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Muscle Coordination Is Habitual Rather than Optimal
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When sharing load among multiple muscles, humans appear to select an optimal pattern of activation that minimizes costs such as the
effort or variability of movement. How the nervous system achieves this behavior, however, is unknown. Here we show that contrary to
predictions from optimal control theory, habitual muscle activation patterns are surprisingly robust to changes in limb biomechanics.
We first developed a method to simulate joint forces in real time from electromyographic recordings of the wrist muscles. When the
model was altered to simulate the effects of paralyzing a muscle, the subjects simply increased the recruitment of all muscles to accom-
plish the task, rather than recruiting only the useful muscles. When the model was altered to make the force output of one muscle
unusually noisy, the subjects again persisted in recruiting all muscles rather than eliminating the noisy one. Such habitual coordination
patterns were also unaffected by real modifications of biomechanics produced by selectively damaging a muscle without affecting sensory
feedback. Subjects naturally use different patterns of muscle contraction to produce the same forces in different pronation–supination
postures, but when the simulation was based on a posture different from the actual posture, the recruitment patterns tended to agree with
the actual rather than the simulated posture. The results appear inconsistent with computation of motor programs by an optimal
controller in the brain. Rather, the brain may learn and recall command programs that result in muscle coordination patterns generated
by lower sensorimotor circuitry that are functionally “good-enough.”

Introduction
The human body has many more degrees of freedom than appar-
ently needed to generate basic movements such as reaching or
grasping. Resolution of this redundancy is a fundamental prob-
lem of biological motor control (Bernstein, 1967) that must also
be addressed for the design of robotic and prosthetic systems that
mimic or restore human movement (Loeb and Davoodi, 2005).
The computational framework of optimal control theory has
gained influence as a general theory of motor coordination be-
cause it can specify uniquely how behavioral goals should be
achieved by minimizing costs such as the effort or variability of
movement (Pedotti et al., 1978; Crowninshield and Brand, 1981;
Davy and Audu, 1987; Loeb et al., 1990; Harris and Wolpert,
1998; Todorov and Jordan, 2002; Scott, 2004; Todorov, 2004;
O’Sullivan et al., 2009; Diedrichsen et al., 2010). Although some
aspects of natural motor behavior, such as typical patterns of
muscle activity, are consistent with the output of optimal control
models (Fagg et al., 2002; Haruno and Wolpert, 2005; Diedrichsen et
al., 2010), how the nervous system generates this behavior is un-
known. For instance, it is unclear whether the CNS achieves be-

havior that appears to be optimal through online, top-down
optimization, or because the architecture of distributed sensori-
motor networks has evolved to favor successful and efficient
behavior.

Here we sought to resolve the issue of whether patterns of
muscle coordination are “computed” by the brain via an online
optimization process, or reflect habits developed when a central
controller learns associations between tasks and strategies ac-
cording to some performance criteria. An assertion of “optimal
control” begs a cost-function, which for natural tasks is likely to
be some unknown, weighted combination of terms related to
speed, accuracy and effort. In the face of uncertainty about the
exact cost to be minimized, it is difficult to determine whether an
observed natural pattern of muscle coordination is actually opti-
mal or simply reflects a good-enough local minimum that the
organism has learned to use. An alternative approach to resolve
the issue is to assess how the central controller responds to new
conditions, since an online, optimal controller would be expected
to alter muscle coordination patterns to match any changes in the
properties of the musculo-skeletal plant. Conversely, habitual
coordination patterns might tend to be retained when conditions
change if learned associations between control strategies and
tasks allow successful, albeit suboptimal, achievement of the be-
havioral goal. We therefore exposed human subjects to a range of
experimental modifications of their muscle mechanics, and as-
sessed whether muscle activation patterns were reoptimized ac-
cording to the new properties of the limb. In contrast to
predictions from optimal control, habitual patterns of muscle
coordination were preserved in the face of all biomechanical ma-
nipulations tested, at least over hours and hundreds of trials as
tested in these experiments.
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Materials and Methods
Subjects. Fifteen healthy, right-handed volunteers (age, 22–38; 14 males,
1 female), including two of the authors, participated in the study. When
subjects participated in more than one experiment (n � 5), testing ses-
sions were separated by at least 3 weeks. All provided written consent to
the procedures, which conformed to the declaration of Helsinki and were
approved by a local ethics committee.

