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ABSTRACT 

Genome-wide association studies have facilitated the construction of risk predictors for 

disease from multiple SNP markers. The ability of such ‘genetic profiles’ to predict outcome 

is usually quantified in an independent data set. Coefficients of determination (R
2
) have been 

a useful measure to quantify the goodness-of-fit of the genetic profile. Various pseudo R
2
 

measures for binary responses have been proposed. However, there is no standard or 

consensus measure because the concept of residual variance is not easily defined on the 

observed probability scale. Unlike other non-genetic predictors such as environmental 

exposure, there is prior information on genetic predictors because for most traits there are 

estimates of the proportion of variation in risk in the population due to all genetic factors, the 

heritability. It is this useful ability to benchmark that makes the choice of a measure of 

goodness-of-fit in genetic profiling different from that of non-genetic predictors. In this study, 

we use a liability threshold model to establish the relationship between the observed 

probability scale and underlying liability scale in measuring R
2
 for binary responses. We 

show that currently used R
2
 measures are difficult to interpret, biased by ascertainment and 

not comparable to heritability. We suggest a novel and globally standard measure of R
2
 that is 

interpretable on the liability scale. Further, even when using ascertained case-control studies 

that are typical in human disease studies, we can obtain a R
2
 measure on the liability scale 

that can be compared directly to heritability. 

 

Keywords: coefficient of determination; risk predictors; genetic profiles; goodness-of-fit; 

genome-wide association studies 
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INTRODUCTION 

The discovery of multiple genetic loci that are associated with disease and other complex 

traits has sparked an interest in making individual risk predictions from genetic data 

[Demirkan, et al. 2010; Evans, et al. 2009; Kraft, et al. 2009; Lyssenko, et al. 2008; Pharoah, 

et al. 2008; Purcell, et al. 2009; The International Multiple Sclerosis Genetics 2010; Wray, et 

al. 2007; Wray, et al. 2010]. The genetic risk of healthy individuals can be predicted from 

their measured genotype at multiple loci, and, since the total (phenotypic) risk is correlated 

with genetic risk, a prediction can be made of total risk from genetic data. Typically, the 

effects of measured genotypes on disease are estimated in one or more discovery samples, 

and those estimated effects are then combined with the genotypes at one or more independent 

validation samples that contain affected and unaffected individuals. For each individual in the 

validation sample, a genetic profile is calculated and these profiles are correlated with 

outcome (affected / unaffected) to quantify the precision of the genetic risk predictor. 

 

What is a good measure to quantify the goodness-of-fit of the genetic profile? Unlike other 

non-genetic predictors such as environmental exposure, there is prior information on genetic 

predictors because for most traits there are estimates of the proportion of variation in risk in 

the population due to all genetic factors, the heritability. From the heritability we can 

calculate the maximum precision of a genetic profile, i.e. the precision if all causal variants 

were known and their effect sizes known without error [Wray, et al. 2007; Wray, et al. 2010]. 

Therefore, we have a natural benchmark in that we can compare the fit of the genetic profile 

in the validation sample to the heritability. It is this useful ability to benchmark that makes 

the choice of a measure of goodness-of-fit in genetic profiling different from that of non-

genetic predictors. 
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Coefficients of determination (R
2
) for binary responses have been used in measuring the 

goodness of fit of models containing genetic predictors of human disease [Baneshi, et al. 

2010; Barrett, et al. 2009; Barrett, et al. 2008; de Cid, et al. 2009; Demirkan, et al. 2010; 

Gharavi, et al. 2011; Janssens, et al. 2011; Labruna, et al. 2010; Lyssenko, et al. 2008; Painter, 

et al. 2011; Purcell, et al. 2009; Richards, et al. 2011; Sarafidis, et al. 2007; Shea, et al. 2010; 

Study 2010; Tassone, et al. 2000; The International Multiple Sclerosis Genetics 2010; Vaidya, 

et al. 2010; Witte and Hoffmann 2011]. In the statistical literature, various pseudo R
2
 

measures for binary responses have been proposed [Cox and Snell 1989; DeMaris 2002; 

Efron 1978; McFadden 1974; McKelvey and Zavoina 1975; Nagelkerke 1991; Veall and 

Zimmermann 1996]. However, there is no standard or consensus measure because the 

concept of residual variance is not easily defined on the observed disease scale [Menard 

2000; Nagelkerke 1991]. Most of the pseudo R
2
 measures use the likelihood functions in 

logistic or probit models that are based on the observed disease scale. This causes the 

obtained R
2
 to be far different from its value on the underlying liability scale, and therefore 

obscures comparisons with heritability since the latter is usually expressed on the scale of 

liability. Furthermore, most case-control studies from which the precision of genetic profiles 

are estimated are ascertained, and traditional R
2
 measures are not invariant with respect to 

ascertainment because they are based on goodness-of-fit of the actual (ascertained) data. This 

complicates a comparison with other studies or inference about the population. In the 

literature, the effect of ascertainment has been poorly addressed or ignored [Barrett, et al. 

2009; Barrett, et al. 2008; Cubiella, et al. 2010; Kochi, et al. 2010; Peel, et al. 2006; Peel, et 

al. 2007]. 

 

In addition to an R
2
 statistic to measure the goodness-of-fit of a genetic profile, the area under 

the curve (AUC) of receiver-operator characteristic (ROC) is frequently used to assess the 
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precision with which a genetic predictor can correctly classify individuals into those that will 

become affected and those that won’t. ROC curves have an advantage that they are not 

affected by ascertainment of the sample in which the goodness-of-fit of the genetic predictor 

is tested. Although the AUC can be interpreted as an R
2 

on the liability scale [Wray, et al. 

