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We investigate the pseudospin symmetry case of a spin- 1
2 particle governed by the

generalized isotonic oscillator, by presenting quasi-exact polynomial solutions of the
Dirac equation with pseudospin symmetry vector and scalar potentials. The resulting
equation is found to be quasi-exactly solvable owing to the existence of a hidden sl(2)
algebraic structure. A systematic and closed form solution to the basic equation is ob-
tained using the Bethe ansatz method. Analytic expression for the energy is obtained
and the wavefunctions are derived in terms of the roots to a set of Bethe ansatz equa-
tions. C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4712298]

I. INTRODUCTION

In a recent study,1 the non-relativistic one-dimensional quantum system described by the non-
polynomial potential of the form

V (x) = ω2x2

2
+ ga

x2 − a2

(x2 + a2)2
, (1)

where a is a positive parameter, was shown to be exactly solvable for the particular case of ga = 2
and ωa2 = 1/2, with a general solution{

�n(x) = Pn (x)
(2x2+1) e

−x2/2,

En = − 3
2 + n, n = 0, 3, 4, 5, . . .

(2)

where �n(x) is the wavefunction and En is the energy and the polynomial Pn(x) relates to the Hermite
polynomial as follows:

Pn(x) =
{ 1 for n = 0,

Hn(x) + 4nHn−2(x) + 4n(n − 3)Hn−4(x) for n = 3, 4, 5, . . .
(3)

Also, using the supersymmetric approach2 and for certain values of the parameters ga, a, and ω,
potential (1) has been shown to be a supersymmetric partner of the harmonic oscillator potential.
Moreover, in a very recent work,3 by employing the Möbius transformation, the Schrödinger equation
for potential (1) was transformed into a confluent Heun equation and a simple and efficient algorithm
to solve the problem numerically irrespective of the values of the parameters was presented. In
addition, the 3D case of the potential was studied for the quasi-polynomial solutions in cases where
the potential parameters satisfy certain conditions and using the asymptotic iterative method, the
authors obtain numerical solutions to the problem for a more general case.4

On the other hand, due to the limited application of exactly solvable systems, recent attentions
have been on the systems with partially solvable spectral. Such systems are said to be quasi-exactly
solvable (QES). Thus, a quantum mechanical system is called quasi-exactly solvable, if only a
finite number of eigenvalues and corresponding eigenvectors can be obtained exactly.5 An essential

a)Electronic mail: d.agboola@maths.uq.edu.au.

0022-2488/2012/53(5)/052302/9/$30.00 C©2012 American Institute of Physics53, 052302-1

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.42.98 On: Thu, 22 Sep 2016

03:56:55

http://dx.doi.org/10.1063/1.4712298
http://dx.doi.org/10.1063/1.4712298
http://dx.doi.org/10.1063/1.4712298
mailto: d.agboola@maths.uq.edu.au


052302-2 D. Agboola J. Math. Phys. 53, 052302 (2012)

feature of a QES system is that having separated the asymptotic behaviours of the system, one gets
an equation for the part which can be expanded as a power series of the basic variable. This equation
unlike an exactly solvable equation with two-step recursive relations, possesses at least three-step
recursive relations for the coefficient of the power series. The complexity of the recursive relations
does not allow one to guarantee the square integrability property of the wavefunction. However, by
choosing a polynomial wavefunction, one can terminate the series at a certain order and then impose
a sufficient condition for the normalization. By so doing, exact solutions to the original problem can
be obtained but only for certain energies and for special values of the parameters of the problem.

Solutions to QES systems have mostly been discussed in terms of the recursion relations of the
power series coefficients, which is mostly expressed in terms of the (generalized) Heun differential
equations. Although the solutions obtained in connection with the Heun equations are exact but
the procedures involved are quite ambiguous, thus expunging the closed form of the solutions. In a
series of recent studies,6–10 the Bethe ansatz method (BAM) has been used in obtaining the solutions
to QES systems. This method did not only yield exact solutions, it also preserve the closed form
representation of the solutions. For instance, the BAM has been used to obtain the solutions of
QES difference equation6 and the exact polynomial solutions of general quantum non-linear optical
models7, 8 and recently, the method has also been used to obtain the exact solutions for a family of
spin-boson systems.10

The purpose of this work is to extend the study of the generalized isotonic oscillator (GIO) to a
relativistic case, within the framework of the pseudospin symmetry Dirac equation, using the Bethe
ansatz method. In Sec. II, we reduce the Dirac equation with the GIO to a QES equation. A brief
discussion of the Bethe ansatz method is given in Sec. III followed by the solution to the reduced
equation. Section IV presents the Lie algebraic structure of the system and then some concluding
remarks are given in Sec. V.