General procedure. Subjects moved a cursor from the center of a two-
dimensional display to 16 targets distributed symmetrically around the ori-
gin (i.e., 22.5° apart). Under baseline conditions, the cursor position
represented the force exerted at the wrist joint such that 22.5 N was required
to achieve the target. In some experimental conditions, the cursor position
represented simulated force that was reconstructed from real-time muscle
activity as indicated below (i.e., “EMG-driven” conditions). Participants
were asked to reach the target with a movement time of between 150 and 250
ms, and to hold the cursor for 1 s on target (either a trapezoid �8° from
target direction by 10% of radial distance to target, or a circle of radius 10%
of target distance). A high-pitched tone signaled target acquisition and a
low-pitched tone indicated trial end if the target was not acquired within 2 s.
Feedback on movement time was given after each trial.

Apparatus. A 6 df force/torque transducer (JR3 Technologies, 45E15A-
I63-A 400N60S) coupled with a custom manipulandum, similar to that
described previously (de Rugy and Carroll, 2010; Selvanayagam et al.,
2011), registered flexion/extension and abduction/adduction forces re-
spectively to the x and y display axes. The wrist was fixed by an array of
adjustable supports contoured to fit the hand at the metacarpal-
phalangeal joints (12 contacts) and the wrist just proximal to the radial
head (10 contacts).

EMG. Electromyographic signals were recorded from Extensor Carpi
Ulnaris (ECU), Extensor Carpi Radialis brevis (ECRb) and longus
(ECRl), Flexor Carpi Radialis (FCR), Flexor Carpi Ulnaris (FCU), and
first dorsal interosseous (FDI, Experiment 4 only), either with fine-wire
intramuscular electrodes (75 �m diameter, 2 mm stripped from insula-
tion for recording sites, single wires inserted at 1.5 cm interelectrode
distance) or self-adhesive surface electrodes (3 subjects in Experiment 1,
all subjects in Experiment 3, 12-mm-diameter recording surface; 2 cm

interelectrode distance). Signals were bandpass
filtered from 30 Hz to 1 kHz, amplified 200 –
5000 times (Grass P511, Grass Instruments,
AstroMed) and sampled at 2 kHz. Electrode
locations were determined according to proce-
dures previously reported (Selvanayagam et al.,
2011).

Force reconstruction. Tuning curves for each
muscle were constructed from the mean recti-
fied EMG during the hold-phase of the task in
five trials to each target (6 consecutive trials to
each target, first trial discarded, target direc-
tion randomly ordered; Fig. 1b). This activity
was normalized by the maximal EMG obtained
during maximal voluntary contraction in any
of the 16 target directions. The magnitude and
direction of the virtual “pulling vector” for
each muscle that resulted in the best aiming
performance when combined with the actual
muscle activity was determined via an optimi-
zation procedure (see next section on the de-
termination of the “virtual pulling vector”).
These pulling vectors likely differed from the
“true” anatomical pulling vectors of the five
muscles, both because we neglected the contri-
butions of finger flexors and extensors, and be-
cause EMG does not provide a perfect
representation of muscle activity. Despite this,
when the pulling vectors were multiplied by the
rectified and low-pass filtered (1.3–2 Hz) EMG
of the five muscles online, the reconstructed
“force” provided a close spatiotemporal match
to the true force exerted at the wrist (Fig. 1e). In

each experiment, a set of trials (6 consecutive trials to each target) was
performed with the cursor driven online by EMG to confirm similarity in
performance and muscle activities with baseline (i.e., between EMG-
driven and “force-driven” modes).

Determination of the virtual pulling vector of muscles. The virtual pull-
ing vector of muscles was specified as the set of vectors that resulted in the
best aiming performance when combined with the actual muscle activity.
This set of vectors was determined by a custom gradient descent algo-
rithm based on a simple quadratic cost function that penalizes errors
between the targets and the reconstructed reaches. The steps in the gra-
dient descent are as follows: (1) Assign random values to the initial set of
pulling vectors in the physiological range of muscle force and direction;
(2) Pick a muscle at random and modify its pulling vector by changing its
endpoint by a step in four orthogonal directions. The cost associated with
each of the 5 pulling vectors (i.e., the original and the four modified for
that muscle) was then calculated as the summed squared error between
targets and reconstructed reaches. The pulling vector that produced the
lowest cost was retained; (3) One iteration of the model was said to be
completed when each muscle had been optimized once; (4) The whole
model was iterated multiple times until the overall cost converged to a
low value.

