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              Abstract 

 

Group identification can lead to a biased view of the world in favor of “in-group” 

members. Studying the brain processes that underlie such in-group biases is important 

for a wider understanding of the potential influence of social factors on basic perceptual 

processes. In this study we used fMRI to investigate how people perceive the actions of 

in-group and out-group members, and how their biased view in favor of own-team 

members manifests itself in the brain. We divided participants into two teams and had 

them judge the relative speeds of hand actions performed by an in-group and an out-

group member in a competitive situation. Participants judged hand actions performed by 

in-group members as being faster than those of out-group members, even when the two 

actions were performed at physically identical speeds. In an additional fMRI experiment 

we showed that, contrary to common belief, such skewed impressions arise from a 

subtle bias in perception and associated brain activity rather than decision making 

processes, and that this bias develops rapidly and involuntarily as a consequence of 

group affiliation.  Our findings suggest that the neural mechanisms that underlie human 

perception are shaped by social context. 
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  Introduction  

 

People tend to evaluate the actions of their own group or team members more favorably 

than those of others. In a pioneering study by Hastorf and Cantril (1954), Princeton and 

Dartmouth students viewed a film of a contentious football game played between their 

two schools. The students’ versions of what transpired during the game were so wildly 

different that it almost appeared as if they had watched different games. Social 

categorization can change social perception even in a minimal group setting. For 

example, Bernstein et al. (2007) randomly divided individuals into two groups and 

found that people were better at recognizing faces of in-group members than of out-

group members, despite the fact that perceptual expertise was equivalent for in-group 

and out-group faces. Inter-group bias can occur under minimal conditions (Tajfel et al. 

1971; Turner, 1975) as an automatic process without awareness (Otten and Wentura, 

1999; Ashburn-Nado et al. 2001), implying that such a bias could manifest itself in 

brain regions involved in relatively non-conscious processing rather than at a later, 

conscious stage of  selection. Traditionally, ‘in-group’ biases have been explained in 

terms of social psychological motivations (Tajfel and Turner, 1986; Hewstone et al. 

2002; Brewer, 2007) but little is known about their underlying neural mechanisms. 

 

A large part of the human brain is involved with social interactions and social cognition 

(Frith, 2007). The "social brain" enables us to differentiate between ourselves and 

others, and to recognize other's mental states, intentions, feelings, and emotions (Frith 

and Frith, 2007). Uddin et al. (2007) suggest that two distinct but interconnected 

networks form the basis of the “social brain” and are involved in understanding others; a 

fronto-parietal mirror-neuron system that allows understanding others through motor 

simulation or mirroring mechanisms (eg. Rizzolatti and Sinigaglia, 2010), and a 
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“mentalising” network comprised of midline cortical structures important for evaluation 

of others’ intentions, beliefs, and mental states (eg. Frith, 2001). 

 

The prefrontal cortex (PFC) and the anterior cingulate cortex (ACC) have been 

identified as primary components of the cortical midline network (Blakemore, 2008; 

Uddin et al. 2007). Furthermore, the amygdala, which has been associated with 

emotional responses, seems to be a crucial brain region for social cognition (Blakemore, 

2008; Frith, 2007). These areas have been found to alter their activity as a function of 

ethnic or racial group biases. In particular, Cunningham et al. (2004) reported increased 

amygdala activity when White participants viewed brief, subconsciously presented 

photos of Black people. In contrast, when photos were consciously perceived this 

difference was significantly reduced, and regions of frontal cortex (ACC and PFC) 

associated with control and regulation showed greater activation for Black than White 

faces. Cunningham et al. (2004) suggested that participants attempt to control negative 

associations with their racial out-group when they are aware of the stimulus. Similarly, 

Richeson et al. (2003) reported that activity in the right dorsolateral prefrontal cortex 

(dlPFC) and ACC was positively correlated with racial bias, as measured by the Implicit 

Association Test (IAT), while Rilling et al. (2008) reported higher activation in the 

dorsomedial prefrontal cortex (dmPFC) during in-group interaction versus out-group 

interaction for participants who were biased towards in-group members. Rilling et al. 

(2008) further showed that brain activity was higher in the dlPFC during out-group 

interactions for participants who did not show an in-group bias, suggesting that those 

participants exerted greater cognitive effort to override their own biases. The medial 

PFC has also been identified as a region containing functions related to personal self 

(see Van Overwalle, 2009 for a meta-analysis). Based on social identity theory, Volz et 

al. (2009) hypothesised that because personal identity (knowledge about personal 
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identities) is interdependent on one’s social self (knowledge about shared attributes 

derived from our membership to certain groups), it is plausible to expect some overlap 

in related brain areas. Volz et al. (2009) argue that the social self is addressed during 

situations when evaluative group comparisons are made. In an fMRI study of a money 

awarding game under the minimal group paradigm, Volz et al. (2009) showed that the 

medial PFC (a region known to be involved in the personal self) was significantly more 

active in participants who acted with more bias compared to participants who 

predominantly showed neutral behaviour during the task. This result, in line with social 

identity theory, suggests that the assessment of personal self and social self involves 

similar functions and overlapping brain areas (Volz et al. 2009). Taken together, the 

findings of Cunningham et al. (2004), Richeson et al. (2003), Rilling et al. (2008) and 

Volz et al. (2009) provide evidence for differences in neural activity in response to 

ingroup and outgroup targets. It is important to note that two of the above studies 

(Cunningham et al. 2004; Richeson et al. 2003) used ethnic groups, which may lead 

participants to hide their racial biases. In turn, this cognitive effort may recruit brain 

areas that underlie inhibition and control functions. To conclude, these studies suggest 

that processing of social groups may be automatic, but executive functions can 

modulate automatic evaluations under certain conditions. Judgments leading to in-group 

bias are therefore suggested to result from social decision-making, relying on a network 

of brain regions including the ACC, medial prefrontal cortex and orbitofrontal cortex 

(Cunningham et al. 2004; Frith, 2007; Sanfey, 2007; Uddin et al. 2007; Blakemore, 

2008; Van Bavel et al. 2008).  

 

Although previous studies have tended to emphasize the role of cognitive-emotional 

factors in inter-group biases, neural mechanisms exist for the direct simulation or 

‘mirroring’ of others’ actions (Fabbri-Destro and Rizzolatti, 2008; Rizzolatti and 
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Fabbri-Destro, 2008), and these have been shown to be influenced by racial factors 

(Molnar-Szakacs et al. 2007; Avenanti et al. 2010). For example Molnar-Szakacs et al. 