2010], the AUC statistic does not provide a direct measure of how well the predictor 

performs relative to capturing all genetic variation or relative to the maximum value it can 

attain from genetic data [Wray, et al. 2010]. 

 

In this study, we use a liability threshold model to establish the relationship between the 

probability of disease on the observed scale and an underlying scale of liability. We propose a 

novel measure of R
2
 that is based upon a transformation between the observed probability 

scale and underlying liability scale. The R
2
 on the liability scale can be obtained from a linear, 

logit or probit model. Further, we are interested in obtaining an R
2
 at the population level 

even when the validation sample is ascertained. We used a modified version of the 

transformation between the observed and liability scale which corrects for bias due to 

ascertainment in case-control studies. Therefore, we obtain a R
2
 measure on the scale of 

liability that can be compared directly to heritability. 
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MATERIALS AND METHODS 

 

Relationship between the observed probability scale and the probit or logit liability 

scale  

Liability of disease is assumed to be the sum of environmental and additive genetic factors 

that are sampled from independent normal distributions. The model for liability can be 

written as, 

iii egl                                                                                                                  (1) 

where li is the liability “phenotype” for the ith individual μ is the overall mean, gi the random 

genetic effect on the liability scale and ei is the residual. For most of the theoretical 

derivations and simulations we make the distributional assumptions that g and e are 

independently normally distributed with variances 2

g and 2

e . For the theoretical validation 

and analyses of simulated data, we used gi as an explanatory variable in linear, probit or 

logistic models to validate the relationship between the observed disease scale and underlying 

liability scale. For real data, where gi is not observed, we can use its estimate generated from 

genetic marker data and effect sizes estimated from independent data [Baneshi, et al. 2010; 

Barrett, et al. 2009; Gail 2008; Lyssenko, et al. 2008; Purcell, et al. 2009; Wacholder, et al. 

2010]. In the Discussion section we discuss the consequences of estimating g with error. 

Liability l is ~N(0,1), and the proportion of variance on the liability scale due to the genetic 

profile is 22

glh  . In the liability threshold model, all affected individuals have a liability 

phenotype exceeding a certain threshold value t. This leads to observations (y) that are 0 or 1 

for unaffected and affected individuals, with a Bernoulli distribution with a probability, p, i.e. 

y ~ Bern(p).  
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For analysis of data, a generalised linear model can be used to link probabilities to effects on 

a linear scale. Using a logit link, the probability of disease pi for individual i can be written as 

a function of linear predictors as, 

ilogitlogit

i

i
i gb

p

p
plogit 










 

1
ln)( , 

where gi is an explanatory variable and a measure of genetic value for an individual; for 

theoretical validation and analyses of simulated data we used the gi defined in (1) above. For 

real data, where gi is not observed, gi is the estimated genetic predictor (profile score). The 

term logit  and logitb  are regression coefficients for the mean and genetic effects estimated in 

a logistic regression. The probability 
)exp(1
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Similarly, a probit model is, 

)( ilogitprobiti gbp    

where Φ is the standard cumulative density function, and probit  and probitb  are regression 

coefficients for the mean and genetic effects estimated in a probit model. The log-likelihood 

for the probit model is, 

)](1ln[)](ln[ln
11

iprobitprobit

N

i

iprobitprobit

N

i

gbgbL
controlcase

 


 .                                 (3) 

Under the null model without the genetic effects, the probability can be expressed as 

Kypi
ˆ  where K̂  is the mean proportion of cases in the sample, and the likelihood for 

the null model is, 
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)1ln()1()ln()1ln()ln(ln
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i

N

i

null  


.                         (4) 

 

In the classical liability threshold model (1), the probability of an individual being affected 

given his or her genetic value can be derived using normal distribution theory [Dempster and 

Lerner 1950], hence assuming that total liability follows a normal distribution. The 

relationship with the probit estimates of the parameters is, 

)(
2

1 22 2/

2 iprobitprobit
gt

x

e

i gbdxep
i
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. 

Dempster and Lerner [Dempster and Lerner 1950] showed that the additive genetic value 

expressed as a probability on the  observed disease scale can be written as a linear function of 

the additive genetic value on the liability scale,  

 

iobsiobsobsii zggbucp  ˆ                                                                   (5) 

 

where c is a constant, u is the genetic value on the observed scale, and μobs and bobs are 

regression coefficients for the mean and genetic effects on the observed scale estimated in a 

linear model with 0, 1 observations. According to the Robertson transformation (1950), the 

regression coefficient for the genetic effects is the same as the probability density at the 

threshold t, i.e. zKmhgEyEgyEggyb lobs  2/)]()()([)var(/),cov(  where m is the 

mean liability for cases and z is the height of a normal density curve at the point that truncates 

the proportion K in the upper tail. Therefore, the likelihood equations (2) and (3) can be 

approximated as, 

)](1ln[)(lnln
11

iobs

N

i

iobs

N

i

zgzgL
controlcase

 


 .                                                              (6) 
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Pseudo R
2
 measures based on the likelihood function 

The linear approximation of the likelihood function (6) implies that the likelihood function is 

based on probabilities on the observed disease scale, and not based on the logit or probit 

liability scales. This explains why pseudo R
2
 based on the likelihood [Cox and Snell 1989; 

McFadden 1974; Nagelkerke 1991] do not give an appropriate interpretation when measuring 

the goodness of fit of the linear predictor for the logit ( ilogitlogit gb ) or probit model 

( iprobitprobit gb ). Since observations and underlying explanatory factors are not on the same 

scale for binary traits, it has been observed that the pseudo R
2
 based on the likelihood never 

reach one even when a model has a perfect fit [Cox and Snell 1989; Nagelkerke 1991]. For 

example, the R
2 

proposed by Cox and Snell (C&S) is, 

N
N

i ilogitlogit
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This equation shows that 1- 2

&SCR  is the mean squared ratio of the probability explained by 

random chance (i.e. the numerators) over that explained by random chance plus additional 

genetic factors (i.e. the denominators), which are obviously on the observed probability scale. 

