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ABSTRACT

This article presents a technique for modeling cavity optomechanical field sensors. A magnetic or electric field
induces a spatially varying strain across the sensor. The effect of this strain is accounted for by separating
the mechanical motion of the sensor into eigenmodes, each modeled by a simple harmonic oscillator. The force
induced on each oscillator can then be determined from an overlap integral between strain and the corresponding
eigenmode, with the optomechanical coupling strength determining the ultimate resolution with which this force
can be detected.
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1. INTRODUCTION

Today, ultra-sensitive field sensors, and most particularly magnetometers, play important roles in a diverse range
of fields including geology, mineral exploration, archaeology, material-testing and medicine.1 Thus many differ-
ent types of magnetometer have been developed taking advantage of a range of different physical phenomena1,2

including giant magnetoresistance in thin films,3 magnetostriction,4 magnetic force microscopy,5 quantum in-
terference in superconductors,6 the Hall effect,7 optical pumping,8 electron spin resonances in solids9 and even
Bose-Einstein condensation.10 Currently, the most practical and widely used ultra-low field magnetometer is
based on the superconducting quantum interference device (SQUID),11 where the magnetic field induces a cur-
rent in a superconducting loop containing Josephson-junctions. These magnetometers achieve sensitivities as
good as 1 fT Hz−1/2,1 enabling SQUIDs to detect single flux quanta. However, SQUIDs require cryogenic
cooling, which increases operational costs and complicates applications.12 Hence, significant research effort has
been put into implementing ultrasensitive magnetometers able to operate at room temperature. Magnetic field
measurements with record sensitivities of 160 aT Hz−1/2 at room temperature are possible with spin exchange
relaxation-free (SERF) magnetometers.8 SERFs have been used successfully in various applications including
medicine and geology. However, they are limited to mm size scales even when using microfabricated gas cells,13

and have low dynamic range due to the non-linear Zeeman effect which is significant even at geomagnetic field
strengths (≈ 50μT )11,14

NV center based magnetometers overcome the size constraint, being nm to μm size. They allow sensitivities
as good as 3 nT Hz−1/2 at room temperature,15 and magnetic field imaging16 and magnetic resonance imaging17

at the nanoscale. Theoretical modelling predicts that sensitivities as in the fT Hz−1/2 range may be possible16

with such devices. However, NV centre based magnetometers have some constraints, including sensitivity to
magnetic field misalignment,18 complexity of magnetic field readout,19 and the requirement of bulky optics.

Many applications require a sensor of small geometric dimensions combined with high sensitivity. For example
in low field nuclear magnetic resonance imaging,20,21 the sensitivity of the instruments can be enhanced by placing
the magnetic field sensor close to the sample. This also applies to investigations in the field of solid state physics
and superconductivity.22,23 It is even more relevant for measurements of single dipole moments, as the magnetic
dipole-field decays with the distance r as 1/r3. In medical applications, richer diagnostic information is obtained
by imaging the magnetic field distribution with the highest possible resolution and sensitivity. For example
Magneto-cardiography(MCG),1,14 the imaging of the magnetic fields generated by the human heart, relies on
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Figure 1. A cavity optomechanical field sensor, illustrated via the example of a Fabry-Perot-type cavity with a harmonic
spring attached to one of the mirrors. A field sensitive medium responds to an external field, appliying a force on the
spring and causing a displacement of the mirror. A mirror displacement results in a change in the optical path length,
modifying the resonance frequency of the cavity. For sensing applications, we assume that the radiation pressure force
has negligible effect on the cavity resonance frequency.

signals in the low pT-range. The fields generated by the neurons in the human brain are even weaker with flux
densities between 10fT (for the celebral cortex24) and 1 pT (for synchronous and coherent activity of the thalamic
pacemaker cells, resulting in α-rhythm25). The imaging of these fields requires highly sensitive magnetometers
with high spatial and temporal resolution.24 Thus, multiple sensors in a dense 2-dimensional array with simple
readout and uncomplicated handling are desirable to measure magnetic field distributions with good spatial
resolution.