(2007) showed in a TMS experiment that corticospinal excitability during observation 

of in-group culture-specific emblems (autonomous gestures that are highly social in 

nature) was higher when performed by an in-group member than an out-group member. 

They argue that unconscious mirror mechanisms were modulated by interacting 

biological and cultural factors so that when we observe the actions of an ethnic and 

cultural in-group member, we show stronger motor resonance.  Intergroup bias in action 

perception may therefore arise from differences in neural mechanisms associated with 

the perception of goal-directed actions, involving brain regions such as the superior 

temporal sulcus, inferior parietal lobule and pars opercularis and adjacent ventral 

premotor cortex (Rizzolatti and Craighero, 2004; Blake and Schiffrar, 2007), rather than 

solely from cognitive judgments or social motivations. In a previous fMRI study 

investigating in-group bias using a minimal group paradigm, Van Bavel et al. (2008) 

found that faces of in-group members are processed in more depth (revealed by greater 

fusiform gyrus activity) than faces of out-group members, which might imply that 

participants process other team members in a different way than own team members. 

Moreover, activity in orbitofrontal cortex mediated the in-group bias in self-reported 

liking for the faces. These in-group biases in neural activity were not moderated by 

whether participants explicitly attended to team membership, which suggests that they 

might arise automatically. In a similar way regions involved in action perception could 

be automatically modulated by team membership.  

 

To investigate the effect of group membership on perception of action, in the current 

study we arbitrarily allocated adult volunteers to one of two teams (“Red” or “Blue”). 

After consolidating group membership and testing the strength of implicit association 
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with red or blue teams using the Implicit Association Test (Greenwald et al. 1998; 

Greenwald et al. 2009), participants judged the speed of goal-directed actions in pairs of 

video clips of in-group and out-group members in a competitive context. We carefully 

controlled the actual time difference between actions of Red and Blue team members in 

the paired videos, and plotted the psychophysical function of participants’ judgments of 

which team was faster against the actual time difference between depicted actions. We 

expected participants to show an in-group bias, judging the actions of own-team 

members as faster than identical actions of other-team members. This behavioral action-

judgment task was used to establish that participants showed a measurable and reliable 

bias towards own-team actions in this group paradigm. The behavioral task alone, 

however, cannot reveal why such biases arise – whether they are due purely to 

social/cognitive, decision-level processes or whether in-group biases also involve 

differences in the neural processes underlying action perception. To resolve this issue 

we performed an fMRI experiment in which participants viewed actions of in-group and 

out-group members in a competitive situation.  

 

On some trials, only a single video of the own-team or other-team member was 

presented, although the participant still expected a second comparison video to follow. 

These trials enabled us to examine neural activity associated specifically with 

perception of action of own-team and other-team members separately. If people who 

show in-group bias perceive the actions of own-team members differently to those of 

other-team members, we would expect to see a difference in brain regions involved in 

action perception such as the superior temporal sulcus (STS) (Blake and Schiffrar, 

2007), the inferior parietal lobule (IPL) and the pars opercularis and adjacent ventral 

premotor cortex (pars opercularis/vPM) (Rizzolatti and Craighero, 2004). The STS is 

known to be involved in the analysis of “social” biological motion (Allison et al. 2000; 
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Saxe et al. 2004; Wyk et al. 2009). The other two regions are part of a fronto-parietal 

mirror circuit important in visual-motor transformation (Rizzolatti and Sinigaglia, 

2010). Because people imitate in-group members more easily than out-group members 

(Yabar et al. 2006; Molnar-Szakacs et al. 2007), and because in-group members are 

processed in greater depth than out-group members (Bernstein et al. 2007; Golby et al. 

2001; Van Bavel et al. 2008), we expected these regions to be more active during the 

perception of in-group members’ actions in those participants who show an in-group 

bias.  

    

On other trials of the fMRI experiment, participants viewed both own-team and other-

team actions and made judgments on who was faster, allowing us to examine neural 

activity associated with judgments of in-group versus out-group actions. If decision 

making processes are crucial for in-group biases, we expected regions such as the 

anterior cingulate cortex (ACC), the inferior frontal gyrus (IFG) and the dorsolateral 

prefrontal cortex (DLPFC), that have previously been associated with decision making 

in general (Heekeren et al. 2008), as well as cognitive control in social perception 

(Cunningham et al. 2004) to be more active when participants chose their own-team 

actions as faster compared with other-team actions. 

.  

Material and methods 

 

Participants. Two independent groups of participants were recruited: 24 volunteers 

ranging in age from 17 to 39 years (M= 21.8 years) completed the behavioral action 

judgment task, and another 24 volunteers, ranging in age from 17 to 43 years (M= 23.8 

years), completed the fMRI action-perception task. To ensure that gender (Sidanius et 

al. 2000; Dambrun et al. 2004) and ethnicity (Vanman et al. 2004) did not interfere with 
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group identification, the sample comprised Caucasian males only. All participants were 

right-handed, had normal or corrected-to-normal visual acuity, and had no history of 

mental or neurological diseases. All experimental procedures were approved by the 

Medical Research Ethics Committee of The University of Queensland.  

 

Team Allocation. All participants were first allocated to Red and Blue teams. For this 

allocation, participants were asked to estimate the number of dots in a randomly-

dispersed array of 84 black dots on a white background. Participants were seated 114 

cm from a 17-inch computer screen and a two-button response box was fixed to a table 

on the participant's right hand side. All aspects of experimental stimulus delivery were 

presented with E-prime 2.0 (Psychology Software Tools) software. Participants were 

told that their team assignment would be based on their response (over- or 

underestimation of the number of dots), although allocation was in fact randomized 

(Tajfel et al. 1971) and no information about the performance was given to the 

participants. For the remainder of the study, participants then wore a red or blue jacket, 

as appropriate for their team. 