In a linear model with 0,1 responses on the observed probability scale, the numerators are 

analogous to the mean squared errors in the full model, i.e. y = μ + g + e, and the 

denominators are analogous to the mean squared errors in the null model, i.e. y = μ + e. 

Therefore, 2

&SCR  can be approximated as, 
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where 2ˆ
e  is estimated residual variance on the observed probability scale which is a 

proportion of the total variance unexplained by the genetic factor. If liability is normally 

distributed then the variance on the observed scale removed by the genetic profile is 

approximately equal to 22

lhz  and the total variance on the observed scale is K(1-K), so that 

the residual on that scale is the difference between the two. Therefore, an approximation of 

the expectation of 2

&SCR  can be written as,   

)1()1(

)1(
1)(

2222
2

&
KK

hz

KK

hzKK
RE ll

SC






  

This expression shows why Cox and Snell’s R
2
 is approximately equal to R

2
 on the observed 

scale in a linear model, although the difference increases with extremely high 

heritability[Cox and Wermuth 1992] (also see Table 1). Nagelkerke [Nagelkerke 1991] tried 

to correct Cox and Snell’s R
2
 by scaling it by the maximum value it can ever attain, i.e. 

2

max

2

&

2 / RRR SCN   where )1(222

max )1(1 KK KKR   from (4). However, this adjustment is 

not appropriate if the aim is to measure the goodness of fit of models on the scale of liability. 

 

R
2
 on the liability scale 

In order to derive R
2
 on the liability scale, we first obtain the R

2
 on the observed scale using 

linear regression. In a linear model with 0, 1 observation, the R
2
 on the observed probability 

scale can be written as, 

)ˆ1(ˆ

)ˆvar(

)(
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where )ˆvar( iobsgb  (or )var( izg ) is the variance due to the explanatory variable (genetic 

variance) on the observed probability scale. Hence, 2

oR  measures a portion of the total 

variance explained by the genetic factor on the observed probability scale. This proportion 

can be transformed to that on the liability scale using the Robertson transformation 

[Dempster and Lerner 1950], 

 

)var(
)var(

)var()ˆ1(ˆ

2

22 g
l

g

z

KK
RR ol 


 .                                                                           (8) 

 

This concept of R
2
 on the liability scale can be simply extended to probit or logit models. In a 

probit model, the R
2
 on the probit liability scale can be directly obtained as the variance 

explained by linear predictors as a proportion of the total variance on the probit liability scale, 

that is, 

 

)var()ˆvar(

)ˆvar(
2

egb

gb
R

iprobit

iprobit

probit


                                                                                        (9) 

 

where the residual variance is defined as var(e) = 1 in the probit model. Since the assumption 

of normality on the scale of liability is assumed for both (8) and (9), their expectations are 

identical. Equation (8) is based upon an analysis on the 0-1 scale followed by a 

transformation whereas Equation (9) is based upon a generalized linear model analysis. 

Similarly, assuming that the liability has a logistic distribution, R
2
 on the logit liability scale 

can be obtained with the residual variance of var(e) = π
2
 / 3 = 3.29 as, 

)var()ˆvar(

)ˆvar(
2

egb

gb
R

ilogit

ilogit

logit


 .                                                                                          (10) 
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McKelvey and Zavoina [McKelvey and Zavoina 1975] were the first to propose an R
2
 

measure expressed on an underlying latent scale using a generalized linear model. Equation 

(9) implements this for the probit link function and Equation (10) for the logit link function, 

and this R
2
 is widely used. The derivation for the liability threshold model has not been 

considered previously (Equation (8)). Although the threshold model and the generalized 

linear model are equivalent the formulae for R
2
 in Equations (9) and (10) are different to that 

in Equation (8). R
2 

values from Equations (9) and (10) are based on estimated linear 

predictors in logit or probit models, whereas that from Equation (8) was based on a 

transformation from R
2 

on the observed scale which was based on the likelihood. Importantly, 

the transformation in Equation (8) can be modified to correct bias in ascertained case-control 

studies (see next sections).  

 

R
2
 on the liability scale from AUC  

AUC is a useful statistic of the precision of predicting the genetic risk of disease [Janssens, et 

al. 2006; Wray, et al. 2010]. Using estimated AUC, R
2
 on the liability scale can be obtained 

[Wray, et al. 2010]. Estimation in this approach is independent of the relative proportion of 

cases and controls even if there is ascertainment in the case-control study. However, the 

estimation become less accurate for high heritabilities [Wray, et al. 2010]. Given K and AUC, 

R
2
 can be obtained as,  

)()()(

2

22

22

2

2
2

tmmtmmQmm

Q
RAUC


 ,                                                              (11) 

Where Q = Φ
-1

(AUC), and  m2 = -mK/(1-K) .  
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R
2
 on the liability scale for ascertained case-control studies 

In genetic epidemiology studies, case-control designs are widely used where cases are usually 

over-sampled relative to the prevalence in the population. In this situation, there is no R
2
 

measure that is estimated on the liability scale and corrects for ascertainment. We consider 

the same liability model (1) but when samples are ascertained in a case-control study. 

