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Synopsis 

In the appliaation of finite element methods 
to analysis of seepage through earth dams, previous 
researahers have reported various methods for adjust­
ing the phreatia line with differing degrees of sua­
aess in satisfying the exit boundary aonditions. 

This paper reviews five suah methods for 
phreatia line adjustment, and reports the results of 
a set of aomparison tests for assessing their relat­
ive performanae in terms of (a) position of the 
phreatia line, (b) pore pressures, and (a) estim­
ation of seepage flow rates. 

It is aonaluded that the method used for the 
adjustment of the phreatia line makes no signifiaant 
differenae to the results obtained in prinaipal 
appliaations and the ahoiae of method depends, there­
fore, on its suitability for the partiaular applia­
ation and the ease with whiah it aan be implemented. 
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1. INTRODUCTION 

1.1 Steady Seepage Through a Da� 

Consider the typical problem of flow through an earth 
dam shown in Fig. 1. The dam is founded on a horizontal, imper­
vious layer DC and retains water to depth H. The free surface 
meets the downstream face, BC at point B, the exit point. Other 
exit point conditions are possible. The region of saturated 
seepage may include zones under the dam which extend upstream 
and downstream and may be composed of zones of different materials. 
In general the material in each zone is anisotropic. Because the 
construction method usually involves the dumping, spreading and 
compaction of relatively thin horizontal layers of soil, the 
principal axes of permeability are usually horizontal and vert­
ical, with the permeability in the horizontal direction greater 
than that in the vertical. 

If the principal axes are parallel to the x and y axes, 
for saturated seepage according to Darcy's Law the governing 
differential equation is 

a (k ahl ax x ax + 3 (k 3h) 
3y y 3y 0 ( 1) 

in which 

(i) 

(ii) 

(iii) 

(iv) 

h E + y = piezometric head, y 
p pressure relative to atmospheric pressure, 

k permeability coefficient, 

y specific weight of water. 

For the dam shown in Fig. 1 the boundary conditions are 

h H (the water surface elevation) along AD, 

h y along BC, 
ah 0 along CD, and an 
h y and�= 0 an along AB. 
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h=y. 
ah/an = o 

h=H 
H 

B 

X 

FIGURE 1 : Typical dam cross section 

The position of the phreatic line AB is not known a pPiori 

and must be found as part of the total solution. The extra con­
dition specified along AB is sufficient for a solution. 

1.2 Method of Solution by Finite Element Method 

An initial position for the phreatic line, AB, is assumed 
and one or other (but not both) of the boundary conditions is 
applied along AB .  The next step is the solution b y  the finite 
element method of the field problem within the region defined by 
the fixed boundaries and the approximate phreatic line. This is 
a standard finite element solution. 

The computed values of either h or �� which were not used 
for the boundary conditions of the finite element analysis are 
then compared with the values required on the phreatic line, and 
the position of the phreatic line is adjusted to improve the agree­
ment between them. Full details are given later for five different 
methods. 

The new position of the phreatic line is used as the 
boundary for the next finite element analysis and the procedure 
is repeated until satisfactory convergence is obtained. 

1.3 Exit Conditions 

The angle at which the phreatic line, AB meets the down­
stream seepage surface, BC, depends on the angle of slope, a, of 
the face BC (Fig. 1). For a ( 90° the phreatic line is tangent 
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to the seepage surface and for a � 90
° it is vertical when it 

meets the seepage surface (5, 8, 12). The piezometric head, h, 
1 h 1 

· b h d h"l ah · 
equa s t e e evat1on, y, on ot AB an BC w 1 e an 1s zero on 
AB but non-zero along BC. 

The finite element solutions should satisfy these bound­
ary conditions, but because of the discretization and approxim­
ation inherent in the numerical method, exact satisfaction may 
not be possible. France et al.(4) made no attempt to satisfy 
conditions exactly at the exit point. Taylor and Brown (13) 

referred to an ambiguity in the specification of the boundary 
conditions at the exit point and used it as an explanation for 
the lack of convergence of their method near the exit point. 
Their phreatic line exited into a rockfill toe. Finn (3) ment­
ioned that the pheatic line should be tangent to the downstream 
face (for a ( 90

°
). The ambiguity of Taylor and Brown was claimed 

by Neuman and Witherspoon (10) to result from a basic lack of 
convergence in their iterative method. The latter authors 
developed an elaborate method which they successfully demonstrated 
for a number of different exit conditions. This writer has used 
the condition of vertical exit for a > 90

° to resolve the problem 
of locating the exit point into toe drains and underdrains (7). 