 

Next, to consolidate group identification (Sherif et al. 1961) and enhance in-group 

versus out-group distinctiveness (Brewer, 1979), all participants performed a team-

competition task in which they were told that they were competing against a member of 

the other team. Participants reached as quickly as possible to press a response button 

with their right hand (50 cm from the resting hand position) after a “GO-signal” was 

presented on the computer display. A warning cue (“Get Ready”) was always displayed 

at 1 s, 2 s or 3 s before the "GO" cue. Participants were told that their response times 

would be compared with the pre-recorded response times of an opposing-team member, 

and to give this appearance the word "Checking…" appeared immediately after the 
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action, followed by a feedback display indicating "RED WINS" or "BLUE WINS". 

Feedback was actually pseudo-randomly selected, with each participant “winning” 50% 

of trials. If participants’ responses took longer than 700 ms, the opposing team was 

shown as the winner to ensure that participants remained unaware of the randomized 

nature of feedback when they responded too slowly. Participants completed 18 trials of 

this competition task over approximately 5 minutes. 

 

Action Judgment Task. Following the team-competition task, the first group of 24 

participants performed a novel Action Judgment Task. This task was critical for 

measuring group bias in action judgments. Participants viewed pairs of video clips of 

rapid reaching actions made by red and blue team members, and were asked to judge 

which was faster (Figure 1A). Video clips showed a hand-action model, in a red or blue 

jacket, performing a rapid reaching movement with his right hand, starting from a 

resting position and reaching to press a button at a distance of approximately 50 cm in 

front of his body, before returning to the start position. The videos were edited with 

Sony Vegas Movie Studio 9 (Sony Media Software) so that the duration of the actions 

depicted, from the onset of movement until the model’s hand reached the button, was 

strictly controlled by the number of video frames: either 233, 300, 367 or 433 ms 

duration (7, 9, 11 or 13 video frames at 30 frames per second). When paired together in 

all possible 32 combinations (see Supplementary Table 1) this yielded seven 

experimental conditions in which the action durations differed by exactly +200, +133, 

+67, 0, -67, -133, or -200 ms. All video clips were exactly 1500 ms duration, with 

movement onset beginning at 167 ms (frame 5). All combinations of action durations 

were presented equally often, randomly mixed, over 2 sessions of 64 trials per session. 
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Crucially, identical video clips were shown to all participants, so that those representing 

“own-team” for one group of participants were the same as those representing “other-

team” for the other group of participants. In this way, any differences between the 

judgments on own-team and other-team videos could not be attributed to any subtle 

physical differences between the videos themselves. Four different hand-action models 

were depicted in the videos, and the team they represented was counterbalanced across 

participant groups. Participants received no feedback on the accuracy of their 

judgments. 

 

To calculate the judgment bias in function of time difference between own-team versus 

other-team actions, the percentage of “own-team faster” responses was calculated and 

plotted as a function the actual time difference between actions depicted in the videos. 

This psychophysical function, representing the relationship between perceived and 

actual speed of actions, was fitted with a 3-parameter sigmoid function y= a/(1+exp(-(x-

x0)/b)) using SigmaPlot 11.0 (Systat software). Each participant’s judgment bias was 

calculated by finding the actual time difference between own-team versus other-team 

actions (x-axis) at which perceptual responses of “own-team faster” was equal to 50% 

(y-axis) on their individual fitted sigmoid function [using the formula x = -LN((a/y)-

1)*b + x0].  

 

Functional MRI Action Judgment Task. Following the team-competition task, the 

second group of 24 participants performed a modified version of the Action Judgment 

Task during functional MRI measurement. In this modified task, only two durations of 

actions were depicted in the video clips (300 and 367 ms) so that paired videos showed 

own-team and other-team actions that differed by either +67, 0, or -67 ms. Each trial 

consisted either of a pair of video clips, as in the standard action judgment task, or a 
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single video clip showing an action performed by an own-team or other-team member 

(Figure 1B). For the paired-video trials, as in the standard action judgment task, 

participants pressed a button after viewing the two actions to indicate which of the 

actions they judged as faster. For the single-video trials, only the initial “Your Team” or 

“Other Team” text and the relevant video clip were presented, with a fixation cross 

presented for the remainder of the inter-trial interval (5500 ms). These single-video 

trials were mixed randomly with the paired-video trials so that participants were not 

aware of the trial type while viewing the initial video clips. In the paired-video trials the 

two video clips are too close in time to analyze the activity associated with watching 

own team and others team videos separately; therefore we included the single-video 

trials. This condition allowed us to compare brain activation associated with the visual 

processing of own-team versus other-team videos in isolation, without any possible 

confounding effects of seeing both team videos and making judgments about teams.  

 

As a baseline comparison condition, a Press Task was also included in which the final 

stimulus screen instructed participants to “Press Left” or “Press Right”, rather than 

judging “Who was faster?”. When contrasted with the paired-video action-judgment 

trials, the Press Task allowed us to examine neural activity associated with making 

explicit judgments on who was faster. As a resting control condition, 16 trials involved 

only a fixation cross presented for the entire 8 s trial duration. This allowed us to plot 

the level of activation (% signal change) during the single-video trials compared with a 

passive-fixation control condition. 

 

The overall sequence of stimuli within trials for the paired video clips was identical to 

that in the standard action judgment task (see Figure 1A), except that a fixed 3 s inter-

trial interval was used to keep overall trial durations fixed. The order of in-group and 
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out-group video clips and action durations was counterbalanced across participants. The 

entire task was conducted in 4 repeated fMRI runs, each of approximately 9 min 

duration and consisting of 64 trials in total. There were 16 trials for each within-subject 

condition: 32 paired-video trials, half requiring action judgments and half press 

left/right; 16 single-video trials, half showing own-team and half other-team; and 16 

baseline fixation trials. 

 

Immediately following the fMRI Action Judgment Task, we also conducted an 

additional single fMRI run in which participants passively viewed the same own-team 

and other-team action video clips in blocks alternating with rest. This control 

experiment allowed us to examine whether any difference existed in neural activity for 

own-team and other-team actions during purely passive observation. Videos of own-

team and other-team actions were presented in blocks to optimize the power of the 

design of 24 s duration (12 trials of 1500 ms video clip plus 500 ms fixation inter-

stimulus interval), alternating with 16 s baseline fixation. Each participant viewed 4 

blocks of own-team and 4 blocks of other-team actions.   