Experiment 1—Simulated loss of one muscle. For six subjects, the pull-
ing vector for the ECRl muscle was set to 0, such that activation of the
muscle had no effect on the cursor. ECRl was chosen for this manipula-
tion because the angle between the pulling vectors of its two neighboring
muscles is smallest (compare Fig. 1c). In principle, the simulated loss of
the mechanical action of this muscle should therefore be more easily
compensated using its closest neighbors. Three sets of 160 trials were
performed (10 trials to each target, order randomized within each block).
Tuning curves were established by a set of six trials to each target after
each set of 160. Thus, by the end of the final set, participants had com-
pleted 768 trials with the altered “virtual” biomechanics.

Experiment 2—Simulated increase in motor noise of one muscle. Ran-
dom values were drawn from a Gaussian distribution, rectified and low-
pass filtered at 0.8 Hz, multiplied by the normalized amplitude of the
instantaneous, filtered EMG amplitude (and an additional scaling factor

Figure 1. Virtual biomechanics. a, Subjects produced force at the wrist to 16 targets. b, Example of muscle tuning curves
obtained by averaging EMGs from 5 trials per target in the initial force-driven task. c, Virtual muscle-pulling vector optimized to
produce the best aiming performance when combined with muscle activity. d, Aiming force reconstructed by combining b and c.
e, Example of real force and reconstructed force presented in time and space for a representative trial. f, Example of muscle tuning
curves obtained in the initial force-driven task and in the EMG-driven task where force was reconstructed by combining online
muscle activity with the optimized pulling vector.
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to ensure a large behavioral effect), and added to the EMG signal. Noise
was added to ECRl (n � 3) or FCU (n � 3), and a protocol similar to that
of Experiment 1 was conducted with this altered condition.

Experiment 3—Actual damage to one muscle. FCU was electrically stim-
ulated to produce involuntary force while it was forcibly lengthened.
FCU was chosen for this manipulation because it could most easily be
selectively activated using transcutaneous nerve stimulation. Two second
trains of supramaximal electrical pulses were delivered to the ulnar nerve
at the wrist (0.2 ms duration, 50 – 40 Hz, 9 –25 mA), while the joint was
forcibly abducted via a pulley and weight system described previously
(Carroll et al., 2009). Relatively low currents (8 –25 mA) were required to
activate FCU maximally because of the superficial location of the ulnar
nerve at the elbow. This meant that the discomfort associated with the
electrical stimulation was minimal. Exercise-induced muscle damage can
lead to large, temporary force decrements, but full recovery of force
occurs within 2–3 weeks (Clarkson et al., 1992). The supramaximality of
the stimulus was checked regularly by monitoring the amplitude of com-
pound muscle action potentials (CMAPs) and intensity was increased
when required to account for activity-dependent changes in axonal ex-
citability (Burke and Gandevia, 1999). This produced selective and long-
lasting muscle damage to the FCU, as indicated by stable reductions in
MVC force in flexion and ulnar deviation, twitch amplitude induced by a
single supramaximal stimulus, and evoked force responses to 15 Hz and
100 Hz pulse trains immediately after the damage and at the end of the
experiment (i.e., after �2 h task performance). The degree of exercise-
induced muscle damage is typically greater in large diameter, fast muscle
fibers (Jones et al., 1986; Vijayan et al., 2001), and fast fibers make a
disproportionately large contribution to total muscle force produced
both during MVC and electrically evoked contractions. Because of this,
the size of the force reduction in the muscle fibers contributing to the
target aiming task was estimated by reoptimizing the length of the ini-
tially determined pulling vector in the damaged muscle on the basis of the
EMG produced during task performance immediately after the damag-
ing exercise. The estimated force reduction varied between 15.0 and
71.6% of baseline, and was linearly related to the reduction in electrically
evoked force (r 2 � 0.63, p � 0.035). A protocol similar to that of Exper-
iment 1 and 2 was conducted with the damaged muscle.

Experiment 4 —Simulated effects of postural change. Virtual pulling
vectors were extracted from task performance (as above) with the wrist
supinated 80° from neutral and were applied during task performance in
EMG-driven mode with the wrist pronated 80° from neutral. MVC and
both force- and EMG-driven baseline sets were performed in supination
and pronation, before three long (random target order) and three short
(consecutive to each target) sets were performed with the altered virtual
biomechanics as above.

Data analysis. Muscle activity differences from before to after modifi-
cation of the biomechanics were tested using the Wilcoxon signed-rank
test, and effects of practice over the acquisition blocks were tested using
Friedman’s ANOVAs. The Wilcoxon signed-rank test was used to com-
pare the actual increase in FCU activity with that predicted by optimal
control (Experiment 3), and to test � against 0 and differences among the
post-blocks (Experiment 4). All reported values are means � SD.