Further details are given later when the various methods are 
described. 

Although it is desirable that the boundary conditions 
should be satisfied exactly at the exit point, the fact that some 
researchers have ignored this problem completely indicates that 
they considered the effects are local and do not significantly 
influence the overall accuracy. Whether or not such an assumption 
is valid is one of the questions studied by this writer in a set 
of comparative tests of five different methods reported herein. 
These tests are reported following the detailed description of 
the various methods. 
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2 .  METHODS FOR ADJUSTING THE PHREATI C LINE 

The methods for the analysis of seepage with a free 
surface proposed by different writers may vary in such details 
as choice of element, method for the solution of the simultaneous 
linear equations, and techniques for mesh modification in each 
iteration. However, the fundamental and essential difference is 
in the choice of boundary condition for the finite element 
analysis along the phreatic line and the method used to adjust 
the position of the phreatic line. The available methods are 
described and compared. One of these has not been previously 
published. They are titled Methods A, B, C, D, and E for 
convenience. The authors are acknowledged in the text. 

2 . 1 Method A 

The condition �� = 0 is used as the boundary condition 
along the phreatic line for the finite element analysis. The 
value of h computed in the finite element solution is compared 
with the y co-ordindate at each node along the phreatic line, and 
the node is shifted towards the position where y would equal the 
computed value of h. It is often convenient to let the node move 
along a vertical line, but in some cases, e.g. a node on the 
boundary between two soil zones, nodes must be moved in specified 
directions. The writer has shown (7) how this method may be 
adapted to obtain the location of the phreatic line in the region 
near the exit point when the phreatic line is vertical at the 
exit point. In this case the nodes are moved along inclined 
lines and the movement is damped. Method A was used also by 
Taylor and Brown (13), Finn (3) and Volker (15). The last two 
authors did not use automatic adjustment but modified the phreatic 
line position manually between iterations. 

ah 
an 

The boundary condition used at the exit point, B, is 
0 and the value of h is not specified. The computed value 

of h is used to estimate the next y value for the exit point as 
the node at the exit point is moved along the downstream face. 
However, the approximations in the finite element method cause 
some problems. 
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Consider the details of the finite element mesh near 
the exit point B shown in Fig. 2. If a three node triangular 
element is used, a constant value of �� (consistent with the 
linear variation of h) should be used across the segment i - j. 

FIGURE 2 : Exit point on downstream face 

· f 1· · · f ah · d h Even 1 a 1near var1at1on o a- 1s assume , t e n ah alent nodal flow calculated for node j would be [2 (a-l .  
and this is zero only if (�h) .  and (�h) .  are both ze�o� an l an J 

equiv­
ah 

+ ( an) i l d/6' 
The best 

that could be achieved with this element would be results that 
h bo h · d · d ah o · · h gave = y at t 1 an J, an an= across 1 - J. In t ese 

circumstances, the calculated exit point would be above the true 
position. 

For the six node element, the equivalent nodal flow at 
node j calculated from the assumption of a linear variation of 
�� along i - j is (��)j d/6. Although the condition �� = 0 is 
wanted at node B, the data specification is that the equivalent 
nodal flow at B is zero. With this element it is theoretically 
possible to have a linear variation of �� from zero at node j to 
its value at node i which is compatible with the zero equivalent 
flow at node j and the interpretation of node j as the exit point. 

Provided the 6 node element or one of higher order is 
used, the exit point conditions will be satisfied exactly in the 
limit as the mesh spacing approaches zero. The problems arise 
from the discretization. The normal direction n1, n2 for the 
segments i - j and j - m are different, and the solution cannot 
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. f h d' . ah 0 f b h d' . sat1s y t e con 1t1on an = or ot 1rect1ons. This is true 
at all nodes along the phreatic line when the phreatic line is 
approximated by straight segments. 

f · h h d' · 
ah o b d 11 d I lt were necessary t at t e con 1t1on an = e mo e e 

exactly, it could be achieved with curved elements. Since sat­
isfactory results can be obtained with straight elements, it is 

ah not necessary to model an =  0 exactly. 