 

Implicit Association Test (IAT). Following the Action Judgment Task, all participants 

performed the Implicit Association Test (IAT; Greenwald et al. 1998), in order to verify 

that each group identified more with their own team members than with opposing team 

members (see Supplementary Figure 1). In the critical conditions of our IAT task, 

participants simultaneously categorized words as pleasant or unpleasant, and photos of 

team members as own-team or other-team, by pressing left or right buttons. If 

participants form significant group associations, they should respond faster in a 

congruent condition, when own-team photos and positive words are associated with one 

response (e.g., left button press) and other-team photos and negative words are 
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associated with the other response (e.g., right button), than the reverse configuration in 

which own-team photos and negative words are mapped to the same response. The 

modified IAT consisted of five parts: three parts for learning associations between 

concepts and response hands (Parts 1, 2, and 4) and two critical, combined tasks (Parts 3 

and 5) during which response times were measured and compared. For the initial target-

concept discrimination, photographs of a red or blue team member were presented in the 

center of the display with category labels “Red Team” and “Blue Team” presented in 

left and right top corners of the display. Participants pressed left or right response 

buttons to classify photographs as red or blue team members. The photographs showed 

one of eight Caucasian males wearing a blue or a red jacket, with each model shown 

twice over 16 trials. Next, for the associated attribute discrimination, pleasant or 

unpleasant words were presented in the center of the display, with the category labels 

“Unpleasant” and “Pleasant” presented in left and right top corners of the display. 

Participants pressed the left or right response buttons to classify words as unpleasant or 

pleasant. Four unpleasant words (enemy, evil, rotten, hatred) and four pleasant words 

(friend, honest, loyal, happy) were each presented twice over 16 trials. 

 

For the critical combined tasks (Parts 3 and 5), each trial involved either a 

pleasant/unpleasant word or a photograph of a red/blue team member presented 

centrally, with both sets of category labels Pleasant/Unpleasant and Red Team/Blue 

Team presented in left and right top corners of the display. Participants pressed the 

appropriate button to classify the words as pleasant/unpleasant and the photographs as 

red/blue team. This condition was either Congruent, in which own-team/pleasant and 

other-team/unpleasant were associated with the same response, or Incongruent in which 

own-team/unpleasant and other-team/pleasant were associated. Each of the eight words 

and eight photographs was presented 10 times in random order over 160 trials. Half the 
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participants performed Congruent and Incongruent conditions in Parts 3 and 5 

respectively, and half performed the reverse order. Participants' reaction times were 

recorded in these combined tasks and compared between Congruent and Incongruent 

conditions. Between the two combined tasks (Part 4), for the reversed target-concept 

discrimination, words and photographs were mapped to opposite response sides from 

those in Parts 2 and 3. To counteract any order effect, the number of trials during the 

re-association phase in Part 4 was doubled (Nosek et al. 2005), for a total of 32 trials.  

 

Explicit group identification. Finally, following the IAT, a brief questionnaire was 

used to measure explicit group-identification. Two questions were asked: “I identify 

myself with the people from the red team” and “I identify myself with the people from 

the blue team”. Participants responded on a 7-point Likert scale ranging from 1 ("I 

totally agree") to 7 ("I totally disagree"). For each participant we calculated a difference 

score as follows:  “identify with other team score – identify with own team score” 

(positive scores mean more identification with own team). One sample t-tests were used 

to compare participants’ scores against 0 (no bias in identification scores). Twenty 

participants from the behavioral experiment group and all 24 participants from the fMRI 

experiment completed the explicit group identification questionnaire. 

 

fMRI Acquisition. Functional MRI data were obtained on a 1.5 T Siemens Sonata MR 

scanner using a gradient-echo echo-planar imaging (EPI) sequence with the following 

parameters: 42 descending horizontal slices (3.5 mm slice thickness) without gap, 

repetition time (TR) 2.5 s; echo time (TE), 40 ms; flip angle (FA), 90°; 64×64 voxels at 

3.5×3.5  mm in-plane resolution. To reduce multicollinearity, each point in the trial 

occurred at a different time point within the TR cycle. The entire brain from the vertex 

to the cerebellum was covered in the 42 slices. The first three TR periods from each 
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functional run were removed to allow for steady-state tissue magnetization. Four runs of 

211 brain images each were collected in the fMRI-judgment task, and one run of 131 

images was collected in the fMRI-passive viewing task. A three dimensional, high-

resolution T1-weighted image covering the entire brain was also acquired for 

anatomical reference (TR= 1700 ms, TE=3.91 ms, FA=15°, 192 cubic matrix, voxel 

size =1.2 cubic mm).  

 

fMRI Analyses. Data were processed and analyzed using SPM5 (Wellcome 

Department of Imaging Neuroscience, Institute of Neurology, London; 

http://www.fil.ion.ucl.ac.uk/spm), implemented in Matlab (Mathworks Inc., USA). 

Following correction for differences in timing of slice acquisition within a volume to 

the middle slice, EPI volumes were realigned to the middle image of each run for 

movement correction using a least-squares approach and six-parameter rigid body 

spatial transformations (Friston et al. 1995). A mean EPI volume was obtained during 

realignment, and the structural MRI was co-registered with that mean volume. The 

structural scan was normalized to the Montreal Neurological Institute (MNI) T1 

template using nonlinear basis functions. The same deformation parameters were 

applied to the EPI volumes. The EPI volumes were spatially smoothed using a 7 mm 

FWHM isotropic Gaussian filter. The time series for each voxel was high-pass filtered 

to 1/128 Hz.  

 

In the fMRI task, event-related responses to single-video presentations of own-team and 

other-team actions, and to decisions in the paired-video trials, were each modeled by the 

canonical hemodynamic response function of SPM5, together with their temporal 

derivatives. These event-related regressors were time-locked to the onset of trials for 

single-video conditions and to the decision-phase of the task for the paired video trials. 
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Specific contrasts calculated in the first-level analyses were then compared in second-

level random-effects group analysis using single-sample t-tests (Holmes and Friston, 

1998). 

 

For the single-video trials, we contrasted activation while watching action videos 

overall versus the implicit fixation baseline to identify the brain network that was 

involved in the perception of action. Crucially, we also contrasted activations recorded 

while participants watched own-team versus other-team actions, to determine whether 

group membership influences neural processes involved in action perception. In paired-

video trials, we contrasted activation when participants made explicit judgments versus 

the Press Task, to identify the network involved in making action judgments. We also 

contrasted activation for ‘own-team faster’ versus ‘other-team faster’ judgments to 

identify any differences associated with biased judgments toward in-group members. In 

the passive viewing fMRI experiment, blocks of watching own-team versus other-team 

videos were modeled by the canonical hemodynamic response function and contrasts in 

first-level analysis, and then compared across the group in second-level random-effects 

analysis using a single-sample t-test. For all contrasts, significant activation was defined 

by a cluster-level probability threshold of PFWE < 0.05 corrected for the whole brain 

search volume (with clusters defined by the voxel-level threshold P < 0.001).  