In Experiments 1 and 3, linear regressions were used between muscle
activity in condition of altered biomechanics and muscle activity pre-
dicted by a proportional scaling of the baseline activity patterns. Specif-
ically, linear regressions were used to describe the relationship between
the difference in the amplitude of muscle activities summed over all
target directions under baseline and modified biomechanics (Mpost/
Mpre), versus the differences in activity under baseline conditions and
the activity predicted should the same relative activation of muscles for
each force direction at baseline be used under the altered biomechanics
(Msame/Mpre) (see next section on calculation of Msame). In Experi-
ment 3, linear regression was calculated for the relationship between
Mpost/Mpre and the difference in muscle activity predicted by an opti-
mal control model before and after muscle damage (Mopt.post/Mopt-
.pre). Mopt.pre and Mopt.post were determined using an optimization
procedure described previously that achieves targets while minimizing
the sum of squared muscle activities (Fagg et al., 2002). This optimization
procedure was conducted on the pulling vectors initially extracted from

baseline muscle activity to obtain Mpre, and on the pulling vectors reop-
timized after muscle damage to obtain Mpost.

In Experiment 4, the summed muscle activity obtained in altered bio-
mechanics (Mpost) was compared both to the activity obtained at base-
line in supination (Msup) and to the activity predicted should the
muscles be activated in the same proportions as at baseline in pronation
(Msame, determined as in Experiment 1) within a single measure: � �
(dif(Mpost,Msame) � dif(Mpost,Msup))/dif(Msame,Msup). The mea-
sure dif(condition1, condition2) was defined as the sum for all muscles of
the absolute value of the signed difference in muscle activity between the
two conditions summed over the 16 target directions. This measure is
such that � � 1 when Mpost � Msup, and � � �1 when Mpost �
Msame.

Calculation of Msame. In Experiment 1, Msame was calculated using
the direction and extent of the actual force produced to achieve the
targets under altered biomechanics: The relative contributions of mus-
cles were determined from interpolation of the muscle tuning curves at
baseline for the direction of the actual force produced, and the magni-
tude of muscle activity was obtained by scaling these contributions to the
extent of that force. In Experiment 3, Msame was calculated using the
direction and extent of the forces simulated by combining EMGs at base-
line interpolated for multiple directions (256) with the novel pulling
vector reoptimized after the muscle had been damaged: The relative
contributions of muscles were determined from the interpolated muscle
tuning curves at the simulated forces that best matched the target direc-
tions, and the magnitude of muscle activity was obtained by scaling these
contributions to the extent of that force.

Results
We tested predictions from optimal control theory in response to
both real and virtual manipulation of the mechanical action of
wrist muscles. We used computer models to convert EMG re-
cordings into direction and magnitude of force produced by the
five major muscles that generate force at the wrist when the fin-
gers are free in space (Fig. 1). These virtual pulling vectors were
then combined to produce a real-time reconstruction of the two-
dimensional force that provided a close spatiotemporal match to
measured force at the hand (Fig. 1e). The task performed in all
experiments required participants to move a cursor from the
center of a two-dimensional display and to hold the cursor for 1 s
on each of 16 targets distributed symmetrically about the origin.
The cursor position represented either the resultant force exerted
at the wrist joint (in force-driven conditions), or the recon-
structed force specified by the virtual biomechanics and the real-
time muscle activity (in EMG-driven conditions). Figure 1f
illustrates that the muscle tuning curves obtained in these two
conditions are similar.

Adaptation to novel virtual biomechanics with muscle
loss—Experiment 1
An extensor muscle was virtually cut, such that activation of the
muscle had no effect on the EMG-driven cursor. As expected,
subjects were able to acquire targets near to the pulling direction
of the missing muscle by increasing the activation of the two
neighboring muscles (Fig. 2). The interesting question is how the
CNS treats the muscle that no longer has an effect on the cursor.
An unrestricted optimal controller with energy expenditure in
the cost function would reduce, and eventually abolish, the activ-
ity of the irrelevant muscle. However, we found that the activity
of the missing muscle was dramatically increased (i.e., multiplied
by 2.87 � 0.56 from pre- to post-block, T � 0, p � 0.028), and
that there was no reduction from this level even after subjects had
completed 768 trials (�1.5 h) under the new conditions (� 2(2) �
2.33, p � 0.31; Fig. 2b,c). The magnitude of muscle activity in all
muscles under the new virtual biomechanics was well described
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by a linear scaling of the muscle activity obtained before the al-
tered biomechanics at baseline, according to the magnitude and
direction of the actual force produced at the wrist under virtual
conditions (r 2 � 0.85, p � 0.001; Fig. 2d). It is important to note
that target acquisition under the simulated biomechanics re-
quired substantial deviations in both direction and magnitude of
the actual wrist force produced relative to baseline conditions.
This indicates that the task was resolved by modifying the wrist
force, but not the muscle activity pattern habitually used to pro-
duce that force.