According to (5), the genetic value on the observed scale (ucc) for an individual in a case-

control study is, 

cccccc gbcu  ,                                                                                                                (12) 

where 
2

2

)1(

)1(
)var(/),cov(

ccg

g

cccccccc
KK

PP
zggyb








 , where P is the proportion of cases in 

the case-control sample. The details of this derivation are in Appendix A. From (12), the 

variance explained by the genetic factor on the observed scale is [Lee, et al. 2011],  

2

2

22

2

2

2

2

222

)1(

)1(

)1(

)1(
g

g

g

g

g

g

gccu

cc

cc

cc

cccc KK

PP
z

KK

PP
zb 









 





























 .                                  (13) 

As 2

oR  is a proportion of the total variance explained by the genetic factor on the observed 

probability scale (7), 2

ccoR  is that proportion for an ascertained case-control study. Therefore,  

2

2

2
2

2

2
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g
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 .                                                                      (14) 

As a portion of the total variance explained by the genetic factor on the liability scale (8) 

corrected for ascertainment, 2

cclR  can be derived from (14) as (Appendix A), 

CR

CR
R

cc

cc

cc

o

o

gl



2

2

22

1
 ,                                                                                          (15) 

where 
)1(

)1()1(
2 PP

KK

z

KK
C
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To summarise the theoretical sections, we have derived an expression for the proportion of 

variation in liability explained by the genetic profile in the population, using an estimate of 

the proportion of variation explained by the profile on the observed 0-1 scale in an 

ascertained case-control sample. The expression (Equation (15)) uses the goodness-of-fit R
2
 

on the 0-1 scale and then transforms it to the liability scale whilst adjusting for ascertainment. 

 

Simulation study 

In a simulation study, genetic (g) and residual values (e) were independently generated from 

random normal distributions with means of zero and variances of 2

g  and 2

e , respectively. 

The value for 2

e  was chosen such that the desired proportion of variation in liability due to 

the genetic profile was obtained. Liability for each individual was l = g + e. Disease status for 

each individual was determined by comparing l with the threshold of liability determined by 

the population prevalence. In this study, a population prevalence K=0.5, 0.1 or 0.01 was used 

with 10,000 individual observations. Therefore, for the case-control designs, we had samples 

of 5000, 1000 and 100 cases and 5000, 9000 and 9900 controls for K = 0.5, 0.1 and 0.01, 

respectively. When testing ascertained samples, cases were over-sampled such that the 

number of cases and controls was approximately equal, i.e. P=0.5. So for the ascertained 

case-control designs, we had samples of 5000 cases and 5000 controls for K = 0.1 or 0.01. In 

an alternative simulation, genetic and residual values were independently generated from 

logistic distributions with a means of zero and variances of 2

g  and 3/22  e , respectively. 

The value for 
2

g  was chosen such that the desired proportion of variation in liability due to 

the genetic profile was obtained. Disease status for each individual was decided given his or 
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her liability and the threshold determined by the population prevalence according to the 

logistic distribution.  

 

For analyses of the simulated data, we used a linear, logit or probit model where disease 

status was used as 0, 1 observations (y), and genetic values on the liability scale were used as  

explanatory variables [Cox and Wermuth 1992]. Using those models, we obtained several 

kinds of R
2
 measures (Table 1). First, we obtained 2

oR   from a linear regression using (7). 

Second, we used Cox and Snell’s method [Cox and Snell 1989]. Third, we used Nagelkerke’s 

scale method [Nagelkerke 1991]. Fourth, we transformed 2

oR  to 2

lR  on the liability scale 

using (8). Fifth and sixth, we used the variance explained by linear predictors proportional to 

the total variance on the probit (9) and logit scale (10), respectively. Seventh, we obtained 

2

AUCR  from AUC estimated from a probit model (a linear or logit model gave the same 

results) using (11). These methods and notations are briefly described in Table 1, and pseudo 

R-codes for them are shown in the Appendix B. In testing ascertained case-control samples, 

all the same methods were applied except that 2

ccoR  was transformed to 2

cclR  using (15). 

 

RESULTS 

Estimated R
2
 measures using several methods with simulated data 

In Figure 1, R
2
 values on the observed scale ( 2

&SCR  and 2

NR ) and liability scale ( 2

probitR , 2

logitR , 

2

lR  and 2

AUCR ) are presented when using population prevalence K=0.5, 0.1 or 0.01 with or 

without ascertainment under a normal or logistic distribution. It is noted that the results for 

2

oR  are not shown as the values for 2

oR  and 2

&SCR  agreed well unless heritability was very 

high as expected from Equation (6). 
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Under a normal distribution without ascertainment (i.e. Normal, K=P in Figure 1), the values 

for 2

NR  were higher than 2

&SCR , however, they were still much lower than the true values on 

the scale of liability. However, the values for 2

lR  on the liability scale were unbiased and 

close to the true values (Figure 1). For 2

probitR  on the probit liability scale, the values were 

very similar to 2

lR  and close to the true values. For 2

logitR  on the logit liability scale, the 

values were similar to the true values although overestimation was observed for a value of 

K=0.01. The values for 2

AUCR  were close to the true values with low heritabilities, however, 

they were overestimated with high heritabilities (Figure 1). 

 

Under a normal distribution with ascertainment (i.e. Normal, K<P in Figure 1), only 2

cclR  

values gave unbiased and correct values which were transformed from 2

ccoR  using (15) 

(Figure 1). We note that 2

AUCR  values with ascertained samples were very similar to those 

without ascertained samples, showing that 2

AUCR  is not affected by ascertainment, because 

AUC, on which it is based, is known not to be affected by ascertainment. It was shown that 

ascertained samples resulted in biased estimation for the values for 2

probitR  and 2

logitR  that gave 

correct values when using unascertained population samples. We show in the Appendix C 

that a weighted probit model produces unbiased estimates for the normal distribution 

although the weighted scheme does not fully use all information.  