II. DIRAC EQUATION WITH THE GIO

The Dirac equation for a single-nucleon with mass μ moving in a spherically symmetric
attractive scalar S(r) and repulsive vector V (r ) GIO, with � = c = 1 is written as11–13

H�(r) = En�(r), where H =
3∑

j=1

α̂ j p j + β̂[μ + S(r )] + V (r ) (4)

and En is the relativistic energy, {α̂ j } and β̂ are Dirac matrices defined as

α̂ j =
(

0 σ̂ j

σ̂ j 0

)
β̂ =

(
1 0

0 −1

)
, (5)

where σ̂ j is the Pauli’s 2 × 2 matrices and β̂ is a 2 × 2 unit matrix, which satisfy anti-commutation
relations

α̂ j α̂k + α̂k α̂ j = 2δ jk1,

α̂ j β̂ + β̂α̂ j = 0,

α̂2
j = β̂2 = 1,

(6)

and pj is the three momentum which can be written as

p j = −i∂ j = −i
∂

∂x j
1 � j � 3.

The orbital angular momentum operators Ljk, the spinor operators Sjk, and the total angular momen-
tum operators Jjk can be defined as follows:

L jk = −L jk = i x j
∂

∂xk
− i xk

∂

∂x j
, Sjk = −Sk j = i α̂ j α̂k/2, Jjk = L jk + Sjk,

L2 =
3∑

j<k

L2
jk, S2 =

3∑
j<k

S2
jk, J 2 =

3∑
j<k

J 2
jk, 1 � j < k � 3. (7)

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.42.98 On: Thu, 22 Sep 2016

03:56:55



052302-3 D. Agboola J. Math. Phys. 53, 052302 (2012)

For a spherically symmetric potential, total angular momentum operator Jjk and the spin-orbit op-
erator K̂ = −β̂(J 2 − L2 − S2 + 1/2) commutate with the Dirac Hamiltonian. For a given total
angular momentum j, the eigenvalues of K̂ are κ = ± (j + 1/2); κ = − (j + 1/2) for aligned spin
j = 
 + 1

2 and κ = (j + 1/2) for unaligned spin j = 
 − 1
2 . Moreover, the spin-orbital quantum

number κ is related to the orbital angular quantum number 
 and the pseudo-orbital angular quantum
number 
̃ = 
 + 1 by the expressions κ(κ + 1) = 
(
 + 1) and κ(κ − 1) = 
̃(
̃ + 1), respectively,
for κ = ± 1, ± 2, . . . . The spinor wavefunctions can be classified according to the radial quan-
tum number n and the spin-orbital quantum number κ and can be written using the Dirac-Pauli
representation

�(r) = 1

r

(
F(r )Y 


jm (θ, φ)

iG(r )Y 
̃
jm (θ, φ)

)
, (8)

where F(r) and G(r) are the radial wavefunction of the upper- and the lower-spinor components,
respectively, Y 


jm (θ, φ) and Y 
̃
jm (θ, φ) are the spherical harmonic functions coupled with the total

angular momentum j. The orbital and the pseudo-orbital angular momentum quantum numbers for
spin symmetry 
 and pseudospin symmetry 
̃ refer to the upper- and lower-component, respectively.

Substituting Eq. (8) into Eq. (4), and separating the variables we obtain the following coupled
radial Dirac equation for the spinor components:(

d

dr
+ κ

r

)
F(r ) = [μ + En − (r )]G(r ), (9a)

(
d

dr
− κ

r

)
G(r ) = [μ − En + �(r )]F(r ), (9b)

where �(r ) = V (r ) + S(r ) and (r ) = V (r ) − S(r ). Using Eq. (9a) as the upper component and
substituting into Eq. (9b), we obtain the following second order differential equations:[

d2

dr2
− κ(κ + 1)

r2
− [μ + En − (r )][μ − En + �(r )] +

d(r )
dr

(
d
dr + κ

r

)
[μ + En − (r )]

]
F(r ) = 0, (10a)

[
d2

dr2
− κ(κ − 1)

r2
− [μ + En − (r )][μ − En + �(r )] −

d�(r )
dr

(
d
dr − κ

r

)
[μ − En + �(r )]

]
G(r ) = 0. (10b)