 

     Results  

Implicit Association Test (IAT). Across all 48 participants, the assignment to red and 

blue teams and the initial team competition resulted in significantly faster response 

times for the Congruent condition (686 ms, SD = 205) than for the Incongruent 

condition (758 ms, SD = 213), t(47) = -3.71, p < .001, indicating a reliably stronger 
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association between own-team members and pleasant words, and between other-team 

members and unpleasant words, than the reverse pairings.  

 

Action Judgment Task. As shown in Figure 2, we plotted the psychophysical function 

of participants’ ‘own-team faster’ judgements versus the actual time difference between 

actions in paired video clips. If group affiliation has no influence on action observation, 

then the point at which participants judge own-team actions as faster on 50% of trials 

(i.e., judging other-team actions as faster on an equal proportion of trials) should 

coincide with the physical speed of actions being identical (i.e., 0 ms time difference on 

the x-axis). Contrary to this null hypothesis, participants actually judged the actions of 

own-team members as roughly 30 ms faster than identical actions performed by other-

team members (see Figure 2). A one-sample t-test showed that this value was 

significantly different from zero or no-bias, t(23) = 6.02, p < 0.001. Across all 24 

participants, the mean R² fit of the sigmoid function was 96.8 % (SD = 3.6 %), 

indicating that individual curves accurately fitted the data for each participant.  

 

As expected, errors in accurately identifying which action was faster varied significantly 

across the 200, 133, and 67 ms time differences, F(2, 46) = 71.75; p < 0.001. 

Participants were highly accurate in judging which action was faster at the 200 ms time 

difference (M = 93.0%, SD = 8.5%), but were significantly less accurate at the 133 ms 

time difference (M = 90.0%, SD = 7.7%, t(23) = 9.29, p < 0.05), and significantly less 

accurate again at the 67 ms time difference (M = 74.0%, SD = 8.2%; t(23) = 10.72, p < 

0.001 compared with the 133 ms condition and t(23) = 9.29, p < 0.001 compared with 

the 200 ms condition). Participants showed no bias in judgments towards own-team 

members for actions with 200 ms time-differences (M = 50.3% “own-team faster” 

responses, t(23) = 0.23, p > 0.05), but showed significant biases towards own-team for 
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all other levels of time differences (i.e., >50% ‘own-team faster’ responses, p < 0.001 

for all comparisons). 

 

Functional MRI Action Perception Task. Behavioral Results. For functional MRI, 

we used a modified version of the action judgment task in which all trials showed 

actions differing in duration by only ±67 ms or 0 ms (i.e., the ‘easier’ judgments with 

±133 ms, and ±200 ms were not included). Overall, when actions depicted were exactly 

equal in duration, participants judged the actions of their own team as faster 

significantly more often (53.9 %, SD = 11.5 %) than actions of the other team (46.1 %, 

SD = 11.4 %; one-tailed, one-sample t-test: t(23) = 1.66, p = 0.05), indicating a 

significant judgment bias across the whole group. However, when looking at results of 

individual participants, it was apparent that this bias effect was somewhat weaker than 

that observed in the full action judgment task; only 13 of the 24 participants showed a 

judgment bias, selecting their own team as faster on >50% of trials. Because in the 

fMRI study we specifically aimed to examine neural activity differences related to 

group bias, we only included those participants who actually showed a bias behaviorally 

in the fMRI Action Judgment Task. When the videos were equal in duration, a one-

tailed, one-sample t-test confirmed that these 13 participants chose their own-team 

actions as faster significantly more often (60.8 %, SD = 9.6 %; t(12) = 4.04, p = 0.001). 

When own-team videos were actually faster, participants with a bias chose their own-

team as faster 83.0 % (SD = 8 %) of the time, whereas when other-team videos were 

actually faster, participants with a bias chose the other-team as faster only 70.7 % (SD = 

18 %) of the time; a one-tailed, paired t-test showed this difference to be significant, 

t(12) = 1.99, p = 0.035. 
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When re-analyzing results of the IAT task, those participants who showed no group-

bias on the judgment task also showed no significant difference between congruent (M 

= 851 ms, SD = 221) and incongruent (M = 863 ms, SD = 239) conditions of the IAT, 

t(10) = -0.34, p = .37, suggesting that they also failed to identify significantly with their 

own group. Conversely, those participants who did show a judgment bias behaviorally 

on the Action Judgment Task also showed a significantly greater affiliation with their 

own-team on the IAT (response times for congruent (M = 654 ms, SD = 104) < 

incongruent (M = 723 ms, SD = 116), one-tailed paired t-test: t(12) = -2.11, p = 0.03). 

Although it must be noted that the difference in congruent and incongruent IAT trials 

between the biased (M = -69 ms, SD = 118) and non-biased group (M=-12 ms, SD = 

116) failed to reach significance; one-way two-sample t-test, t(22) = 1.2, p = .12. 

 

Explicit group identification results. During the behavioral experiment participants 

identified more with their own team than with the other team (M=2.62, SD=1.94; t(20) 

= 6.20, p < 0.001), as measured by the questionnaire. Similarly, during the fMRI 

experiment, participants with a bias also identified more with their own team than with 

the other team (M=1.85, SD=2.19; t(12) = 3.04, p = 0.01). Participants without a bias 

failed to reach significant more own-group identification (M=1.82, SD=2.82; t(10) = 

2.14, p = 0.06) although the difference between the biased and non-biased group was 

not significant (one-way two-sample t-test, t(22) = 0.027, p = .49). 

