.05
6 0.01 -0 •. 21 -0.01 0.21 0.01
7 -0.21 0.01 0.21 -0.01 - 0.05
8 -0.01 0.21 0.01 -0.21 -2.01

6

5.00
-2.50
-2.50

MATRIX:

6

2.05
-2.01
-o.o5

LOG10 OF DETERMINANT= 55.9191
NO OF NEGATIVE PIVOTS= 0

7 8

s.oo
o.oo s.oo

7 8

2.05
0.01 2.05

APPENDIX D

c ..
l.J

t
0

m

n
p

k,i

F.
1.

X
n

38.

NOMENCLATURE

Equation coefficient

Address of coefficien t in long vector ELPA

Start address i n ELPA of space r eser ved for the Front matrix

Front width

Number of Equations in partition N

"destination" of first equation in partition N

Size of s torage space for the Front matrix

Coefficient indexes

Coefficient on right hand side

Variable

Residual

Structure stiffness coefficient

er ·ror on· Solution for x.
J

39.

APPENDIX E REFERENCES

l. IRONS, Bruce M. "A Frontal Solution Technique for Finite Element

Analysis", Int. Jnl. Num. Meth . Engng., Vol. 2, pp. 5-32, 1970.

2. LIGHT, M.F. and LUXMORE, "Application of the Front Solution to two

and three-dimensional Elasto-plastic Crack Problems", Int. Jnt. Num.

Meth. Engng., Vol. 11, pp. 393-395, 1977.

3. HOOD, P. "Frontal Solution Program for Unsymmetric Matrices", Int.

Jnl. Num. Meth. Engng., Vol. 10, pp. 379-399, 1976.

4. NATARAJAN, R. "Front Solution Program for Transmission Tower Analysis",

Computers and Structures, Vol. 5, pp. 59-64, 1975.

5. ALIZADEH, A. and WILL, G.T. "A Substructural Frontal Solver and its

Application to Localized Material Non-linearity", Computer and

Structures, Vol. 10, pp. 225-231, 1979.

6. FELIPA, C.A. "Solution of Linear Equations with Skyline-Stored

Symmetric Matrix", Computers and Structures, Vol. 5, pp. 13-29, 1975.

CE
No.

2

3

4

5

6

8

9

10

11

12

13

14

CIVIL ENGINEERING RESEARCH REPORTS

Title

Flood Frequency Analysis: Logis tic Method
for Incorporating Probable Maximum Flood

Adjust ment of Phreatic Line in Seepage
Analysis by Finite Element Met hod

Creep Buckling of Reinforced Concrete
Columns

Buckling Properties of Monosymmetric
I-Beams

El asto-Plastic Anal ysis of Cable Net
Structur es

A Critical State Soil Model for Cyclic
Loading

Resistance to Flow in I rregular Channels

An Appraisal of the Ontario Equival ent
Base Length

Shape Effects on Resistance to Flow in
Smooth Rectangular Channels

The Analysis of Thermal Stress I nvolving
Non- Linear Material Behaviour

Buckl ing Approximations for La t er all y
Cont i nuous Elastic !-Beams

A Second Generation Frontal Solution
Program

Combined Stiffness for Beam and Column
Braces

Beaches:- Profiles, Pr ocesses and
Permeability

Author(s)

BRADY, D.K.

ISAACS, L.T.

BEHAN , J.E. &
O'CONNOR, C.

KITIPORNCHAI , S.
& TRAHAIR, N.S.

MEEK, J .L. &
BROWN, P.L . D.

CARTER, J.P .,
BOOKER, J . R. &
WROTH, C. P.

KAZEMIPOUR, A.K.
& APELT, C.J.

O'CONNOR, C.

KAZEMIPOUR, A.K.
& APELT, C.J.

BEER, G. &
MEEK , J . L.

DUX, P . F. &
KITIPORNCHAI, S.

BEER , G.

O'CONNOR, C.

GOURLAY, M.R.

Date

February,
1979

March,
1979

April
1979

May,
1979

November,
1979

December,
1979

February,
1980

February,
1980

April,
1980

April,
1980

April,
1980

May ,
1980

May,
1980

June,
1980

CURRENT CIVIL ENGINEERING BULLETINS

4 Brittle Fracture of Steel -- Perform­
ance of ND 18 and SAA A 1 structural
steels: C. O 'Connor (1964)

5 Buckling in Steel Structures- 1. The
use of a characteristic imperfect shape
and its application to the buckling of

an isolated column: C. O'Connor
(1965)

6 Buckling in Steel Structures - 2. The

use of a characteristic imperfect shape
in the design of determinate plane

trusses against buckling in their plane:
C. O'Connor (1965)

7 Wave Generated Currents - Some

observations made in fixed · bed hy­

draulic models: M.R. Gourlay (1965)

8 Brittle Fracture of Steel - 2. Theoret­

ical stress distributions in a partially
yielded, non-uniform, polycrystalline
material: C. O 'Connor (1966)

9 Analysis by Computer -- Programm es
for frame and grid structures: J.L.
Meek (1967)

10 Force Analysis of Fixed Support Rigid
Frames: J.L. Meek and R. Owen
(1968)

11 Analysis by Computer - - Axisy­
metric solution of elasto-plastic pro­
blems by finite element methods:
J.L. Meek and G. Carey (1969)

12 Ground Water Hydrology: J .R. Watkins
(1969)

13 Land use prediction in transportation
planning: S. Golding and K.B. David­
son (1969)

14 Finite Element Methods Two
dimensional seepage with a free sur­
face: L. T. Isaacs (1971)

15 Transportation Gravity Models: A. T.C.
Philbrick (1971)

16 Wave Climate at Moffat Beach: M .R.
Gourlay (1973)

17 Quantitative Evaluation of Traffic
Assignment Methods: C. Lucas and
K.B. Davidson (1974)

18 Planning and Evaluation of a High
Speed Brisbane-Gold Coast Rail Link:
K .B. Davidson, eta/. (1974)

19 Brisbane Airport Development Flood­
way Studies: C.J. Apelt (1977)

20 Numbers of Engineering Graduates in
Queensland: C. O 'Connor (1977)