 

Under a logistic distribution without ascertainment (i.e. Logit, K=P in Figure 1), R
2
 values on 

the observed scale ( 2

&SCR  and 2

NR ) did not agree with the true values, as expected. The values 
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for 2

lR  and 2

AUCR  were different from the true values. This was due to the fact that the 

transformation based on a normal distribution is not valid for a logistic distribution. The 

values for 2

probitR  were slightly biased because the normality assumption in the probit model is 

violated when the actual distribution is logistic. Only 2

logitR  values were unbiased and close to 

the true values (Figure 1). Using a logistic distribution, we also tested and estimated R
2
 

values for ascertained case-control studies (Logit, K<P in Figure 1). In this situation, no 

method gave correct estimates. Again, a weighting scheme in a logistic model can be used to 

produce unbiased estimates for the logistic distribution (Appendix C). 

 

Comparing observed and expected values  

The expected value for each R
2
 can be obtained as described in Table 1 which gives 

approximate relationships between the R
2
 values. Table 2 and 3 shows the ratio of the 

observed estimated value over its expectation under a normal distribution of liability. Without 

ascertainment, the ratios for 2

lR  and 2

probitR  were close to one, indicating that the observations 

and expectations agreed very well. The observations and expectations for 2

&SCR , 2

NR  and 

2

AUCR  agreed approximately unless the true heritability was high. The ratio for 2

logitR   deviated 

from one especially when using K=0.01, probably because the liability had a normal 

distribution, not a logistic distribution (Table 2). When using ascertained case-control studies, 

the patterns for the ratio of observed and expected value for R
2
 were similar to those without 

ascertainment except 2

probitR . The observations and expectations for 2

cclR  agreed well (Table 3). 

With low and moderate heritability, the observed and expected values for 2

&SCR , 2

NR  and 

2

AUCR  agreed (Table 3). However, the ratio of observed and expected values for 
2

probitR  and 
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2

logitR  substantially deviated from one. This was due to the fact that 2

probitR  and 2

logitR  were not 

corrected for ascertainment bias. 

 

 

DISCUSSION 

It is reasonable to assume that there is underlying liability for complex disease [Falconer and 

Mackay 1996], and recent empirical findings from genome-wide association studies are 

consistent with highly polygenic models for common disease [Antoniou and Easton 2003; 

Pharoah, et al. 2002; Purcell, et al. 2009; The International Multiple Sclerosis Genetics 2010; 

Witte and Hoffmann 2011]. If this assumption is valid, it is desirable to have coefficients of 

determination on the same scale as liability because then the goodness-of-fit can be compared 

across studies and traits. We showed that pseudo R
2
 statistics based on the likelihood function 

(e.g. 2

&SCR ) are on the observed probability scale. This is the reason why such R
2
 are 

inappropriate to measure the goodness of fit of models, i.e. it never reaches unity even when 

there is a perfect model fit. Nagelkerke R
2
 is adjusted for the maximum value so that it may 

reach unity, however the adjustment is inappropriate to measure the goodness of fit of models 

on the liability scale. We derived and showed the relationship between the observed 

probability scale and the underlying liability scale. R
2
 is a proportion of variance explained 

by explanatory genetic factors, and can be transformable between the observed and the 

liability scale. Given the simulation results, the R
2
 values on the liability scale were much 

more appropriate in measuring the goodness of fit of models and interpreting model 

parameters. The concept of R
2
 as a proportion of total variance explained by explanatory 

factors on the liability scale was suggested previously [McKelvey and Zavoina 1975]. We 

explicitly show the relationship between R
2
 on the observed and liability scale, and justified 
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that R
2
 on the liability scale is globally valid and comparable. Moreover, when samples were 

ascertained, an unbiased estimate of R
2
 on the liability scale could be obtained, corrected for 

ascertainment bias using a modified version of the transformation.  

 

The transformation of R
2
 values on the liability scale depends on the distribution of 

underlying liability. The assumption of a normal distribution in obtaining 2

lR , 2

cclR , 2

probitR  

and 2

AUCR  was violated when the true liability had a logistic distribution (Figure 1). If liability 

is the sum of many multiple independent random genetic and environmental factors, then the 

central limit theorem predicts that its distribution will tend to normality [Falconer and 

Mackay 1996; Gibson 2009; Valentin 1999; Wray, et al. 2010]. For this reason the 

assumption of a normal distribution for liability to common disease seems reasonable. 

 

In practice, with real data, genetic values on the liability scale are not observed (gi) but 

estimated ( iĝ ). For example, iĝ can be created from validated genome-wide significant SNPs 

or else from a large number of SNPs with effect sizes estimated in an independent discovery 

sample in a ‘profile scoring’ approach [Chen, et al. 2011; Meigs, et al. 2008; Morrison, et al. 

2007; Purcell, et al. 2009; The International Multiple Sclerosis Genetics 2010; Wacholder, et 

al. 2010; Wray, et al. 2007]. In these examples, effect sizes are estimated in a fixed effects 

framework, and the resulting predictor will be estimated with error ( i ), such that 

iii gg ˆ . The effect of such errors on the R
2
 values investigated in this study is that the 

‘heritability’ of the predictor is lower than if it were estimated without error, and so the R
2
 

values will be lower. However, all calculations and simulations results are still valid if the 

variation in liability explained by ĝ  is substituted for the heritability of liability. If the 

predictor is estimated from random effects models and unbiased in the sense that the 
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regression of ig  on iĝ  is unity [Goddard, et al. 2009] then the R
2
 values will be unbiased and 

will reflect the proportion of variance of liability explained by ig . 