 

 

fMRI results. fMRI analyses first focused on the single-video trials. As shown in 

Figure 3A and Supplementary Table 2, a network of brain areas including the posterior 

temporal sulcus, inferior parietal lobule and dorsal and ventral premotor cortex, was 

active across all participants when watching the single-action videos alone compared 
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with the fixation (baseline) condition. To investigate the effect of bias on action 

perception we analyzed data from participants who showed a judgment bias 

behaviorally during the paired-video trials separate from the participants who showed 

no bias. We first analyzed fMRI data from the participants with a bias. When we 

contrasted activation during observation of own-team compared with other-team actions 

during the single video trials, we found a single cluster within the left inferior parietal 

lobule (IPL; -36, -57, 51, Z = 4.12, extent 37, Pcorrected = 0.007; see Figure 5A) that was 

significantly more active when viewing own-team actions. Plots of percent signal 

change within this cluster are shown in Figure 4. As can be seen, every participant who 

showed a judgment bias behaviorally also showed greater activity in this IPL cluster 

when viewing own-team compared with other-team actions (Figure 4B, C), whereas the 

participants who showed no bias behaviorally also showed no difference in IPL 

activation (Figure 4D). As a further test, a correlation analysis in SPSS found a positive 

spearman correlation (r = .47; p = .02) across the entire group of 24 participants 

between the behavioral judgment-bias and the % signal change score difference (own 

team – other team) in this region. To further test directly if the left IPL showed a 

significantly biased response in single-video trials between the 2 groups we used the left 

IPL (anatomically defined by the WFU PickAtlas: 

http://www.fmri.wfubmc.edu/cms/software) as a region of interest analysis and 

specifically compared the own-team versus other-team contrast between the two groups 

using a two-sample t-test. This analysis showed that, in the same region of the left IPL, 

the activation difference for observation of own-team compared with other-team actions 

was significantly greater in people with a bias compared to those without a bias (-33, -

57, 51, Z = 3.85, Pcorrected = 0.027). In addition we also tested for other ROI’s, in the 

action observation network such as the right IPL, left and right STS (anatomically 

defined by combining middle and superior temporal gyrus) and left and right pars 

http://www.fmri.wfubmc.edu/cms/software
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opercularis and premotor cortex (anatomically defined by combining Brodmann area 44 

and 9). No significant differences between the two groups were found in the other 

ROI’s or outside the ROI’s and no significant additional activation was found in the 

people without a bias compared to the people with a bias inside or outside the ROI’s. 

This further confirms that our effect was specific to the left IPL and the people with a 

bias.  

 

For the paired-video trials, as shown in Figure 3B, we found a network of brain regions 

that were significantly more active when participants made judgments on the team 

actions compared with the baseline press left/right task. These regions included left 

inferior frontal gyrus (-42, 6, 30, Z = 4.33, extent 90, Pcorrected = 0.001), anterior 

cingulate (0, 36, 21, Z = 4.09, extent 54, Pcorrected = 0.02), the right inferior occipital 

gyrus (39, -84, -6, Z = 5.12, extent 85, Pcorrected = 0.002) and left middle occipital gyrus 

extending into the left fusiform gyrus (-36, -45, -21, Z = 4.56, extent 189, Pcorrected < 

0.001). There were no brain regions that were significantly more active during the 

decision phase when participants explicitly judged their own team as faster compared 

with judging the other team faster.  

 

Passive viewing fMRI experiment. fMRI analyses comparing watching videos versus 

baseline revealed a similar brain network to that obtained from the single-video trials of 

the main experiment (see Supplementary Figure 2 and Supplementary Table 2). This 

network included the posterior temporal sulcus, the inferior parietal lobule, and the 

dorsal and ventral premotor cortex. No significant differences in brain activation were 

found when participants passively observed own-team and other-team actions, either 

when examined exclusively for participants who showed a judgment bias behaviorally 

and when examined across the full group of 24 participants. Furthermore, there were no 
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differences related to group bias even when we focused exclusively on the left inferior 

parietal lobule at the very lenient threshold of p < 0.05 uncorrected. A paired t-test 

confirmed that the activation between own team video minus other team video showed 

significant (-39, -54, 42, Z = 3.71, extent 34, Pcorrected = 0.039) more activation in the 

people with a bias in the judgment experiment compared with the passive viewing 

experiment. 

      

Discussion 

 

In our behavioral action-judgment experiment we showed that individuals arbitrarily 

assigned to a team rapidly form group associations and that these associations bias 

subjective judgments of the speed of actions of own-team and other-team members. In 

our fMRI experiment we found that this judgment bias is associated with increased 

activity in the left inferior parietal lobe (IPL) during the observation of own-team 

actions compared with other-team actions.  Because we only tested male participants 

our results might only be valid for this population and further testing needs to be done 

to see if these findings extent to females also.  

 

Our findings suggest that brain mechanisms underlying action perception are influenced 

by group biases. Neural responses in the IPL were enhanced during the perception of 

own-group compared with other-group actions in those participants who showed a 

group bias behaviorally. As outlined earlier, distinct brain processes exist for the direct 

simulation or ‘mirroring’ of others’ actions and these have also been shown to be 

influenced by social relationships (Molnar-Szakacs et al. 2007; Rizzolatti and Fabbri-

Destro, 2008). The IPL is a crucial region in this ‘mirroring network’ and is known to 

be involved in transforming visual representations of actions to the motor system for 
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action perception (Rizzolatti and Craighero, 2004; Fabbi-Destro and Rizzolatti, 2008; 

Molenberghs et al. 2012a). It should be noted that, because we did not include a 

movement execution condition, we cannot make conclusions directly about mirror 

neuron involvement in this study. Even shared activity between action execution and 

observation conditions would not necessarily imply mirror neurons (Gazzola and 

Keysers, 2009). Nonetheless, there is overwhelming evidence that the IPL has an active 

role in action observation. Single-cell recordings in monkeys (Fogassi et al. 2005) and 

fMRI studies in humans (Molenberghs et al. 2012b) have shown that neurons in the 

inferior parietal cortex respond differently to the observation of actions depending on 

the context in which they are performed. Our results further suggest that neural 

responses to observed actions in the IPL are influenced by social context.  

 

It is not clear why the in-group effect we observed within the IPL was lateralised to the 

left hemisphere, and further research will be needed to clarify this issue. One possibility, 

however, is that the right-handed actions our participants viewed were mapped to 

anatomically congruent motor representations of the contralateral hemisphere. There is 

increasing evidence that observed actions are mapped onto corresponding cortical 

regions based upon the laterality of the hand depicted in the action and the observer’s 

perspective (Shmuelof and Zohary, 2008). In recent work from our own lab, Bortoletto 

et al. (2011) showed that when people plan actions, neural activity associated with the 

observed action is strongest contralateral to the observed effector (i.e., the N170 over 

left lateral parietal cortex for right-hand movement). Molenberghs et al. (2010) similarly 

found that parietal mirror neuron activation related to observation and execution of 

right-handed actions was restricted to the left hemisphere. In the current study, 

participants had all practiced performing the actions with their right-hand while 

concurrently watching the video clips during the group consolidation stage. Therefore, 
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the observed actions in the video clips would have been associated with equivalent 

right-hand actions previously performed by the observers. 