Recently, a new form of field sensor has been demonstrated based on cavity optomechanical systems,26 where
the cavity optical resonance frequencies are coupled to the mechanical deformation of the cavity structure as
depicted in Fig. 1. The cavity optomechanical system is functionalized by attachment of a material which
responds mechanically to an applied field, which could be, for example, an electric or a magnetic field. The
response of the material to the applied field then stresses the mechanical structure of the cavity, resulting in a shift
in its optical resonance frequencies which can be readout using an optical field giving a measurement of the applied
field. By engineering both high quality mechanical vibrations in the mechanical structure and high optical quality
resonances in the optical cavity, the sensitivity of the measurement is doubly enhanced. The magnetometer
demonstrated in Ref.26 was based on lithographically fabricated optical microtoroidal resonators coupled to
the magnetostrictive material Terfenol-D. The lithographic fabrication and fiber or waveguide coupling offers
the potential for arrays of sensors; high quality optical and mechanical resonances are present in microtoroids;
and Terfenol-D stretches signifcantly at room temperature under applied magnetic fields. Sensitivities in the
range of one hundred nT Hz−1/2 were demonstrated based on this construction, with theoretical sensitivities
in the pT Hz−1/2 range predicted for an optimized geometry.26 Here, we extend the theoretical model in
Ref.,26 presenting an eigenmode based method for calculation of the predicted sensitivity of general cavity opto-
mechanical field sensors.

2. THE CONCEPT OF A CAVITY OPTOMECHANICAL FIELD SENSOR

The field of cavity optomechanics results from the coalescence of two previously separate areas of research, optical
microcavities and mechanical microresonators.27 Light acts on mechanical degrees of freedom via radiation
pressure. This aspect of optomechanics has been subject to intense research in the past decades, and has first
been experimentally described in large-scale interferometric gravitational wave experiments.28 Reciprocally,
mechanical displacements x act on optical degrees of freedom, as they modify the optical path length, manifest
as a measurable change in the cavities resonance frequency. In a high quality optical microcavity this change
in cavity resonance frequency can be detected via an in-coupled optical field with high precision, allowing
mechanical displacement to be measured with accuracy as good as 10−19 m Hz−1/2.29,30 Since applied forces
cause mechanical displacements, this capacity to measure displacements with high precision provides COMS
with the potential to achieve sensitive force measurement. However, as force sensors, COMS are generally
outperformed by nano-electromechanical systems (NEMS), i.e. NEMS cantilevers.31 The extremely low mass of
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NEMS makes them receptive to minute forces. Cavity optomechanical systems (COMS) have a larger mass and
thus seem to be less suited for these applications. However, in field sensing the larger volume of COMS increases
the coupling to external fields and makes COMS potentially competitive for ultra-low field sensing applications.

Microtoroids, as discussed earlier, are prominent representatives of COMS. Other actively researched COMS
include photonic crystal cavities,32,33 nanomembranes made from GaAs34 or SiN,35 ZnO-microwires,36 and many
others.37–39

3. FORCE AND FIELD SENSITIVITY OF A GENERAL OPTOMECHANICAL
SENSOR

3.1 Eigenmodes

The mechanical motion of a COMS can be decomposed into its intrinsic vibrational eigenmodes, allowing the
system to be described as a set of damped harmonic oscillators. In an isotropic homogeneous medium, the
equation of motion for the mechanical vibration is given by the elastic wave equation40

ρ�̈u(�r, t) = (λ+ μ)�∇(�∇ · �u(�r, t)) + μ�∇2�u(�r, t), (1)

where the vector field u(�r, t) denotes the displacement of an infinitesimally small cubic volume element at initial
position �r and time t, and λ and μ are the Lamé-constants

λ =
σE

(1 + σ)(1− 2σ)
(2)

μ =
E

2(1 + σ)
(3)

with σ and E being Poisson’s ratio and Young’s modulus, respectively.