To solve these equations, we employ the concept of pseudospin symmetry12, 14, 15 in which V (r )
+ S(r ) = C ps , Cps being the pseudospin constant. This implies d�q (r )

dr = 0 and hence Eq. (10b) takes
a simple form {

d2

dr2
− κ(κ − 1)

r2
− [μ + En − (r )]

[
μ − En + C ps

]}
G(r ) = 0. (11)

If we take

(r ) = ω2r2 + 2g
r2 − a2

(r2 + a2)2
, (12)

and introduce the dimensionless quantity z = βnωr2, Eq. (11) becomes

zG ′′(z) + 1

2
G ′(z) −

[
α + z

4
+ κ(κ − 1)

4z
+ g

(
z − ωa2βn

)
2
(
z + ωa2βn

)2

]
G(z) = 0, (13)

where

− β2
n = μ − En + C ps and α = −

(
β2

n + 2μ + C ps
)
βn

4ω
. (14)

From the asymptotic behaviour of Eq. (13), one may seek a solution of the form

G(z) = (z + βnωa2)b+1zκ/2e−z/2ψ(z), (15)
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to obtain

zG ′′(z) +
[(

5

2
+ 2b + κ

)
− 2(b + 1)βnωa2

z + βnωa2
− z

]
G ′(z)

−
[
β2

n g/2 − (b + 1)(κ + b + βnωa2 + 1/2)

z + βnωa2

]
G(z) =

[
α + b + κ

2
+ 5

4

]
G(z), (16)

where we have assumed

b(b + 1) − β2
n g = 0 ⇒ b = −1 − √

1 + 4β2
n g

2
. (17)

It can be checked that a further transformation

G(z) = zνϕ(t), t = z + βnωa2 (18)

do not change the structure of the differential equation (16) provided ν = 0 and ν = − κ + 1/2. This
indicates that the solutions are of double algebraic sectors, with the even solution corresponding to
ν = 0 (κ > 0) and the odd solution corresponding to ν = − κ + 1/2 (κ < 0). Thus, if we use the
change in variable t = z + βnωa2, Eq. (17) takes the form

t(t − βnωa2)ϕ′′(t) +
[(

5

2
+ 2b + κ + 2ν + βnωa2

)
t − t2 − 2βnωa2(b + 1)

]
ϕ′(t)

−
[

t

(
α + b + ν + κ

2
+ 5

4

)]
ϕ(t) = [

β2
n g/2 − (b + 1)(κ + b + 2ν + βnωa2 + 1/2)

]
ϕ(t). (19)

III. THE BETHE ANSATZ SOLUTIONS TO RELATIVISTIC GIO

In this section, we give a brief description of the BAM of solving QES equation and then use
the results to solve Eq. (19). For interested reader, detailed account of the method can be found in
Ref. 10. We consider the differential equation of the form[

P(t)
d2

dt2
+ Q(t)

d

dt
+ R(t)

]
S(t) = 0, (20)

where P(t), Q(t) are polynomials of degree 2 and R(t) is a polynomial of degree 1, which we write as

P(t) =
2∑

k=0

pktk, Q(t) =
2∑

k=0

qktk, R(t) =
1∑

k=0

rktk, (21)

where pk, qk, and rk are constants. This equation is quasi-exactly solvable for certain values of its
parameters, and exact solutions are given by degree n polynomials in t with n being non-negative
integers. In fact, this equation is a special case of the general second order differential equations
solved in Ref. 10 by means of the BAM. Applying the results in Ref. 10, we have

Proposition 1. Given a pair of polynomials P(t) and Q(t), then the values of the coefficients r0

and r1 of polynomial R(t) such that the differential equation (20) has a degree n polynomial solution

S(t) =
n∏

i=1

(t − ti ), S(t) ≡ 1 for n = 0 (22)

with distinct roots t1, t2, . . . , tn given by

− r1 = nq2, (23)

− r0 = q2

n∑
i=1

ti + n(n − 1)p2 + nq1, (24)
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where the roots t1, t2, . . . , tn satisfy the Bethe ansatz equations

n∑
i �= j

2

ti − t j
+ q2t2

i + q1ti + q0

p2t2
i + p1ti + p0

= 0, i = 1, 2, . . . , n. (25)

The above equations (23)–(25) give all polynomial R(t) such that the Ordinary Differential Equation
(ODE) (20) has a polynomial solution (22).