Method A has the advantage that it is simple and easily 
coded into a program. Some of this advantage derives from the 
fact that the change at each node depends only on the values of 
h and y at the node. The change is not directly related to the 
movements of other nodes (as in Method D) nor is it necessary to 
use some form of curve fitting to obtain the new position of the 
phreatic line (as in Method C) • It also yields a good estimate 
of the two-dimensional discharge calculated from the equivalent 
nodal discharges at all nodes where h is specified, and there is 
no ambiguity in the interpretation of this discharge. Its dis­
advantage is that it predicts changes to the y co-ordinate only. 
Although it can be used where the slope of the phreatic line 
approaches the vertical, this use is based on an empirical method 
that requires some experience and judgement by the program user. 

2 .  2 Method B 

Method B, proposed by Verruijt (14), uses the fact that 
the equivalent nodal discharges are zero at all nodes along a 
boundary where �� is zero. The boundary condition y = h is used 
along the assumed phreatic line for the finite element analysis. 
If the assembled set of equations before substitution of the 
fixed values is written 

[ A] { h} { q } (2) 

qi is the equivalent nodal flow at node i. In general, these 
1 1 1 t d h ah · 'f' d d If h va ues are ca cu a e w en an 1s spec1 1e an non-zero. t e 

value of hi is fixed, qi may be found from equation i of the set 
in Eq. 2, 

l: a .. h. lJ J (3) 
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If qi is not zero, the value of hi which would make it zero is 

a . .  h. lJ J (4) 

Node i is shifted in the direction which would make yi equal to 
the value of hi calculated in Eq. 4. 

For an exit point on the downstream face, q would be 
made zero and, therefore, the same approximations are present 
as in Method A. 

Like Method A, Method B has the advantage that it is 
also simple to program, especially if the equations are solved 
by an iterative method which leaves the coefficients, aij' un­
altered. The changes are made node by node without any need for 
curve fitting or integration along the phreatic line. Method B 

has the additional advantage that the specification of h along 
the phreatic line reduces the number of unknowns in the finite 
element equations. If a significant number of nodes is involved, 
this markedly improves the convergence rate when an iterative 
method is used for the solution of the equations. !-1ethod B has 
the same disadvantage as Method A that changes to only the y 
co-ordinate are predicted. In the test case described later, 
this method proved less accurate than Method A in the calculation 
of discharges (from the equivalent nodal discharges) at nodes 
where h is fixed, and there is some ambiguity in the interpre­
tation of these discharges. 

2 .3 Hethod C 

This method was developed by France et al. (4) and Hills (9) 

for unsteady seepage. The steady state solution is the final 
result of an unsteady analysis that starts with the assumed 
phreatic line. 

The finite element method is used to calculate h for the 
saturated region, using the boundary condition h = y along'the 

()h Clh phreatic surface. Clx and Cly are calculated at nodes on the free 
surface, and the average velocity of fluid particles normal to 
the phreatic surface, Vn' is found as follows: 



in which 

8 

k ah v X 
X s ox I 

y 

v v sin 8 + v n X y 

specific yield 

v y 

cos 

k ah _y 
s ay y 

(5) 

8 (6) 

volume of water drained 
bulk volume of medium 

8 slope of phreatic line. 

Vn is the velocity at which the phreatic surface is 
moving, and the distance it moves in the normal direction in the 
time interval, �t, is vn �t. 

The steady state condition is reached when the velocity 
normal to the free surface is zero. In an exact solution, 
V � 0 as t � Because of this and because of the effects of n 
numerical round-off, the final steady state is assumed when the 
normal velocity is less than a set tolerance. If this method is 
used for a steady seepage analysis, there is no need to know Sy, 
and �t does not represent a real time step. �t is arbitrarily 
chosen to give the best convergence. 

France et al. used a curve-fitting procedure to determine 
the new position of the free surface. This has the effect of 
smoothing out any local irregularities. 

Since this method aims for Vn 0 and h = y at all nodes 
on the phreatic surface, including the exit point, it aims, 
ideally, to satisfy the exact conditions at the exit point. How­
ever, the problem of the indeterminancy of the direction of n at 
the exit point occurs. Furthermore, when the curve fitting pro­
cedure used by France et al. is employed, the assumed polynomial 
for this curve does not, in general, satisfy the slope condition 
required of the phreatic line at the exit point. 