 

Our results are consistent with the idea that observation of own-team actions led to a 

greater degree of “automatic imitation” or mapping of observed actions, by the left IPL, 

to equivalent motor representations for right-hand movement. A recent EEG study 

(Gutsell and Inzlicht, 2010) found that participants with higher prejudice show less mu 

suppression (which is used as an index of mirror neuron activity during action 

observation) in the left parietal lobe during observation of out-group actions compared 

to in-group actions. Past research has also shown that participants are more likely to 

imitate a person if he or she is perceived as an in-group rather than out-group member 

(Yabar et al. 2006), and the IPL is known to play a key role in imitation (Mühlau et al. 

2005; Iacoboni and Dapretto, 2006; Molenberghs et al. 2009, 2010). Further, other 

regions involved in action observation, such as the pars opercularis of the inferior 

frontal gyrus, seem to be less involved in imitation (Molenberghs et al. 2010), which 

may explain why it was only activation in the IPL that was significantly influenced by 

group bias. Overall, our results show that established social relationships between 

individuals can mediate neural activity within the IPL during action perception. 

 

A previous fMRI study investigating bias in artificial groups (Van Bavel et al. 2008) 

found greater brain activation in the fusiform gyrus, a region responsible for face 

perception, while watching novel in-group faces compared to novel out-group faces. 

Similarly, it is possible that in our experiment participants attended more closely to 

actions of own-team members than to those of other-team members, and that the 

increased IPL activation when viewing own-team actions represents an attentional 

modulation of normal IPL activity for perception of action. Perhaps actions of in-group 
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members are more salient, either for reasons of social cognition, enhancing motor-

simulation mechanisms operating via the mirror system (Uddin et al. 2007), or by virtue 

of our tendency to imitate in-group compared with out-group members and to form 

social bonds within groups (Yabar et al. 2006). It must be noted, however, that 

activation differences for own-team compared with other-team actions in our study was 

only present in the main fMRI experiment. In the separate, ‘passive-viewing’ (single-

video) condition, with identical video clips, no difference was evident for neural 

activation associated with own-team versus other-team videos. It is therefore unlikely 

that the group-bias effects simply reflected low-level salience or feature-based 

attentional selection, perhaps primed or induced by Red- and Blue-team based 

instructions. While these results suggest that the group-bias effects we report are not 

simply driven by differences in visual properties or bottom-up visual salience of the 

videos, results of this passive-viewing task must be interpreted with caution. Group 

membership becomes more salient in a competitive context such as the Action 

Judgment Task compared to a situation in which the distinctiveness is not emphasized 

such as the Passive Viewing Task, and a possible limitation (although common practice 

with functional localiser tasks) is that the Passive Viewing Task was always presented 

after the Action Judgment Task.   

 

While participants in both the behavioral and fMRI judgment tasks showed a significant 

judgment bias on average across the groups, in the fMRI experiment only 13 out of 24 

participants (compared to 21 out of 24 in the behavioral experiment) actually showed a 

judgment bias towards their own team. This discrepancy might arise from the difference 

between the two judgment experiments. Crucially, the fMRI judgment task was 

modified in a way that only two conditions were included related to video duration 

compared to the four different video-length conditions of the behavioral experiment. 
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This modification was carried out to remove the “obvious” trials (i.e., those with a large 

time difference) and increase the number of trials with equal video clip durations. It is 

possible, however, that by removing those conditions for which the difference between 

video lengths was very salient, all trials became relatively hard to judge for the 

participants. This might have led some of the less motivated participants to answer in a 

random manner on some of the trials of the fMRI judgment task. For the fMRI analyses 

we therefore divided the participants in two groups based on their judgment bias score 

in the paired video trials because we only expected a difference in neural responses in 

those participants who actually showed a judgment bias behaviorally. Crucially every 

participant who showed a judgment bias also showed greater activity in the left IPL 

cluster when viewing own-team compared with other-team actions. On the IAT task, 

although participants who showed a group bias identified significantly with their team 

and participants without a bias did not, the difference between the two groups was not 

significant. This is not surprising given the relatively small number of participants in 

each group and the fact that others have found no strong linear relationship between 

group identification and in-group bias (Hinkle & Brown 1990, Mullen et al. 1992). 

Although group identification is a necessary condition for in-group bias it is not 

sufficient. People can identify with their group without showing a bias against the out-

group.  

 

Making explicit judgments on which team was faster involved activation of the anterior 

cingulate cortex (ACC) and inferior frontal gyrus (IFG). The ACC is well known to be 

involved in decision making (Botvinick, 2007), and the IFG is specifically involved in 

perceptual decision making in uncertain situations (Heekeren et al. 2008).  We found no 

difference in brain activity related to group bias during the decision phase, when 

participants selected own-team actions as faster than when they selected other-team 
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actions as faster. Previously, neural activity in the anterior cingulate cortex, amygdala, 

and prefrontal cortex has been reported to be influenced by group membership 

(Richeson et al. 2003; Cunningham et al. 2004; Rilling et al. 2008; Volz et al. 2009); 

however, noticeable differences between those studies and ours might explain why we 

did not find significant differences in brain activity in these areas. In our study, 

participants were allocated to purely arbitrary groups rather than into pre-existing ethnic 

or racial groups as in previous studies (Richeson et al. 2003; Cunningham et al. 2004); 

although other studies show that race can be ignored if it is put orthogonal to new group 

membership, especially when group membership is made very salient (Van Bavel et al., 

2008). Tasks in previous studies have also involved monetary rewards or games in 

which win-loss situations were salient (Rilling et al. 2008; Volz et al. 2009). In contrast, 

participants in our study were asked merely to observe in-group and out-group 

members' actions to judge the relative speed of hand movements, with no feedback or 

reward for their judgments. People are likely to apply more cognitive effort to override 

their own biases when tasks clearly involve racial categorization or intergroup 

competition, and where rewards or benefits are associated with judgments related to the 

in-group (see Amodio, 2008, for a review).  