 

We suggest that R
2
 values on the liability scale should be used to measure the goodness of fit 

of models in which genetic profiles are used. They are consistent with the underlying scale, 

independent of population parameters such as K and P, globally comparable between 

analytical models and methods and can be compared to heritability. Particularly, 2

lR  and 

2

probitR  values are easily interpretable in relation to true heritability on the underlying liability 

scale when using population samples. When using ascertained case-control studies, 2

cclR  

values, adjusted for ascertainment bias, is a useful measure with desirable properties.  
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Appendix A: Transformation corrected for ascertainment  
 

In ascertained case-control studies, the mean and variance for case/controls disease status 

(ycc), disease liability (lcc) and genetic liability (gcc) following quantitative genetic 

theory[Falconer and Mackay 1996] are, 

 

E(ycc) = P, which is the proportion of cases in the sample, 

var(ycc) = P(1 - P), which is the phenotypic variance on the observed scale in the case-control 

sample, 

)]1/()[()1()( 2 KKPmmPPmlE cc  . 

22

2
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where })]1/()[()]{1/()[( tKKPmKKPm  . 

 

The mean of genetic liability depends on the mean liability phenotype of the cases and the 

heritability of liability, 
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Similarly, the variance for genetic liability can be derived as, 
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For Equation (12) in main text, the regression of phenotype on the observed risk scale on 

genetic liability in the case-control study is, 
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 quantifies the change of the regression coefficient in a regression of 

phenotype on the observed risk scale on genetic factors on the scale of liability due to 

ascertainment in a case-control study. In the absence of ascertainment (P = K), this term is 1. 

 

From Equation (14), 2

cclR  can be derived as, 
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Appendix B: Pseudo R code for the methods described in the paper 
 
nt=total number of the sample 

ncase=number of cases 

ncont=number of controls 

thd=the threshold on the normal distribution which truncates the proportion 

of disease prevalence 

K=population prevalence 

P=proportion of cases in the case-control samples 

zv=dnorm(thd)                                  #z (normal density) 

mv=zv/K                                        #mean liability for case 

mv2=-mv*K/(1-K)                                #mean liability for controls 

 

library(Design)                                #to call lrm 

library(pROC)                                  #to get AUC values 

 

# R2 on the observed scale using a liner model  

lmv=lm(y~g)                                    # linear model 

R2=var(lmv$fitted.values)/(ncase/nt*ncont/nt) 

 

# Cox & Snell R2 

logf=logLik(glm(y~g,family=binomial(logit))) 

logn=logLik(glm(y~1,family=binomial(logit))) 

R2=1-exp((logn-logf)*(2/nt)) 

 

# Nagelkerke R2 

lrmv2=lrm(y~g)            # a logistic model to get Nagelkerke’s R2 

R2=lrmv2$stats[10] 

 

# R2 on the probit liability scale using a probit model  

pmv=glm(y~g,family=binomial(probit))            # probit model 

R2=var(pmv$linear.predictors)/(var(pmv$linear.predictors)+1)   

 

# R2 on the logistic liability scale 

lrmv=glm(y~g,family=binomial(logit))            # logistic model 

R2=var(lrmv$linear.predictors)/(var(lrmv$linear.predictors)+pi^2/3) 

 

# R2 on the liability scale using AUC 

aucv=auc(y,pmv$linear.predictors) 

qv=qnorm(aucv[1])                               #Q in equation (11) 

R2=2*qv^2/((mv2-mv)^2+qv^2*mv*(mv-thd)+mv2*(mv2-thd)) 

 

# R2 on the liability scale using the transformation 

lmv=lm(y~g)                                     #linear model 

R2O=var(lmv$fitted.values)/(ncase/nt*ncont/nt)  #R2 on the observed scale 

theta=mv*(P-K)/(1-K)*(mv*(P-K)/(1-K)-thd)       #θ in equation (15) 

cv=K*(1-K)/zv^2*K*(1-K)/(P*(1-P))               #C in equation (15) 

R2=R2O*cv/(1+R2O*theta*cv)                       
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Appendix C: Weighted GLM estimates in measuring R
2
 for genetic profile 

analysis using ascertained case-control samples 
 

When ascertained case-control samples are used, estimates from a probit model are biased 

because the normality assumption is violated (3). A weighted probit model can be used to 

obtain unbiased estimations, weighting cases for the proportion of ascertainment, i.e. (1-

P)K/[P(1-K)]. Even after obtaining unbiased probitb̂ , the 2

probitR  from Equation (9) is still biased 

because there are still over-sampled cases in the estimation. We used a proportion of cases, 

i.e. (1-P)K/[P(1-K)], such that the number of cases and controls matched the population 

incidence, and estimated 2

probitR  using Equation (9). The pseudo R-code for these processes is 

in the following. 

 
# Weighted R2 from a weighted probit model 

wv=(1-P)K/[P(1-K)]                               #weighting factor 

wt=y+1 

wt[wt==2]=wv                                     #weighting array  

pmv=glm(y~g,weights=wt, family=binomial(probit)) #weighted probit model 

vr=runif(nt,0,1)                                 #uniform random values 

vsel=pmv$linear.predictors[y==control | vr<wv]   #select controls and a 

proportion (wv) of cases 

R2=var(vsel)/(var(vsel)+1)   

 

 

In contrast to a probit model, estimates from a logistic model are not affected by sample 

ascertainment because the estimate is a function of odds ratios (Equation (2)). Therefore, we 

could obtain unbiased logitb̂  from a standard logistic regression. However, 2

logitR  from 

Equation (10) is biased because of over-sampled cases in the estimation. We used the same 

strategy as above to use a proportion of cases, i.e. (1-P)K/[P(1-K)], and estimated 2

logitR  using 

Equation (10). The pseudo R-code for obtaining weighted 2

logitR  is in the following. 