An advantage of this method is that the adjustment is in 
a direction perpendicular to the phreatic line. This is useful 
where the phreatic line approaches the vertical. The fact that 
�t is an arbitrary parameter in this method is a disadvantage. 
In the tests described later, rapid convergence was achieved with 
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Method c, but this occurred because a good value of llt had 
previously been determined from numerical results obtained 
while the program was being debugged. If llt is too small, con­
vergence is very slow, and if it is too large the solution 
oscillates about the steady state position and the oscillations 
may even be divergent. The need for a curve fitting procedure 
in the method of France et al. is a disadvantage because it 
restricts the shape of the phreatic line. The other methods do 
not. This disadvantage would be serious in a general purpose 
program, which should be able to handle most practical problems 
including different soil zones. It would probably be necessary 
to fit different curves (using the same polynomial form) in the 
different zones. 

2 .4 Method D 

This method has not, to the author's knowledge, been used 
before for locating the phreatic line in a seepage analysis. It 
is derived from the method used by Chan, Larock and Herrman (1) 
for potential flow with a free surface. The boundary condition 
h = y is used for the finite element analysis, and the condition 
�� = 0 is used to estimate the new position of the phreatic line 
through the following procedure. 

· h d·t· oh o h h · fl S1nce t e con 1 1on on = means t at t ere l S  no ow 
across the boundary, the velocity vector should be tangent to the 
phreatic line. Its slope, s ,  is given by 

s 

in which 

u 

Hence 

dy 

Integration of Eq. 

y2 

dy 
dx 

k X 
oh 
ox 

S dx 

9 yields 

- yl 

, 

2 
f 
1 

v 
u 

v 

s dx 

(7) 

k ah 
ay y (8) 

{9) 

(10) 
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If i - j is a straight line segment (e. g. the side of an 
element) approximating part of the phreatic line, and m is its 
midpoint, numerical integration by Simpson's rule yields 

X .  - X .  
J 1 

6 
(S. + 4S + S.) 1 m J (11) 

in which Si' Sj, Sm are the values of S evaluated at i, j, m. 

Alternatively, 

x. - x. J 1 (12) 

Eqs. 11 and 12 may be used to establish a new profile 
provided the procedure is used from the known point A (Fig. 1) 
at the upstream end. In general, if l xj - xi l � J yj - yi J for 
an element boundary, Eq. 11 is used. Otherwise Eq. 12 is used. 

In a test based on Kozeny's Solution (5) which is an 
analytical solution the calculated position of the phreatic line 
was above and outside the exact position. The pore pressures 
calculated from these results would be slightly larger than the 
exact values, and the method would therefore be conservative. 
In the set of comparative tests described later, this method 
predicted the highest position of the exit point. 

Any errors at the exit point in this method arise from 
the finite mesh spacing, since the conditions at the exit point 
would be satisfied in the limit as the spacing approaches zero. 
In the tests which are described later, the local errors in the 
region of the exit point were found to be of similar magnitude 
to those from the other methods. 

An advantage of method D is that it may be used to com­
pute either a 6x or a 6y increment for any boundary segment. 
In fact, if local axes are used, the movement can be in any 
desired direction. A disadvantage is that the change at any one 
node depends on the line integral between that node and the fixed 
node. 

The reason for the disadvantage is that a node is shifted 
�6x, �6y relative to the fixed point at the upstream end. The 
summations are taken over all segments between the fixed point 
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and the node being adjusted. Therefore, the effects of any 
errors at the upstream end must be propagated downstream. In 
the test, the node at x = 7.5 nearest the fixed point required 
a large initial shift. This shift was transmitted to the other 
nodes on the phreatic line even though their initial positions 
proved to be close to the final positions. The node nearest 
the fixed node settled first, followed by the next nearest and 
so on down the line. Therefore, this method could possibly be 
improved if the movement of each node were calculated relative 
to the old positions of the upstream nodes. 

2 . 5  MethodE 

This method was developed by Neuman and Witherspoon (10) 
and based on a generalized variational principle which had both 
h and the evaluation of the free surface as unknowns. The pro­
cedure can, however, be explained in terms of the techniques 
previously described. 