It is well known that a complete set of orthonormal eigenmode solutions can be found for Eq. (1) by looking
for solutions with separable spatially and temporally varying parts of the form

�u(�r, t) = �Ψq(�r)Xq(t), (4)

where Xq(t) is the time dependent oscillation of eigenmode q and �Ψq(�r) is it’s position dependent modeshape

function, normalized such that
∫
V
�Ψp(�r) · �Ψq(�r)d

3r = V δpq with V being the spatial volume of the oscillator.
When inserted into Eq. (1) this yields the new equation of motion

Ẍq(t) =

[
(λ+ μ)�∇(�∇ · �Ψq(�r)) + μ�∇2�Ψq(�r)

ρ�Ψq(�r)

]
Xq(t) (5)

Since the left hand side of this equation is evidently independent of position �r, so must be the right hand side,
with the term in square brackets being constant and causing the elastic restoring force of the material. For the
mechanical motion to be stable, this term must also be negative, and with the benefit of hindsight, we define
it to equal −ω2

q here. The equation of motion is then separable into one spatial and one temporal equation of
motion

(λ+ μ)�∇(�∇ · �Ψq(�r) + μ�∇2�Ψq(�r)) = −ρω2
q
�Ψq(�r) (6)

Ẍq(t) = −ω2
qXq(t). (7)

The second equation here is, of course, just Hookes law for an oscillator with resonance frequency ωq and spring
constant kq = Mω2

q , where M is the mass of the oscillator. Hence, as expected, the elastic nature of the material
causes the amplitude of each eigenmode to independently oscillate at a characteristic frequency just like a mass
on a spring. Solving the first equation for the spatial eigenmodes of vibration is generally difficult and in many
cases only numerical solutions are possible, however the solution yields a complete set of orthogonal eigenmodes

each with a characteristic value for ωq specified by ω2
q = −

[
(λ+ μ)�∇(�∇ · �Ψq(�r)) + μ�∇2�Ψq(�r)

]
/ρ�Ψq(�r). The

total displacement vector field u(�r, t) for a general motion of the oscillator can of course be expanded as

�u(�r, t) =
∑
q

�uq(�r, t) =
∑
q

Xq(t)�Ψq(�r). (8)
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3.2 Including external forces and dissipation

Let us now consider the response of the mechanical modes to a force density �f(�r, t) applied to the mechanical
structure. Including this force density, the elastic wave equation [Eq. (1)] becomes

ρ�̈u(�r, t) = (λ+ μ)�∇(�∇ · �u(�r, t)) + μ�∇2�u(�r, t) + �f(�r, t) (9)

As with the mechanical motion, the force density can be expressed in terms of a set of eigenmodes with each
separable into temporally and spatially varying components

�f(�r, t) =
1

V

∑
q

Fq(t)�Ψq(�r) (10)

where Fq(t) is the force in Newtons acting on mechanical eigenmode q. Substituting this expression into Eq. (9)
along with the mode expansion for �u(�r, t) given in Eq. (8), multiplying the resulting expression on both sides

by �Ψp, and integrating over the volume of the mechanical oscillator yields independent equations of motion for
each mechanical mode

M
[
Ẍq(t) + ΓqẊq(t) + ω2

qXq(t)
]
= Fq(t), (11)

where we have made use of the fact that M = ρV and the orthonormality condition
∫
V
�Ψq(�r) · �Ψp(�r)d

3r = V δqp,
and have introduced independent linear decay with rate Γq to each of the mechanical eigenmodes as is typical
of damping in mechanical oscillators.

The force Fn(t) can contain forces from a range of different sources. The three forces relevant to this article
are the Brownian noise force Fth,q(t), the radiation pressure force from the presence of the optical field used
to monitor the mechanical motion Frp,q(t), and the force applied by the signal field which we aim to detect
Fsig,q(t); with the total force Fq(t) = Fth,q(t) + Frp,q(t) + Fsig,q(t). The thermal force can be shown from the
fluctuation-dissipation theorem to equal