Adaptation to novel virtual biomechanics with motor
noise—Experiment 2
Variability in force production (“motor noise”) has also been
hypothesized as a cost to optimize (Harris and Wolpert, 1998;
Haruno and Wolpert, 2005; O’Sullivan et al., 2009; Diedrichsen
et al., 2010) but it covaries with muscle activity under natural
conditions (Jones et al., 2002). To dissociate these factors, we
manipulated the virtual biomechanics to increase the signal-
dependent noise associated with muscle activation in one of the
five muscles (i.e., an extensor muscle, n � 3; or a flexor muscle,
n � 3). Random values drawn from a zero-mean Gaussian dis-
tribution with SD proportional to the current level of muscle
activation were low-pass filtered (0.8 Hz), and added to the EMG
signal of the selected muscle. This caused a dramatic increase in
cursor variability toward targets close to the pulling direction of
the noisy muscle (Fig. 3b), directly interfering with task perfor-

mance. The response of an unrestricted optimal controller to this
perturbation would be to reduce activation of the noisy muscle
and produce a compensatory increase in the activation of the two
more stable neighboring muscles. Instead, there was no change in
the activation level of the muscle with exaggerated signal-
dependent noise, even after 768 trials (� 2(3) � 3.80, p � 0.28; Fig.
3c,d), and only a slight increase (� 3%) for the neighboring mus-
cles in the last block (� 2(3) � 10.6, p � 0.014).

Adaptation to actual damage of one muscle—Experiment 3
Because optimal controllers require an accurate estimate of the
state of the system (Scott, 2004; Todorov, 2004), it is possible that
the failure of the CNS to reoptimize muscle activation according
to the new virtual biomechanics relates to discrepancies between
visual information about cursor position (i.e., reconstructed
force) and proprioceptive information from receptors in the limb
(e.g., real force sensed by mechanoreceptors). Therefore, we
tested whether reoptimization of muscle activation patterns oc-
curs after a modification of the actual mechanical actions of a
single muscle that preserves the integrity of sensory feedback. We
induced selective and long-lasting muscle damage in one of the
flexor muscles by forcibly lengthening the muscle during invol-
untary activation produced by supramaximal electrical stimula-
tion of the relevant peripheral nerve. This produced temporary,
but stable reductions in the relationship between EMG and force,
as estimated by recomputing pulling vectors during task perfor-
mance after the damaging exercise (see Materials and Methods,

Figure 2. Simulated loss of one muscle. a, The ECRl muscle vector was set to zero (Experiment 1). b, ECRl activity increased with that of its two neighboring muscles in the post-blocks. c, ECRl
activity summed over the 16 directions and normalized to pre-block, for the pre- and post-blocks (n � 6 participants). d, Muscle activity averaged over the post-blocks plotted as a function of
pre-block activity scaled according to the magnitude and direction of the actual force produced in post-blocks (n � 30; r 2 � 0.85, p � 0.001).

Figure 3. Simulated increase in motor noise of one muscle. a, Motor noise was added to the FCU muscle (Experiment 2). b, Example of trajectories obtained in the pre-block and in the first
post-block of Experiment 2, in which motor noise was added to the FCU muscle. c, FCU activity did not change in post-blocks. d, Summed activity of the muscle that received noise [either FCU (n �
3) or ECRl (n � 3)] normalized to pre-block.

de Rugy et al. • Habitual Muscle Coordination J. Neurosci., May 23, 2012 • 32(21):7384 –7391 • 7387



Experiment 3). Exercise-induced muscle damage does not, how-
ever, affect muscle somatosensors (Gregory et al., 2002, 2004).
We compared the changes in muscle activation after the damag-
ing exercise with the changes predicted from an optimal control
model (Fagg et al., 2002) according to the new force-generating
capacity of the muscles. As in Experiment 1, the muscle activation
was well predicted according to a rescaling of original patterns of
activity (r 2 � 0.87, p � 0.001; Fig. 4d). In contrast, the post-
damage activity was not related to the change predicted by opti-
mal control (r 2 � 0.06, p � 0.14; Fig. 4e). The size of the increase
in activity in the damaged muscle (i.e., multiplied by 1.80 � 0.44
from pre- to post-block, T � 0, p � 0.018) was greater than the
amount predicted by optimal control in all subjects (1.17 � 0.14;
T � 0, p � 0.018), and did not change with extended exposure to
the task (� 2(2) � 4.57, p � 0.10; Fig. 4f). Thus, participants did
not reoptimize their muscle activation patterns despite congru-
ent sensory feedback from vision and proprioception.