The position of the phreatic line is assumed and the 
boundary condition h = y is used along the phreatic line, AB, 

and the seepage face, BC, Fig. 1, for a finite element analysis. 
�� along the seepage face is calculated from the results. In 
the second step in any one iteration the region is re-analysed 
with �� = 0 along the phreatic line and �� equal to the value 
just computed along the seepage face. The new solution yields 
values of h that are not equal to the elevation y and the nodes 
on the phreatic line are adj usted in the direction that would 
make y equal to h. 

Neuman and 'ili therspoon claimed that the treatment of the 
seepage face, BC, as a prescribed head boundary tends to retard 
convergence of the solution along AB in the region of BC. This 
claim has not been supported by any results obtained by the 
writer using any of the other methods described all of which use 
the prescribed head condition along BC. In the tests described 
later, Method E generally converged more rapidly than the other 
methods but it solves the finite element equations twice in each 
iteration and, therefore, costs about twice as much per iteration 
as the other methods. 
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As for all the other methods, this method can satisfy 
the conditions exactly at the exit point in the limit as the 
mesh spacing approaches zero. The results from the test pro­
blem indicate that, for a given mesh arrangement, this method 
gives results that are not significantly different from those 
of the other methods in the region of the exit point. 

This method suffers from the disadvantage that it is 
more complicated than any of the others and requires that the 
finite element equations be solved twice in each iteration. 
It also predicts changes only in the y direction but can be used 
with changes made along sloping lines (10). 

3 .  COMPARISON TESTS 

The problem chosen for the tests was steady seepage flow 
through an embankment with vertical faces (Fig. 3) . The material 
is isotropic an d a permeability coefficient of unity was used. A 
vertical face was chosen for the downstream side slope because 
this gave the most severe test of the ability of the finite 
element method to model the tangency condition at the exit point. 

h = 25. 

h = 5. 

��----��----��--��--��--_J� 
30. 

FIGURE 3 : Test problem for comparison of methods of 
analysis for seepage with a free surface 
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The initial profile and mesh used for all tests is 
shown in Fig. 3. In each run ten iterations were done, and 
the whole mesh was regenerated for each iteration so that there 
were equal divisions along all internal vertical lines, equal 
divisions between B and C, while the nodes between A and E and 
between C and D remained in their original positions. 

In Methods A and B the full calculated changes to the y 
co-ordinates were used and the apex nodes along the phreatic 
line were moved vertically. 

The first approach used in Method C was based on the 
average nodal velocities at the apex nodes. The problem of the 
definition of the direction normal to the boundary was encountered, 
and the direction normal to the element side adjacent to and 
upstream of the node was used. This appeared to be satisfactory 
at all nodes except that at the exit point where divergence 
occurred. The exit point was moved lower and lower in the success­
ive adjustments. This approach was abandoned. 

The technique that did work successfully for Method C 

used the velocity component normal to the element side of the 
midside node, Vn' and these nodes were moved a distance Vn 6t 
along the normal. A parabola passing through the fixed upstream 
point, A, was fitted using the least squares method, and the 
apex nodes were then located on this parabola. A time step of 
6t = 4.0 was used, and this gave a good convergence rate. This 
value was chosen after some preliminary analyses that were done 
while the program was being debugged. In general, however, the 
choice of 6t appears to be arbitrary for steady state analyses, 
and some method for monitoring the solution and adjusting 6t is 
desirable. 

For Method D, changes to the y co-ordinate were calculated. 
Only one half the indicated change was used because of the results 
from the earlier test described previously. 

In Method E, after the first solution in each iteration 
with h specified, the averaged nodal velocities were calculated 
for the nodes on BC. The equivalent nodal discharges were then 
calculated from the component normal to the face. This approach 
differed from that suggested by Neuman and Witherspoon. They 
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calculated the equivalent nodal discharges with Eq. 3. 

Since the value calculated in this way for the node at 
the exit point, B, also includes a contribution from any flow 
normal to the element side along AB, they suggested that only 
half this value should be used at B (provided the elements 
adjacent to B are sufficiently small) . 

All the tests were done for ten iterations. For Methods 
A, B, C and D, the set of finite element equations was solved 
ten times, while it was solved twenty times for Method E. 

3 ol Position of Phreatic Line 

The final co-ordinates of the apex nodes which defined 
the phreatic line are given in Table 1. The differences between 
the profiles would not be significant in most practical applic­
ations. 