 
# Weighted R2 from a logistic model 

lrmv=glm(y~g,family=binomial(logit))             # logistic model 

vr=runif(nt,0,1)                                 #uniform random values 

vsel=lrmv$linear.predictors[y==control | vr<wv]  #select controls and a 

proportion (wv) of cases 

R2=var(vsel)/(var(vsel)+pi^2/3)   

 

Weighted R
2
 was estimated and compared to the transformation method (Table S1 and S2). 

For simulations using a normal distribution of liability, weighted R
2
 from a weighted probit 

model was estimated (Table S1). For simulations using a logistic distribution, weighted R
2
 

from a standard logistic model was obtained (Table S2). 

 

Table S1 shows that weighted R
2
 from the weighted probit estimates was much better than 

that from the unweighted probit estimates when using simulations of a normal distribution of 

liability. The performance of the weighted probit estimates was similar to that of 

transformation method (
2

cclR ) (Table 1 main text) although the standard deviations for the 

weighted R
2
 were larger. When using simulations of a logistic distribution of liability, the 

weighted R
2 

from a logistic model gave unbiased estimates, which were close to the true 

values (Table S2).  
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Table 1. Brief description of R
2
 measures used in this study and their theoretical expectation 

brief description notation and formula Expectation 
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ascertained case-

control studies 
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lh  

y: observations that are 0 or 1 for unaffected and affected individuals. 2

lh : heritability on the 

liability scale, in this context the proportion of variance on the liability scale explained by the 

genetic profile . K: population prevalence. z: the height of a normal density curve at the point 

according to K. g: the sum of all additive genetic factors in the estimated genetic predictor. b: 

regression coefficient from generalised linear model. m: the mean liability for cases. m2: the 

mean liability for controls. t: the threshold on the normal distribution which truncates the 

proportion of disease prevalence K. Q: the inverse of the cumulative density function of the 

normal distribution up to values of AUC. C and θ: correcting factors for ascertainment.  
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Table 2. The ratio of estimated R
2
 over its expectation using several methods under a normal 

distribution of liability 

true h2a observed scale liability scale 

 2

&SCR  2

NR  2

lR  2

probitR  2

logitR  2

AUCR  

K=0.5 

0.1 1.02 
(0.06) 

1.02 
(0.06) 

1.02 
(0.06) 

1.02 
(0.06) 

0.83 
(0.05) 

0.85 
(0.06) 

0.3 1.00 
(0.03) 

1.01 
(0.03) 

1.00 
(0.03) 

1.00 
(0.03) 

0.88 
(0.03) 

0.90 
(0.04) 

0.5 1.01 
(0.02) 

1.01 
(0.02) 

1.00 
(0.02) 

1.00 
(0.02) 

0.94 
(0.02) 

1.00 
(0.02) 

0.7 1.02 
(0.01) 

1.02 
(0.01) 

1.00 
(0.01) 

1.00 
(0.01) 

0.97 
(0.01) 

1.13 
(0.02) 

0.9 1.06 
(0.01) 

1.06 
(0.01) 

1.00 
(0.01) 

1.00 
(0.01) 

1.00 
(0.01) 

1.42 
(0.02) 

K=0.1 

0.1 1.00 
(0.10) 

1.01 
(0.10) 

1.00 
(0.11) 

1.01 
(0.10) 

1.12 
(0.11) 

0.94 
(0.10) 

0.3 1.03 
(0.07) 

1.03 
(0.05) 

1.02 
(0.07) 

1.02 
(0.05) 

1.08 
(0.04) 

0.99 
(0.05) 

0.5 1.04 
(0.04) 

1.03 
(0.03) 

1.00 
(0.04) 

1.00 
(0.03) 

1.03 
(0.03) 

1.02 
(0.04) 

0.7 1.08 
(0.04) 

1.08 
(0.02) 

1.00 
(0.03) 

1.00 
(0.02) 

1.01 
(0.02) 

1.10 
(0.03) 

0.9 1.17 
(0.03) 

1.18 
(0.01) 

1.00 
(0.03) 

1.00 
(0.01) 

1.00 
(0.01) 

1.26 
(0.02) 

K=0.01 

0.1 0.95 
(0.26) 

0.97 
(0.25) 

0.95 
(0.25) 

0.99 
(0.26) 

1.82 
(0.39) 

0.99 
(0.26) 

0.3 0.99 
(0.15) 

0.99 
(0.12) 

0.98 
(0.15) 

1.01 
(0.12) 

1.43 
(0.12) 

1.01 
(0.12) 

0.5 1.03 
(0.13) 

1.01 
(0.07) 

0.99 
(0.13) 

1.00 
(0.05) 

1.20 
(0.05) 

1.02 
(0.06) 

0.7 1.07 
(0.11) 

1.06 
(0.06) 

0.99 
(0.10) 

1.00 
(0.04) 

1.08 
(0.04) 

1.04 
(0.05) 

0.9 1.19 
(0.13) 

1.17 
(0.05) 

0.99 
(0.11) 

1.00 
(0.02) 

1.01 
(0.02) 

1.12 
(0.04) 

a
The true proportion of variance explained by the genetic profile 

The expectation was obtained as described in Table 1. 