Adaptation to simulated postural change—Experiment 4
The failure of the CNS to reoptimize muscle activation in the
conditions above might relate to an inability to produce the pat-
terns of muscle activity specified by optimal control due to con-
straints imposed by the structure of the neuro-motor system. To
address this issue, we introduced a more natural perturbation in
Experiment 4 by simulating the biomechanics of a posture differ-
ent from that in which the subjects performed the task. The tun-
ing curves and mechanical actions of the wrist muscles are known
to change with forearm rotation (Kakei et al., 1999). We exploited
this feature by applying the pulling vectors extracted from the
wrist during task performance in full supination to the EMG
recorded online during task performance with the wrist fully pr-

onated. Assuming near-optimal behavior at baseline in the dif-
ferent postures, we can therefore be sure that the nervous system
is capable of producing optimal muscle activations when the pos-
ture was virtually changed, even if the structure of the neural
circuits prevents the production of some activity patterns. Once
again, however, muscle activation patterns were closer to those
produced at baseline in the actual wrist position than at baseline
in the virtual position for all subjects (� below zero for all post-
blocks; T � 0, p � 0.043; with an effect of time; � 2(2) � 4.57, p �
0.041; Fig. 5b).

Discussion
What is “optimal” and how might it be computed?
It is important to distinguish between iterative learning algo-
rithms that gradually minimize a cost function but may become
stuck in good-enough local minima, and analytical algorithms
that actually compute a globally optimal strategy, presumably by
using an internal model of the system to be optimized. Because
the actual cost function being used by the organism cannot be
known, it will never be possible to look at a given behavior and
state whether or not it is globally optimal. For that reason, we
designed the experiments presented here to change the properties
of the musculoskeletal plant in ways that should force the nervous
system to adopt qualitatively different motor programs to main-
tain global optimality regardless of the cost function.

The data show that contrary to predictions from optimal con-
trol theory, motor coordination is not continuously optimized at
the level of individual muscles. Instead, habitual muscle coordi-
nation is surprisingly robust to various real and virtual manipu-
lations of the limb’s biomechanics. Furthermore, the finding that
muscle coordination is tied to the actual limb posture suggests

Figure 4. Actual damage of one muscle. a, Example of initial and damaged (black) FCU pulling vector. b, Muscle activity predicted by optimal control minimizing summed squared muscle
activations for the initial (Mopt) and damaged (Mopt-post) pulling vector. c, Actual muscle activity for the same participant in the pre- and post-blocks, presented with the same activity as in the
pre-block scaled according to the magnitude and direction of the actual force produced under muscle damage (Msame). d, Muscle activity in the post-blocks plotted against muscle activity expected
should the baseline proportions of muscle activity be maintained under damage (n � 35; r 2 � 0.87, p � 0.001). e, Muscle activity in post-blocks plotted against muscle activity predicted by
reoptimization for the damaged pulling vector. f, Summed activity of FCU. The dotted line indicates the average increase predicted by optimal control.
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that good-enough solutions to muscle redundancy are generated
by a hierarchical control scheme in which muscle activity is partly
determined by low-level networks whose regulatory functions are
shaped by sensory feedback representing the current posture. In
this type of scheme, control processes are distributed over sensori-
motor networks at multiple levels, with high-order levels acting as
controllers for lower levels, and low-order levels acting as regulators
for higher levels (Raphael et al., 2010). The processes of evolution,
development, and adaptation determine in parallel both the struc-
ture of the circuitry within each level and the characteristics of the
musculoskeletal system. Even low-order levels of the hierarchical
control scheme should therefore carry useful information about the
nature of the plant and the set of likely tasks to be encountered, such
that explicit specification of muscle activations from the brain may
not be required for successful task performance in most conditions.