TABLE 1 Phreatic line profiles after 10 iterations 

y Values for Method: 

X A B c D E Chapman 

0 25.00 25.00 25.00 25.00 25.00 25.00 

7.5 22.77 22.50 22.98 23.10 22.77 22.09 

15.0 19.59 19.25 19.63 19.65 19.61 18.73 

21.0 16.39 16.03 15.99 16.52 16.41 15.53 

26.0 13.14 12.65 12.31 13.07 13.23 12.24 

30.0 8.51 8.51 8.93 9.09 8.38 8.75 

Because of the discretization, the tangency condition at 
the exit point, B, was not realized, nor was the condition that 
the phreatic line should be horizontal at point A. 

The value of 8.75 for y at the exit point was calculated 
by a method given by Polubarinova - Kochina (11) , but the relative 
error could be large because numbers used in the calculation were 
read from her small diagram. However, the profiles compare 
favourably with the approximate profile calculated by a method 
suggested by Chapman (2) when the value of y = 8.75 was used at 
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the exit point. Some points on this approximate profile are 
given in Table 1. 

The convergence of the phreatic line for each method 
is demonstrated by the plot of exit point elevation, yB, against 
the iteration number (Fig. 4) . Methods C and E converged more 
rapidly than the others. For Method C, the reason was the good 
choice of 6t determined in earlier analyses as described above. 
In Method E, the finite element equations are solved twice in 
each iteration, so for the same cost of analysis, its perform­
ance in the first five iterations should be compared with the 
performance of the other methods in ten iterations. The conver­
gence in Method D is not smooth, and the reason is that the 
errors are swept downstream, and convergence of the phreati c 
line occurs progressively from the upstream end. The conver­
gence of Method D might be improved if the movement of each node 
were calculated relative to the previous positions of the up­
stream nodes rather than to their new positions. 

10. 

9. 

8. 

FIGURE 4 

Method 
A 
B 
c c 

0 • 
E 

Iteration no. 

Elevation of exit point as a 
function of iteration number 
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Generally, in practical applications, the values of 
pore pressure or of discharge are more important than the loc­
ation of the phreatic line. Envelopes of computed pore press­
ure heads along the horizontal line y = 0 and along the vertical 
line x = 26 are shown in Figs. 5 and 6. The divergence of the 
upper and lower envelopes as p + 0 for x = 26 (Fig. 6) was a 
direct result of the differences in the location of the phreatic 
line. As the distance below the phreatic line increased, the 
differences between the values of pore pressure calculated by 
the various methods decreased, and for y = 0 these differences 
are insignificant. These results indicate that the choice of 
method would have no significant effect on a stability analysis. 

3 .3 Estimation of Discharge 

The computed two-dimensional discharges are given in 
Table 2. 

TABLE 2 Comparison of computed two-dimensional 
discharges at selected points 

Discharge for method : 
Boundary segment 

A B c D 

A-E 9.947 10.602 10.106 9.868 

A-B excluding A 0 -1.659 -0.254 -0.017 

node B 0 +0.077 +0.340 +0.212 

B-D -9.940 -9.500 -9.502 -10.035 

B-D excluding B -9.940 -9.577 -9.842 -10.247 

Total in 9.947 10.691 10.865 10.506 

Total out 9.940 11.325 10.855 10.901 

E 

9.929 

-0.145 

-0.145 

-9.920 

-9.775 

9.929 

9.920 

These discharges were obtained from the equivalent nodal 
discharges at nodes where the head was specified (Eq. 3) for 
Methods A, B, C, and D. For Method E the equivalent nodal dis­
charges specified in the second step of the last iteration were 
added. The exact value is 10.000 (11). Method A yielded the 
best estimate of the discharge and had the advantage that there 
was no ambiguity in the interpretation of the equivalent nodal 
discharges. 
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Since h = y was used as the boundary condition along AB 

for the finite element analyses in Methods B, C and D, the non­

zero discharges along AB indicated how well the condition �� = 0 

was satisfied in the final solution. The equivalent nodal dis­

charge at node B should, for Methods B, C and D, be included with 

those on the phreatic line and excluded from those on the seepage 

face because it has been demonstrated that this discharge should 

be zero if the tangency condition were satisfied. This interpre­

tation yielded the best results for the Methods B and C while the 

inclusion of the discharge at node B improved the result for 

Method D. The discharge at node B should be included for Method 

E because it was specified as part of the boundary conditions for 

the final solution in that method. The equivalent nodal discharge 

at A must be included with the inflow across the boundary AE even 

though in Methods B, C and D, there may have been a contribution 

from the element boundary on the phreatic line. 