Fth,q(t) =
√
2MΓqkBTξq(t), (12)

where kB = 1.381 m2 kg s−1 K−1 is the Boltzmann-constant, T is the temperature of the system, and ξq(t) is a
unit white noise Wiener process. The radiation pressure force, and complimentary frequency shift on the optical
mode δΩq can be determined from Hamiltonian mechanics using the optomechanical interaction Hamiltonian
HI,q = �GqXq(t)n(t), where n(t) is the number of photons within the optical resonator and Gq = dΩq/dXq is
the optomechanical coupling strength with Ω being the optical resonance frequency.41 The result is

Frp,q(t) = �Gqn(t) (13)

δΩq = GqXq(t). (14)

Hence, the equation of motion for mechanical mode q can be expressed as

M
[
Ẍq(t) + ΓqẊq(t) + ω2

qXq(t)
]
=

√
2MΓqkBTξq(t) + �Gqn(t) + Fsig,q(t). (15)

3.3 Conversion to measurable parameters

The equation above completely describes the motion of the qth mechanical eigenmode of the oscillator. However,
in general the displacement parameter Xq(t) may not be directly accessible. In the case of optical measurement
considered here, the measured signal is the frequency shift on the optical mode, which provides the change in
optical path length x rather than Xq(t). Hence, to apply Eq. (15) to optical measurements made in a cavity
optomechanical system the length coordinate must be rescaled in terms of this measured variable. Furthermore,
since the optomechanical coupling rate is defined in terms of the optical resonance frequency shift for a given
displacement of the mechanical oscillator, the use of a different length scale results in a modification to this rate.
The raw optomechanical coupling rate Gq, must therefore also be replaced with the measurable optomechanical
coupling rate gq. The purpose of this section is to mathematically perform the transformation to these measurable
parameters.
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To rescale the position coordinate, we recognize that the optomechanical interaction energy must remain
constant under a change in coordinate system, so that HI,q = �GqXq(t)n(t) = �gqxq(t)n(t), where gq = dΩq/dxq

is the directly measurable optomechanical coupling strength in the new optically defined coordinate system.
Consequently,

Xq(t) =
gq
Gq

xq(t). (16)

Similarly, since the potential energy of the mechanical mode Uq must be constant under the co-ordinate trans-
formation we have

Uq =
1

2
Mω2

qX
2
q (t) =

1

2
mqω

2
qx

2
q(t), (17)

where the modified effective mass of the eigenmode mq naturally arises from the change in length scale, with the
ratio of total to effective masses given by

M

mq
=

(
xq

Xq

)2

=

(
Gq

gq

)2

. (18)

Rearranging we find

Gq = gq

√
M

mq
. (19)

Substituting for Xq(t) and Gq in Eq. (15) an equation of motion for the mechanical oscillator eigenmodes in
terms of measurable parameters is finally obtained

mq

[
ẍq(t) + Γqẋq(t) + ω2

qxq(t)
]
=

√
2mqΓqkBTξq(t) + �gqn(t) +

√
mq

M
Fsig,q(t). (20)

This equation of motion is identical in form to the unscaled equation of motion, except for a scaling of the signal
force caused by the modification of effective mass.

3.4 Force and field sensitivity

To determine the sensitivity of the cavity optomechanical sensor we start by solving Eq. (20) in the frequency
domain. Taking the Fourier transform we find

xq(ω) = χq(ω)

[√
2mqΓqkBTξq(ω) + �gqn(ω) +

√
mq

M
Fsig,q(ω)

]
, (21)

where χq = [mq(ω
2
q − ω2 − iΓqω)]

−1 is the susceptibility of the mechanical mode. As mentioned before, this
causes an observable shift in the resonance frequency of the optical resonator. The magnitude can be determined
from Eqs. (14) and (16) as δΩq = gqxq(t), so that in the frequency domain

δΩq(ω) = gqχq(ω)

[√
2mqΓqkBTξq(ω) + �gqn(ω) +

√
mq

M
Fsig,q(ω)

]
. (22)

The spectral power contributions from signal Ssig,q
ΩΩ and noise Snoise,q

ΩΩ in the final detected signal can then be
calculated as

Ssig,q
ΩΩ = |〈δΩq(ω)〉|2 (23)