It is interesting to note that in line with the recent work,16 Eqs. (23)–(25) satisfy the neces-
sary and sufficient conditions for the differential equation (20) to have polynomial solutions. It is
easy to show that the necessary condition (2.10) of Ref. 16 reduces to Eq. (23) for a3, 0 = 0 and
Eqs. (24) and (25) are the sufficient conditions for differential equation (20) to have a exact poly-
nomial solution (22). For instance, if we consider the case n = 1, then tridiagonal determinant
(Eq. (2.11) of Ref. 16) for Eq. (20) takes the form

∣∣∣∣∣
−r0 −q0

−r1 −r0 − q1

∣∣∣∣∣ = 0 ⇒ r0 =
−q1 ±

√
q2

1 − 4q0q2

2
, (26)

where we have used the necessary condition (23). This result can be easily obtained by solving for
parameter t in Bethe ansatz equation (25) and substituting the value into Eq. (24). However, it is
important to note that one of the main tasks in the application of BAM is obtaining the roots of
the n algebraic Bethe ansatz equation (25). For an arbitrary n, the equation is very difficult, if not
impossible, to solve algebraically. However, numerical solutions to the Bethe ansatz equations have
also been discussed in many applications.17–21

By comparing Eqs. (19) and (20), we have p2 = 1, p1 = − βnωa2, q2 = − 1,
q1 = (

5
2 + 2b + κ + 2ν + βnωa2

)
, q0 = − 2βnωa2(b + 1), r1 = − (

α + b + ν + κ
2 + 5

4

)
, and

r0 = − [
β2

n g/2 − (b + 1)(κ + b + 2ν + βnωa2 + 1/2)
]
. Thus, by Eqs. (14), (17), and (23), we im-

mediately have the energy equation

4ω

(
n + ν + κ

2
+ 3

4

)
= (

β2
n + 2μ + C ps

)
βn + 2ω

√
1 + 4gβ2

n (27)

and Eq. (24) yields

n
(
n + 2b + 2ν + κ + βnωa2 + 3/2

) −
n∑

i=1

tα = β2
n g

2
− (b + 1)(κ + b + 2ν + βnωa2 + 1/2),

(28)
with the roots t1, t2, . . . tn satisfying the Bethe ansatz equation

n∑
i �= j

2

ti − t j
+

(
2b + κ + 2ν + βnωa2 + 5/2

)
ti − t2

i − 2βnωa2(b + 1)

ti (ti − βnωa2)
= 0 (29)

for i = 1, 2, . . . , n.
It is obvious from the energy equation (27) that one deals with solutions with positive energy

states. Moreover, the rhs of the energy equation (27) remain unchanged for quantum states (n, κ)
and (n − 1, κ + 2) thereby signifying degeneracy of the energy levels between these states. This
energy degeneracy does not depend on the potential parameters as it can be seen from the numerical
energy values of the ground state and some excited states for the exact pseudospin case (Table I).
And we also note that for a given state, the energy values are inversely proportional to parameter g.
Moreover, for the ground state, n = 0, we have from Eq. (28)

β2
0 g

2
− (b + 1)(κ + b + 2ν + β0ωa2 + 1/2) = 0, (30)
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TABLE I. Relativistic energy values of the GIO for various n and κ and a
special case of Cps = 0, g = { 1

2 , 2, 4
}
, and μ = ω = 1.

n κ > 0 g = 1
2 g = 2 g = 4

1 0.7779142 0.5545547 0.4385638
2 1.0709485 0.7934184 0.6363539

0 3 1.3018103 1.0000000 0.8157561
4 1.4942015 1.1824728 0.9806115
5 1.6601782 1.3457688 1.1328206

1 1.3018103 1.0000000 0.8157561
2 1.4942015 1.1824728 0.9806115

1 3 1.6601782 1.3457688 1.1328206
4 1.8068160 1.4934769 1.2738521
5 1.9386413 1.6283325 1.4049965

1 1.6601782 1.3457688 1.1328206
2 1.8068160 1.4934769 1.2738521

2 3 1.9386413 1.6283325 1.4049965
4 2.0587311 1.7524556 1.5274033
5 2.1692751 1.8675089 1.6420843

1 1.9386413 1.6283325 1.4049965
2 2.0587311 1.7524556 1.5274033

3 3 2.1692751 1.8675089 1.6420843
4 2.2718886 1.9748119 1.7499209
5 2.3677989 2.0754239 1.8516754

which yields the following condition:(
4ω2a4 − g

)
β2

0 + 2ωa2(1 + 4κ)β0 + 2κ(2κ + 1) = 0 for ν = 0, (31a)