Under natural conditions, however, it is difficult to dissociate
online, top-down control of muscle activation from control that
is embedded in the properties of a hierarchical control system
because both may produce outcomes that are “near-optimal” for
sensible cost functions. To address this issue, we exposed human
subjects to a range of simulated and actual modifications to their
limb biomechanics. Simulated loss of one muscle in Experiment
1 was resolved by simply modifying the direction and magnitude
of the wrist force instead of changing the muscle activity pattern
habitually used to produce that force, even though this implied a
dramatic increase in the activity of the lost muscle that compro-
mised energetic efficiency. Similarly, muscle activity habitually
used to produce force was maintained when motor noise was
selectively added to one muscle in Experiment 2, thereby com-
promising the stability of the simulated force output and task
success. Results from these two experiments therefore argue
against online reoptimization of muscle activity based on either
of the two major cost functions (i.e., effort and variability) that
have been proposed to resolve muscle redundancy using optimal
control (Fagg et al., 2002; Haruno and Wolpert, 2005; Diedrich-
sen et al., 2010). It is not clear whether optimization on the basis
of some alternate cost function might be consistent with the data,
but it would appear unlikely that any viable function could be
heavily weighted toward costs associated with the physical state of
the plant.

Does the brain maintain and use a
currently accurate internal model of the
musculoskeletal plant?
The results of Experiment 3, in which the
actual force generation capacity of a mus-
cle was reduced, demonstrate that the fail-
ure of the nervous system to reoptimize
muscle activation according to the simu-
lated biomechanics was not due merely to
discrepancies between visual information
about cursor position and proprioceptive
information from receptors in the limb.
Because the selective muscle damage used
to achieve the force reduction should not
have affected the function of mechanore-
ceptors in the limb (Gregory et al., 2002,
2004), accurate sensory information on
which to update any internal model or
other state estimation required for com-
putation of an optimal control strategy
(Scott, 2004; Todorov, 2004) should have
been available. Thus, an optimal control-
ler minimizing energy cost should have

reduced the activity of the damaged muscle relative to that of
its more efficient undamaged neighbor. As in Experiment 1,
however, the muscle activation was well described by a simple
linear rescaling of original patterns of activity, and not reop-
timized for the novel biomechanics. It should be noted that
recruitment of the virtually cut muscle in Experiment 1 and the
actually damaged muscle in Experiment 3 would be associated
with substantial energy consumption related to activation (Tsia-
nos et al., 2012), so the observed increase in recruitment is not
consistent with minimization of energetic cost. It is possible that
the brain has an internal model of the defective muscle but
chooses not to use it to optimize energy consumption or that it is
unable to make corrections to that internal model within the time
frame of these experiments. One advantage of an internal model
is that it can be used to compute solutions to problems more
rapidly than they can be discovered by trial-and-error learning,
but this begs the question of how rapidly the model itself can be
updated. A persistently inadequate internal model could be a
source of persistently suboptimal motor habits.

Is motor performance limited by an impoverished set of
hard-wired synergies?
An alternate view of how animals deal with muscle redundancy is
that the CNS uses stereotyped combinations of muscles as “syn-
ergies” to reduce the dimensionality of the control problem (Bizzi
et al., 2000; d’Avella et al., 2006). According to this perspective,
muscle synergies might not be sufficiently flexible to enable se-
lective changes in muscle activations needed to respond opti-
mally to our conditions in Experiments 1–3. In this case, an
optimal controller could still operate on muscle synergies instead
of individual muscles. Indeed, in recent theoretical work optimal
controllers have been combined with lower dimensional muscle
synergies to simplify the control problem (Lockhart and Ting,
2007; Berniker et al., 2009). Similarly, collateral projections of
cortico-motoneurons to multiple wrist motoneuron pools (Fetz
et al., 1989) might prevent independent activation of muscles that
are functionally coupled. If the nervous system is actually capable
of producing the necessary muscle activations in a different but
natural posture as we observed in Experiment 4, then this limita-
tion would seem not to obtain.