Snoise,q
ΩΩ = 〈|δΩq(ω)|2〉 − |〈δΩq(ω)〉|2 + Smeas

ΩΩ (ω), (24)

where we have included the measurement noise term Smeas
ΩΩ (ω) which accounts for shot and frequency noise on

the laser field, and other noise sources such as electronic noise in the detectors used to measure the optical field.
Taking a signal force Fsig,q(ω) = Fsig,qδ(ω − ωsig) at the single frequency ωsig, we find

Ssig,q
ΩΩ = g2q |χq(ω)|2 mq

M
F 2
sig,qδ(ω − ωsig) (25)

Snoise,q
ΩΩ = g2q |χq(ω)|2

[
2mqΓqkBT + �

2g2q 〈δn(ω)2〉
]
+ Smeas,q

ΩΩ (ω), (26)
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where we have used the fact that ξq(t) is unit white noise such that 〈|ξq(t)|2〉 = 1, and δn(ω) = n(ω) − 〈n(ω)〉
denotes the fluctuations in the photon number within the optical resonator.

The minimum detectable force Fmin
sig,q is obtained by integrating signal and noise contributions over the band-

width of the measuring system Δω and setting the signal and noise powers equal such that the signal-to-noise
ratio is unity

Fmin
sig,q√
Δω

=

√
2MΓqkBT +

M

mq

[
�2g2q 〈δn(ω)2〉+

Smeas,q
ΩΩ

g2q |χq(ω)|2
]
. (27)

In order to determine the sensitivity to an applied spatially uniform field �Φ(t) = �Φeiωsigt, the body force

density �fsig(�r, t) due to the applied field must be determined. This can be achieved via finite element modeling.
The force on a specific mechanical eigenmode can then be found via

Fsig,q(t) =

∫
V

�Ψq(�r) · �fsig(�r, t)d3r, (28)

which can be easily derived from Eq. (10) and the orthonormality relation for mechanical eigenmodes. In typical
circumstances, a linear relationship will exist between this force and the amplitude of the applied field, such that
Fsig,q = cact,q|�Φ|, where the actuation constant cact,q, determines the strength of the coupling and can be found
via the finite element model. The minimum detectable field is then simply found by substituting this relationship
into Eq. (27)

|�Φq|min

√
Δω

=
1

cact,q

√
2MΓqkT +

M

mq

[
�2g2q 〈δn(ω)2〉+

Smeas,q
ΩΩ

g2q |χq(ω)|2
]
. (29)

It can be seen that, in the usual limit where the radiation pressure force due to photon number fluctuations is
negligible, high mechanical quality factor (i.e. low damping rate Γq) is always advantageous for precise sensing,
reducing the thermal noise, and also, on resonance, the effect of the measurement noise through its contribution
to the mechanical susceptibility χq(ω).

A similar approach to that presented here has be followed in Ref.26 to determine the sensitivity of a micro-
toroid based magnetometer sensitized to magnetic fields via attached of a magnetostrictive material, predicting
sensitivities in the pico-Tesla per root Hertz range.

4. CONCLUSION

We have presented a technique to predict the sensitivity of cavity optomechanical field sensors. This technique
could be used to optimize the design of these sensors. Cavity optomechanical field sensors are particularly
attractive as magnetometers, with sensitivities in the range of nano-Telsa per root Hertz already demonstrated
in a recent experiment.26

ACKNOWLEDGMENTS

The authors acknowledge valuable advice from Stefan Prams, Erik van Ooijen, Glen Harris, and Alex Szorkovszky;
and financial support from the Australian Research Council through Discovery Project DP0987146.

REFERENCES

[1] A. Edelstein. Advances in magnetometry. Journal of Physics: Condensed Matter, 19, 28 (2007).

[2] M. Diaz-Michelena. Small Magnetic Sensors for Space Applications. Sensors, 9, 2271 (2009).

[3] P. Ripka, and M. Janosek. Advances in Magnetic Field Sensors IEEE Sensors Journal, 10, 1108 (2010).