When �� = 0 is used as the boundary condition along AB for 

the finite element analyses, the accuracy of the solution along 

the phreatic line is measured by the agreement between h and y. 

Table 3 shows, for Methods A and E, the values of h calculated at 

the apex nodes in the tenth iteration and compares them with the 

y co-ordinates calculated in the ninth iteration and used in the 

tenth. This table also presents a comparison of h and y after 

five iterations of Method E. The agreement between h and y after 

ten iterations of Method E was very good and was much better than 

X 

0 

7.5 

15.0 

21.0 

26.0 

30 

TABLE 3 Comparison of elevation (y) and seepage 
head (h) values along phreatic line 

Method A Method E Method E 

y
9 Y1o 

y
9 

h
lO 

y
4 

h
5 

25.000 25.000 25.000 25.000 25.000 25.000 

22.767 22.767 22.770 22.770 22.770 22.766 

19.593 19.595 19.606 19.606 19.623 19.597 

16.395 16.395 16.407 16.408 16.501 16.442 

13.122 13.137 13.233 13.234 13.232 13.266 

8.592 8.505 8.376 8. 376 8.350 8.372 
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that obtained with Method A. The results from Method A were 

satisfactory for most practical applications and were slightly 

better than those obtained after five iterations with Method E. 

An argument was given above for a zero velocity compon­

ent normal to the seepage face at the exit point, B, for con­

sistency between the finite element model and the tangency 

condition. The actual velocity component calculated for the 

element adjacent to the exit point for each method is shown in 

Fig. 7. 

y 

6. 
0 

FIGURE 7 

D 
c 
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velocity u 

Computed velocities across vertical 
boundary (x = 30) of element 34 

The maximum value of the component normal to the seepage 

face BC was approximately 1.4 and the mean value over the side 

BCD was approximately 1.1 + 1.2. Therefore, the error at the 

exit point was significant. It resulted from the finite element 

discretization and better results for the same element could be 

obtained only through the use of a finer mesh in the region of 

the exit point. The results from the tests indicated that this 

local error in the vicinity of the exit point did not signif­

icantly affect the accuracy of the solution for the position of 

the phreatic line, the pore pressures or the total discharge. 
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The comparison tests showed that there were no signif­

icant differences in the results obtained by the different 

methods for the location of the phreatic line, the calculation 

of pore pressure or the estimation of discharge. Therefore the 

choice of method should be determined by the particular applic­

ation and the ease with which it can be implemented. The 

author's choice for a general purpose program for steady state 

seepage is Method A, because it is easy to apply and gives 

unambiguous results for the equivalent nodal discharges. 

Methods B and D have advantages that may make them more suited 

to some specific applications. Method C is not recommended for 

steady state analyses, because of its dependence on an arbitrary 

choice of time step, and because of the use of a restrictive 

curve fitting procedure for the phreatic line. Method E is not 

recommended because it is the most complicated of the methods 

and, despite a theoretical advantage in its treatment of the 

seepage face, does not show any practical advantages over the 

other methods. 

In the tests reported here, all five methods gave local 

errors at the exit point, where none satisfied the condition of 

tangency and zero velocity normal to the seepage face. These 

errors were caused mainly by the discretization which was 

essentially the same in all tests. The method adopted for the 

adjustment of the phreatic line did not significantly alter 

these local errors. 
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APPENDIX A NOMENCLATURE 

[A] 

a 

h 

k 

n 

p 

q 

s 
y 

s 

lit 
v 
u,v 

x,y 

e 
p 

coefficient matrix of finite element equations 

a term in [A] 

E + y = piezometric head y 
permeability coefficient 

direction normal to boundary 

pressure relative to atmospheric pressure 

two dimensional discharge 

specific yield 

slope 

time step 

velocity 

components of V 

horizontal and vertical cartesian co-ordinates, 

angle from horizontal to downstream face of embankment 

slope of phreatic line 

density of water 
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