 

To conclude, we have shown for the first time that neural responses in the inferior 

parietal cortex during observation of actions are modulated depending on the social 

context in which they are imbedded. Our results suggest that the neural mechanisms that 

underlie action perception are biased by group membership, and imply that group 

members often do not see the actions of their own team objectively.  
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Figure 1 – Schematic of the Action Judgment Task. A. Paired-video trials. Half of all 

trials began with the text "your team", followed by a video of an own-team member 

performing a reaching button-press action. The text "other team" was then presented, 

followed by the second video of the other-team member’s action. The order of videos 

was reversed for the other half of trials. Finally, the question "Who was faster?" and the 

two possible choices, "Your team" or "Other team", were presented. In the baseline 

Press Task the final stimulus screen instructed participants to “Press Left” or “Press 

Right”, rather than judging “Who was faster?”. Participants indicated their response by 
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pressing a left or right response button. B. For the single-video trials, only the initial 

“Your Team” or “Other Team” text and the relevant video clip were presented, with a 

fixation cross presented for the remainder of the inter-trial interval (5500 ms). Note that 

in the actual experiment videos of real people were used. 
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Figure 2 – Perceptual judgments in the Action Judgment Task, plotted as a function of 

the real time differences between actions in the videos. The data points are fitted by a 3-

parameter sigmoid function. Y-axis: Percentage of trials in which participants judged 

the action of their own team member as faster than that of the other team member. X-

axis: The real time difference (in ms) between own-team and other-team actions in the 

videos, measured from the onset of movement until the hand reached the button. 

  



37 
 

 

Figure 3 – Brain activation results from the fMRI study. A. Action-perception network. 

Brain activation differences while watching videos of hand actions in the single-video 

trials compared with a fixation baseline condition, displayed on a rendered brain in 

MRIcron (Puncorrected < 0.001, cluster-size threshold > 25 voxels). B. Brain activation 

differences in left inferior frontal gyrus and anterior cingulate cortex during explicit 

judgments on own-team versus other-team actions in the paired-video trials, compared 

with the press-left/right (baseline) task, displayed on a rendered brain in MRIcron 

(Puncorrected < 0.001, cluster-size threshold > 25 voxels).
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Figure 4 – Brain activation results relating to group bias in the fMRI Action Perception 

study. A. Brain activation differences in the single-video trials when observing own-

team compared with other-team actions. Left inferior parietal activation on coronal, 

axial and sagittal sections, and on rendered brain, displayed at a threshold of Puncorrected < 

0.001, cluster-size threshold 25 voxels. B. Difference in percentage signal change 

within the significant left IPL cluster (mean of all voxels in the whole cluster calculated 
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with marsbar (http://marsbar.sourceforge.net/)) when observing own-team compared 

with other-team actions, plotted for each of the participants who showed a judgment 

bias behaviorally in the fMRI experiment. C. Mean percentage signal change within the 

significant left IPL cluster for the participants who showed a judgment bias behaviorally 

when observing own-team compared with other-team actions (error bars are one 

standard error of the mean). D. Mean percentage signal change within the same left IPL 

cluster for the participants who showed no judgment bias behaviorally (error bars are 

one standard error of the mean).  
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    Supplementary Material: 
 
 

 
 
 
 
 
Supplementary Figure 1 – Examples of Congruent and Incongruent conditions in the 

Implicit Association Test (IAT; Parts 3 and 5) for a participant assigned to the red team. 

In the congruent condition, own-team members and pleasant words were associated with 

the same response (left button-press in this example), and other-team members and 

unpleasant words were associated with the other response (right button-press). In the 

incongruent condition, own-team members and unpleasant words were associated with 

the same response (left button), and other-team members and pleasant words were 

associated with the other response (right button). Note that in the actual experiment 

pictures of real people were used. 

 
 
 
 
 



 
 
 

 
 
Supplementary Figure 2 – Brain activation results from the passive viewing fMRI 
study. Brain activation while watching videos of hand actions compared with a fixation 
baseline condition, displayed on a rendered brain in MRIcron (Puncorrected < 0.001).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Supplementary Table 1. Overview of the 32 possible combinations of video clips. YT = 

your team (own-team) video clip. OT = other-team video clip. The order defines which 

video is presented first. The times in headings represent the durations of the actions  

depicted in the videos, from the onset of movement till the hand reaches the button (in 

ms). The time difference between YT and OT actions defines the condition. 

 

 YT 233.33 YT 300 YT 366.67 YT 433.33 

OT 233.33 YT 233.33 vs OT 233.33  

OT 233.33 vs YT 233.33  

0 ms condition  

YT 300 vs OT 233.33  

OT 233.33 vs YT 300  

- 67 ms condition 

YT 366.67 vs OT 233.33  

OT 233.33 vs YT 366.67  

- 133 ms condition 

YT 433.33 vs OT 233.33  

OT 233.33 vs YT 433.33  

- 200 ms condition 

OT 300 YT 233.33 vs OT 300  

OT 300 vs YT 233.33  

+ 67 ms condition 

YT 300 vs OT 300  

OT 300 vs YT 300  

0 ms condition 

YT 366.67 vs OT 300  

OT 300 vs YT 366.67  

- 67 ms condition 

YT 433.33 vs OT 300  

OT 300 vs YT 433.33  

- 133 ms condition 

OT 366.67 YT 233.33 vs OT 366.67 

OT 366.67 vs YT 233.33  

+ 133 ms condition 

YT 300 vs OT 366.67  

OT 366.67 vs YT 300  

+ 67 ms condition 

YT 366.67 vs OT 366.67  

OT 366.67 vs YT 366.67  

0 ms condition 

YT 433.33 vs OT 366.67  

OT 366.67vs YT 433.33  

- 67 ms condition 

OT 433.33 YT 233.33 vs OT 433.33  

OT 433.33 vs YT 233.33  

+ 200 ms condition 

YT 300 vs OT 433.33  

OT 433.33 vs YT 300  

+ 133 ms condition 

YT 366.67  vs OT 433.33  

OT 433.33 vs YT 366.67   

+ 67 ms condition 

YT 433.33 vs OT 433.33  

OT 433.33 vs YT 433.33  

0 ms condition 

  