[4] F. Bucholtz, D. M. Dagenais, and K. P. Koo. High-frequency fibre-optic magnetometer with 70 fT/
√
Hz

resolution. Electronics Letters, 25, 1719 (1989).

[5] H. J. Mamin, M. Poggio, C. L. Degen, and D. Rugar. Nuclear magnetic resonance imaging with 90-nm
resolution. Nature Nanotechnology, 2, 301 (2007).

Proc. of SPIE Vol. 8351  83510H-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/02/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



[6] V. Pizzella S. Della Penna, C. Del Gratta, and G. L. Romani. SQUID systems for biomagnetic imaging.
Superconductor Science and Technology, 14, R79 (2001).

[7] A. M. Chang, H. D. Hallen, L. Harriott, H. F. Hess, H. L. Kao, J. Kwo, R. E. Miller, R. Wolfe. Scanning
Hall probe microscopy. Applied Physics Letters, Vol. 61, pp. 1974 (1992).

[8] H. B. Dang, A. C. Maloof, and M. V. Romalis. Ultrahigh sensitivity magnetic field and magnetization
measurements with an atomic magnetometer. Applied Physics Letters 97, 151110 (2010).

[9] J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth,
and M. D. Lukin. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Physics 4, 810
(2008).

[10] M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-Kurn. High-
resolution magnetometry with a spinor Bose-Einstein condensate. Physical Review Letters 98, 200801 (2007).

[11] M. V. Romalis, and H. B. Dang. Atomic magnetometers for materials characterization. Materials Today 14,
258 (2011).

[12] M. Sawicki, W. Stefanowicz and A. Ney. Sensitive SQUID magnetometry for studying nanomagnetism.
Semiconductor Science and Technology, 26 064006 (2011).

[13] D. Maser, S. Pandey, Ring, M. P. Ledbetter, S. Knappe, J. Kitching, and D. Budker. Note: Detection of a
single cobalt microparticle with a microfabricated atomic magnetometer. Review of Scientific Instruments
, Vol. 82, p. 086112 (2011).

[14] D. Budker, and M. Romalis. Optical magnetometry. Nature Physics, 3, 227 (2007).

[15] G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard,
J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko and J. Wrachtrup. Ultralong spin coherence time
in isotopically engineered diamond. Nature Materials, 8, 383 (2009).

[16] J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E.
Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin. Nanoscale magnetic sensing with an
individual electronic spin in diamond. Nature, 455, 644-647 (2008).

[17] M. S. Grinolds, P. Maletinsky, S. Hong, M. D. Lukin, R. L. Walsworth, and A. Yacoby. Quantum control
of proximal spins using nanoscale magnetic resonance imaging Nature Physics, 7, 687 (2011).

[18] L. M. Pham, D. Le Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer,
M. D. Lukin, H. Park, A. Yacoby and R. L. Walsworth. Magnetic field imaging with nitrogen-vacancy
ensembles New Journal of Physics, 13 (2011).

[19] R. S. Schoenfeld, and W. Harneit. Real Time Magnetic Field Sensing and Imaging Using a Single Spin in
Diamond. Physical Review Letters, 106, 030802 (2011).

[20] S. Xu, V. V. Yashchuk, M. H. Donaldson, S. M. Rochester, D. Budker, and A. Pines. Magnetic resonance
imaging with an optical atomic magnetometer. Proceedings of the National Academy of Sciences, 103, 12668-
12671 (2006).

[21] M. P. Ledbetter, T. Theis, J.W. Blanchard, H. Ring, P. Ganssle, S. Appelt, B. Blümich, A. Pines, and D.
Budker. Near-Zero-Field Nuclear Magnetic Resonance. Physical Review Letters, 107, 107601 (2011).

[22] J. Jang, R. Budakian, and Y. Maeno. Phase-locked cantilever magnetometry. Applied Physics Letters, 98,
132510 (2011).

[23] L.-S. Bouchard, V. M. Acosta, E. Bauch and D. Budker. Detection of the Meissner effect with a diamond
magnetometer. New Journal of Physics, 13 025017 (2011).
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