(
4ω2a4 − g

)
β2

0 + 2ωa2(5 − 4κ)β0 + (4κ − 6)(κ − 1) = 0 for ν = −κ + 1/2. (31b)

Hence, the ground state wavefunctions for even sector (ν = 0) (κ > 0) can be written as(
F0(r )

G0(r )

)even

∼ rκ
(
r2 + a2

)b
e− β0ωr2

2

(
β0ωr3−(2b−β0ωa2+2)r

β2
0

r2 + a2

)
, (32)

with the parameters satisfying Eq. (31a). Similarly, the odd sector (ν = − κ + 1/2) (κ < 0) solutions
are (

F0(r )

G0(r )

)odd

∼ r−κ
(
r2 + a2)b

e− β0ωr2

2

(
β0ωr4−(2b−2κ−β0ωa2+3)r2+(2κ−1)a2

β2
0

r
(
r2 + a2

)
)

, (33)

with the parameters satisfying Eq. (31b) and β0 is related to ground state energy and obtained from
Eq. (27) as

4ω

(
ν + κ

2
+ 3

4

)
= (

β2
0 + 2μ + C ps

)
β0 + 2ω

√
1 + 4gβ2

0 . (34)

The wavefunctions F0(r) and G0(r) do not have nodes and so the states described by them are ground
states of the system.

Similarly, for n = 1, the Bethe ansatz equation (29) becomes

(2b + κ + 2ν + β1ωa2 + 5/2)t1 − t2
1 − 2β1ωa2(b + 1) = 0, (35)
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which yields

t1 = b + ν + κ

2
+ β1ωa2

2
+ 5

4
±

1

2

√
2(b + ν)(2b + 2ν + 2κ + 5) − β1ωa2(4b + 8κ + 16ν − β1ωa2 + 3) + (κ + 5/2)2.

We substitute the roots into Eq. (28) and solve the resulting algebraic equation to obtain the following
condition on the parameter:

gβ6
1

(
16ω4a8 + g2 − 8gω2a4

) + 16gωa2β5
1

(
4ω2a4 − g

)
(κ + 1)

+β4
1

[
4ω2a4g

(
24κ2 + 48κ + 11 − 8ω2a4

) − 2g2(4κ2 + 8κ − 9)
]

+β3
1

[
4gωa2(16κ3 + 48κ2 − 38κ − 9) − 16ω3a6(8κ + 11)

]
+β2

1

[
2g

(
8κ4 + 32κ3 + 54κ2 + 26κ + 3

) − 24ω2a4
(
8κ2 + 18κ + 11

)]
−4ωa2β1

(
32κ3 + 84κ2 + 64κ + 15

) − 4κ
(
8κ3 + 20κ2 + 16κ + 3

) = 0,

(36a)

gβ6
1

(
16ω4a8 + g2 − 8gω2a4

) + 16gωa2β5
1

(−4κω2a4 + 8ω2a4 + κg − 2g
)

+2β4
[
g2

(
4κ2 + 16κ − 21

) + 2gω2a4
(
24κ2 − 96κ + 83

) − 16ω4a8
]

+β3
1

[
4gωa2(−16κ3 + 96κ2 − 182κ + 93) − 16ω3a6(8κ + 19)

]
+β2

1

[
4g

(
4κ4 − 32κ3 + 99κ2 − 131κ + 66

) + 8ω2a4
(−24κ2 + 102κ − 111

)]
+4ωa2β1

(
32κ3 − 180κ2 + 328κ − 195

) + 4
(−8κ4 + 52κ3 − 122κ2 + 123κ − 45

) = 0,

(36b)

where β1 is related to the first excited energy and is obtained from Eq. (27) as

4ω

(
ν + κ

2
+ 7

4

)
= (

β2
1 + 2μ + C ps

)
β1 + 2ω

√
1 + 4gβ2

1 . (37)

Thus, the wavefunctions for the first excited state for the even sector (ν = 0) (κ > 0) can be written
as (

F1(r )

G1(r )

)even

∼ rκ
(
r2 + a2

)b
e− β1ωr2

2 ×

(
β1ωr5−β1ω(2b−2β1ωa2+t e

1 +4)r3−[β1ωa2(2b−β1ωa2+t e
1 +4)−2t e

1 (b+1)]r

β2
1

(r2 + a2)
(
r2 + a2 − t e

1

)
)

, (38)

with the parameters satisfying Eq. (36a) and the root given as

t e
1 = b + κ

2
+ β1ωa2

2
+ 5

4
± 1

2

√
2b(2b + 2κ + 5) − β1ωa2(4b + 8κ − β1ωa2 + 3) + (κ + 5/2)2.