Figure 5. Simulated effect of a different posture. a, Example of muscle tuning curves obtained for the task performed with the
forearm supinated (�80° from neutral position) or pronated (�80°). The arrows indicate the wrist direction used for reference
(i.e., radial deviation). b, � values, a measure of relative proximity to Msame and Msup (see Materials and Methods, Data analysis),
indicate that muscle activities in post-blocks (Mpost) were closer to Msame than Msup for all subjects (n � 5).
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One potential criticism of the logic above is that the coordi-
nation patterns required in an alternate posture might be difficult
to produce due to the influence of afferent feedback about limb
position on the resting state of motor circuits. However, if an
optimal controller were unable to modify afferent feedback gains
as needed to allow replication of coordination patterns typically
produced in an alternate posture, it could hardly be claimed that
such a controller computed and specified any muscle activity
patterns online, let alone optimal ones. The behavior actually
observed suggests that the central controller learns associations
between tasks and control strategies that are locally optimal in the
sense that they tend to increase performance and/or reduce cost
for regularly encountered conditions, but that these associations
then become motor habits that are not readily changed. Such a
phenomenon would explain the emergence of synergies them-
selves, as learned rather than hard-wired patterns of muscle use.
The fact that various subjects exhibit similar synergies would then
reflect similarities in their biomechanical constraints and in the
circumstances in which they learned such habits.

Does optimal control operate over longer time periods
than adaptation?
The conclusions drawn from this study are based on subject re-
sponses during the early stages of exposure to altered biomechan-
ics. Subjects practiced under the changed conditions for �1.5–2
h, and completed between 750 and 800 movements in this period.
Successful completion of the tasks under the imposed virtual or
real changes in musculoskeletal function required substantial
changes to motor programs, which appeared to be learned rap-
idly. Approximately half of these movements involved target di-
rections for which substantial activation of the modified muscle
was observed at baseline. In the course of practicing all possible
movement directions, subjects would have obtained a complete
set of information about the actual, current properties of both
modified and neighboring muscles. This would presumably be
required for controllers based on updatable internal models of
the musculoskeletal plant. The argument could be made that our
training was not lengthy enough to allow reoptimization, but this
raises the question of why the control system was able to modify
control signals to achieve the task within the timeframe of our
experiments, but not to perform the task in an optimal way.
Optimization that minimizes effort and motor variability can
explain natural patterns of muscle activity, but the nervous sys-
tem appears not to reoptimize such patterns over timescales that
are typical of sensorimotor adaptation (Shadmehr et al., 2010).

It has long been known that permanent changes in the inner-
vation or mechanical action of muscles used for locomotion lead
to compensatory changes in their recruitment that are slow to
develop and incomplete at best (Sperry, 1945; Forssberg and
Svartengren, 1983; O’Donovan et al., 1985; Loeb, 1999; Slawinska
and Kasicki, 2002). Muscles that are mechanically suitable for
surgical tendon transfers in injured hands differ substantially in
the ability of the brain to relearn their function (Fridén, 2005).
These are extreme forms of the types of changes used in the
present experiments that force us to consider how a theory of
optimal control can be tested experimentally. If a body of exper-
imental data is used to infer or even compute performance crite-
ria (Terekhov and Zatsiorsky, 2011), those same data cannot be
used to test the hypothesis that performance is optimal. Changing
the musculoskeletal system as was done in these experiments
provides an opportunity for such tests that, in the event, consis-
tently failed. It is not clear what constraints on extent or rate of
optimization must now be added to maintain a viable theory.

Are motor programs computed by optimization or learned
and recalled?
Our results argue against the view that muscle coordination is
specified online by optimal control. This raises the broader ques-
tion of whether motor commands of any sort (i.e., those repre-
senting higher order features of movement) are computed by
optimization in the brain or emerge from recalled control strat-
egies operating on a hierarchical control system (Loeb et al., 1999;
Raphael et al., 2010). Although the outcomes of both processes
might often be well described by optimal control models, they
have very different implications for the nature of processing per-
formed by the brain, and therefore for applied fields such as
neural prosthetics, brain-machine interfaces, telerobots and re-
habilitation. Is the massive circuitry and processing power of the
human brain devoted to computation of globally optimal solu-
tions, or to classification, recall, and generalization of good-
enough solutions? If the argument for computation is based on
optimal control, then the evidence is mixed at best. Task goals are
achieved in a near-optimal way in response to some types of
perturbations (Chhabra and Jacobs, 2006; Izawa et al., 2008) but
not to others (Ganesh et al., 2010; Kistemaker et al., 2010).

Recent theoretical work demonstrated the capabilities of a
hierarchical control scheme to simplify both motor execution, by
acting on a low-level controller that judiciously augments the
dynamics of the plant (Todorov et al., 2005), and motor learning,
by exploiting the multiple solutions that arise while randomly
adjusting the gains of a complex but highly evolved spinal net-
work (Raphael et al., 2010). Such hierarchical systems would ac-
count for the persistence of habitual coordination patterns that
remained clearly suboptimal to all of the perturbations tested in
this study.
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