Standard deviation over 30 replicates is in the bracket. 
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Table 3. The ratio of estimated R
2
 over its expectation using several methods when using 

ascertained case-control studies under a normal distribution of liability 

true h2a observed scale liability scale 

 2

&SCR  2

NR  2

cclR  2

probitR  2

logitR  2

AUCR  

K=0.1 

0.1 1.00 
(0.06) 

1.00 
(0.06) 

1.00 
(0.06) 

1.43 
(0.09) 

1.19 
(0.08) 

0.94 
(0.06) 

0.3 1.00 
(0.03) 

1.01 
(0.03) 

1.01 
(0.02) 

1.33 
(0.03) 

1.21 
(0.03) 

0.98 
(0.03) 

0.5 1.00 
(0.02) 

1.01 
(0.02) 

1.01 
(0.01) 

1.22 
(0.02) 

1.18 
(0.02) 

1.03 
(0.02) 

0.7 1.01 
(0.01) 

1.01 
(0.01) 

1.01 
(0.01) 

1.12 
(0.01) 

1.11 
(0.01) 

1.10 
(0.02) 

0.9 1.03 
(0.00) 

1.03 
(0.00) 

1.01 
(0.00) 

1.03 
(0.00) 

1.04 
(0.00) 

1.25 
(0.01) 

K=0.01 

0.1 1.00 
(0.05) 

1.00 
(0.05) 

1.00 
(0.04) 

2.49 
(0.12) 

2.15 
(0.11) 

0.99 
(0.06) 

0.3 1.00 
(0.02) 

1.00 
(0.02) 

1.00 
(0.01) 

1.95 
(0.03) 

1.88 
(0.03) 

1.01 
(0.03) 

0.5 0.98 
(0.01) 

0.98 
(0.01) 

1.00 
(0.01) 

1.55 
(0.01) 

1.55 
(0.01) 

1.02 
(0.02) 

0.7 0.97 
(0.01) 

0.97 
(0.01) 

1.00 
(0.00) 

1.28 
(0.01) 

1.28 
(0.01) 

1.04 
(0.02) 

0.9 0.96 
(0.00) 

0.96 
(0.00) 

1.00 
(0.00) 

1.07 
(0.00) 

1.08 
(0.00) 

1.11 
(0.02) 

a
The true proportion of variance explained by the genetic profile 

The expectation was obtained as described in Table 1. 

Standard deviation over 30 replicates is in the bracket. 
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Table S1. Estimated coefficients of determination using several methods including weighted 

probit model when using ascertained case-control studies under a normal distribution of 

liability 

 

true h2 2

cclR  2

probitR  2

probitweightedR  

 K=0.1 

0.1 0.100 
(0.006) 

0.143 
(0.009) 

0.100 
(0.006) 

0.3 0.302 
(0.007) 

0.399 
(0.010) 

0.299 
(0.009) 

0.5 0.504 
(0.007) 

0.610 
(0.010) 

0.500 
(0.012) 

0.7 0.705 
(0.006) 

0.785 
(0.007) 

0.698 
(0.010) 

0.9 0.910 
(0.003) 

0.931 
(0.003) 

0.900 
(0.005) 

 K=0.01 

0.1 0.100 
(0.004) 

0.249 
(0.012) 

0.099 
(0.005) 

0.3 0.301 
(0.004) 

0.586 
(0.009) 

0.302 
(0.010) 

0.5 0.500 
(0.003) 

0.777 
(0.006) 

0.504 
(0.020) 

0.7 0.700 
(0.003) 

0.893 
(0.005) 

0.702 
(0.023) 

0.9 0.902 
(0.002) 

0.965 
(0.002) 

0.899 
(0.013) 

Weighted estimates from a weighted probit model are close to the true values although the 

standard deviations are larger than the other methods. 
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Table S2. Estimated coefficients of determination using several methods including weighted 

logistic model when using ascertained case-control studies under a logistic distribution of 

liability 

 

true h2 2

cclR  2

logitR  2

logitweightedR  

 K=0.1 

0.1 0.087 
(0.005) 

0.110 
(0.007) 

0.100 
(0.007) 

0.3 0.260 
(0.007) 

0.346 
(0.010) 

0.303 
(0.009) 

0.5 0.443 
(0.007) 

0.570 
(0.013) 

0.499 
(0.009) 

0.7 0.641 
(0.008) 

0.765 
(0.008) 

0.696 
(0.009) 

0.9 0.866 
(0.005) 

0.929 
(0.003) 

0.899 
(0.006) 

 K=0.01 

0.1 0.050 
(0.003) 

0.117 
(0.008) 

0.101 
(0.007) 

0.3 0.191 
(0.004) 

0.437 
(0.013) 

0.301 
(0.011) 

0.5 0.406 
(0.004) 

0.704 
(0.011) 

0.499 
(0.007) 

0.7 0.700 
(0.002) 

0.865 
(0.005) 

0.701 
(0.009) 

0.9 0.982 
(0.002) 

0.964 
(0.002) 

0.900 
(0.006) 

Weighted estimates from a logistic model are close to the true values. 
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Figure 1. Estimated coefficients of determination using simulated data. The true proportion of 

variance explained by the genetic profile was simulated as 0.1, 0.3, 0.5, 0.7 and 0.9 under a 

normal (first row) or logistic distribution (second row). Various combinations of population 

prevalence (K) and the proportion of cases in the case-control study (P) were simulated. The 

first three columns were simulations without ascertainment (i.e. K=P) and the last two 

columns were simulations with ascertainment (i.e. K<P). Several R
2
 measures were used and 

compared, i.e. Cox and Snell’s R
2
 on the observed scale (C&S), Nagelkerke’s R

2
 on the observed 

scale (N), R
2
 on the liability scale transformed from linear model (l for population samples and lcc for 

ascertained case-control samples), R
2
 on the probit liability scale (probit), R

2
 on the logit liability scale 

(logit), and R
2
 on the liability scale using AUC (AUC). The gridline for 0.1, 0.3, 0.5, 0.7 and 0.9 

are indicators of the true values to be compared to those estimated R
2
 that have 5 data points 

for each measure. The (error) bars show standard deviations over 30 replicates. 