Similarly, the odd sector (ν = − κ + 1/2) (κ < 0) solutions are(
F1(r )

G1(r )

)odd

∼ r−κ
(
r2 + a2

)b
e− β1ωr2

2 ×

( (r2+a2)[β2
1 ω2r4+β1ω(β1ωa2+κ−to

1 −2)r2+κ(β1ωa2−to
1 )]−2r (b+1)

β2
1

r (r2 + a2)
(
r2 + a2 − to

1

)
)

, (39)

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.42.98 On: Thu, 22 Sep 2016

03:56:55



052302-8 D. Agboola J. Math. Phys. 53, 052302 (2012)

with the parameters satisfying Eq. (36b) and the root given as

to
1 = b − κ

2
+ β1ωa2

2
+ 7

4
± 1

2√
3(b + 2)(2b − 2κ + 1) − β1ωa2(4b − 8κ − β1ωa2 + 11) + (κ + 5/2)2.

IV. HIDDEN LIE ALGEBRAIC STRUCTURE

One way to understand the QES theory is to demonstrate that the Hamiltonian can be expressed
in terms of generator of a Lie algebra

J− = d

dt
J+ = t2 d

dt
− nt, J 0 = t

d

dt
− n

2
, (40)

which are differential operator realization of the n + 1 dimensional representation of the sl(2)
algebra. Moreover, if we write the basic equation (20) in the Schrödinger form

H S(t) = −r0S(t), (41)

where − r0 is the eigenvalue of the Hamiltonian H, then it can easily be shown that if r1 = − nq2,
with n being any non-negative integer, the differential operator H is an element of the enveloping
algebra of Lie algebra sl(2)

H = J 0 J 0 + p1 J 0 J− + q2 J+ + (q1 + n − 1) J 0 +
(

q0 + np1

2

)
J− + n

2

(n

2
+ q1 − 1

)
. (42)

Thus, for Eq. (19), we have

H = t(t − βnωa2)
d2

dt2
+

[(
5

2
+ 2b + κ + 2ν + βnωa2

)
t − t2 − 2βnωa2(b + 1)

]
d

dt

−
[

t

(
α + b + ν + κ

2
+ 5

4

)] (43)

and

r0 = (b + 1)(κ + b + 2ν + βnωa2 + 1/2) − β2
n g/2 (44)

with sl(2) algebraization

H = J 0 J 0 − βnωa2 J 0 J− − J+ +
(

n + 2b + κ + 2ν + βnωa2 + 3

2

)
J 0

−βnωa2
(

2b + 2 − n

2

)
J− + n

2

(
2b + κ + 2ν + βnωa2 + n

2
+ 3

2

)
.

(45)

V. CONCLUDING REMARKS

In this paper, we have extended the works on the GIO to a relativistic case by constructing
the Bethe ansatz solutions to GIO, within the framework of the relativistic Dirac equation. We
showed that the governing equation is reducible to a QES differential equation which has an exact
solution, provided the parameters satisfy certain constraints. Unlike previous non-relativistic cases
the quasi-exact solvability of the equations has enabled us to use Proposition 1 to obtain closed form
expressions for the energies and eigenfunctions. It is interesting to note that with the limits βn → 1,
κ → 
 + 1, the spinor component of the wavefunction, G(z) gives the non-relativistic wavefunction
of the GIO, which is in agreement with previous works.1–4, 16, 22

Moreover, we reported the existence of degeneracies between the energy levels and the energy is
inversely related with the potential parameter g. We also showed that the relativistic GIO possesses an
underlying sl(2) algebraic structure, which is responsible for the quasi-exact solvability of this model.
Let us remark, however, that the existence of a underlying Lie algebraic structure in a differential
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equation is only a sufficient condition for the differential equation to be quasi-exactly solvable. In
fact, there are more general (than the Lie-algebraically based) differential equations which do not
possess a underlying Lie algebraic structure but are nevertheless quasi-exactly solvable (i.e., have
exact polynomial solutions ).10 Finally, it is pertinent to note that our method gives a more general
closed form expression for the solutions, however the determination of the roots of the Bethe ansatz
equations for higher excited states may be a major difficulty in the application of the method.

ACKNOWLEDGMENTS

D.A. wishes to thank the referee for his useful suggestions which have improved the paper. He
is also indebted to Father J., Agboola B., and Y.-Z. Zhang for their support during the preparation
of the paper.
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