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Abstract 

 

The anterior commissure forms the first axon connections between the two sides of the 

embryonic telencephalon.  We investigated the role of the transmembrane receptor Frizzled-3a in 

the development of this commissure using zebrafish as an experimental model.  Knock down of 

Frizzled-3a resulted in complete loss of the anterior commissure.  This defect was accompanied 

by a loss of the glial bridge, expansion of the slit2 expression domain and perturbation of the 

midline telencephalic-diencephalic boundary.  Blocking Slit2 activity following knock down of 

Frizzled-3a effectively rescued the anterior commissure defect which suggested that Frizzled-3a 

was indirectly controlling the growth of axons across the rostral midline.  We have shown here 

that Frizzled-3a is essential for normal development of the commissural plate and that loss-of-

function causes Slit2-dependent defects in axon midline crossing in the embryonic vertebrate 

forebrain.  These data supports a model whereby Wnt signaling through Frizzled-3a attenuates 

expression of Slit2 in the rostral midline of the forebrain.  The absence of Slit2 facilitates the 

formation of a midline bridge of glial cells which is used as a substrate for commissural axons.  

In the absence of this platform of glia, commissural axons fail to cross the rostral midline of the 

forebrain.   
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1. Introduction 
 

In bilaterally symmetrical animals, commissural axon connections ensure that neural activity on 

either side of the nervous system is integrated in order to generate appropriate behavioural 

responses.  .  While many mice mutant for axon guidance receptors and/or their signaling 

molecules exhibit defects in commissure formation (Lindwall et al., 2007), the mechanisms 

underlying the initial formation of these tracts are not well understood.  Zebrafish provide a 

convenient model for deciphering the cell and molecular bases of commissural axon tract 

formation in vertebrates because of its rapid development and ease of imaging the stereotypical 

scaffold of axon tracts in the embryonic brain.  The first commissural axons in the zebrafish 

brain form in a commissural plate within the rostral surface of the anterior neural tube.  This 

plate contains the anterior and post-optic commissures which are established within 24 hours of 

fertilisation.  The anterior commissure is pioneered by the telencephalic neurons of the dorsal 

rostral cluster which extend axons across the rostral midline (Chitnis and Kuwada, 1990; Wilson 

and Easter, 1991; Ross et al., 1992; Hjorth and Key, 2002).  The diencephalic neurons of the 

ventral rostral cluster contribute axons to the post-optic commissure which grow across the 

rostral midline, ventral to the anterior commissure.  

 

In mouse, Frizzled-3 (Fzd-3) is required for the formation of the anterior commissure as well as 

several other major forebrain tracts (Wang et al., 2002; Wang et al., 2006b).  Frizzled-3 belongs 

to a family of seven-pass transmembrane receptors, known to bind members of the secreted Wnt 

ligand family via a highly conserved extracellular cysteine-rich domain (Bhanot et al., 1996; 

Dann et al., 2001; Widelitz, 2005).  Frizzled receptors can activate at least three different 

signaling pathways depending on the Frizzled, Wnt ligand and co-receptor involved.  These 

pathways result in the transcription of β-catenin target genes, changes in intracellular Ca2+ levels, 

or the polarization of cells orthogonal to the apical-basal axis.  Fzd signaling acting through both 

the canonical and non-canonical signaling pathways is implicated in a diverse range of processes 

during development of the nervous system.  Canonical Wnt signaling along with BMPs and 

FGFs play a role in neural induction and in the subsequent posteriorisation of the neural plate.  

Its antagonism by secreted frizzled related proteins (sFRPS) emanating from cells in the anterior 

neural border (ANB), the most rostral regions of the neural plate, is necessary in establishing the 

telencephalon (Houart et al., 2002).  Later in neural development canonical signaling also plays a 

role in dorsal-ventral patterning of the telencephalon (Danesin et al., 2009).  In contrast, non-

canonical Wnt signaling has been linked to processes such as cell migration, neural tube closure 
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and axon guidance during neural development.  Frizzled-3 provides an example of the 

multifaceted nature of Wnt/Frizzled signaling as it has been shown to be involved in all three 

pathways depending on the cellular context (Shedahl etal.,2003; Slursarki et al., 1997a; Slursarki 

et al., 1997b; Carron., 2003).  In the nervous system it has been generally linked to planar cell 

polarity signaling such as neural tube closure (Wang et al., 2006a), axon guidance (Lyuksyutova 

et al ., 2003) and cell migration (Wada et al., 2006).  More recently it has also been implicated as 

being required during sympathetic neuron development through its activation of β-catenin 

signaling (Armstrong et al., 2011).  However, how zFzd3a acts in commissural plate 

development to ensure correct patterning of the neuroepithlium and thereby the appropriate 

expression of guidance molecules has not been studied as to date. 

 

The chemorepulsive receptor Robo2 (Hutson and Chien, 2002) and its ligands Slit2 and Slit3 

(Barresi et al., 2005) play a critical role in the formation of the post-optic commissure in 

zebrafish.  These Slits appear to act as a chemorepulsive blanket that restricts axons to this 

defined commissural pathway.  In addition, Slit2 and to a lesser extent Slit3 are required for the 

correct patterning of a population of Slit1a expressing glial cells in the zebrafish commissural 

plate.  Loss of Slit2 or Slit2/Slit3 activity causes abnormal positioning of slit1a-expressing 

midline glia which leads to the aberrant growth of the commissural axons across the midline 

(Barresi et al., 2005).  Slit2/3 presumably excludes Robo expressing glial cells from 

inappropriate regions (Barresi et al., 2005).  In contrast, Slit1a appears to have a distinct function 

during commissure formation.  Commissural axons are not repelled from slit1a expressing 

regions which suggests that Slit1a acts as a permissive cue or, at least, a less repulsive signal 

compared to Slit2/3 (Barresi et al., 2005).  Thus the Slit family of guidance molecules have 

distinct yet crucial roles in commissure formation.  Despite this, little is known as to how the 

expression of these guidance molecules is established in the commissural plate. 

 

 

In the present study we found that zebrafish Frizzled-3a (zFzd3a) regulates the localisation of 

guidance cues in the rostral forebrain.  Knock down of zFzd3a results in an expansion of slit2 

expression at the rostral midline, reduction or absence of the anterior commissure formation, an 

altered telencephalic-diencephalic midline boundary and a reduction or absence of midline glia.  

Simultaneous knock down of Slit2 and zFzd3a significantly rescued the anterior commissure 

defect, indicating slit2 mis-expression is largely responsible for the absence of the anterior 
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commissure.  Together, these results show that zFzd3a acts in the commissural plate to facilitate 

formation of the anterior commissure.  
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2. Results 
 

2.1. Frizzled-3a is expressed in embryonic zebrafish brain  

 

By 24 hours post-fertilisation, the embryonic brain of zebrafish is a blind ended tube containing 

a discrete set of neuronal clusters interconnected by axon tracts (Fig. 1A) (Hjorth and Key, 

2002).  There are two bilaterally symmetrical clusters of neurons in the forebrain at this age: the 

dorsorostral cluster in the telencephalon and the ventrorostral cluster in the ventral diencephalon. 

Each pair of neuronal clusters is interconnected on either side of the forebrain via the anterior 

commissure and the post-optic commissure, respectively.  The zebrafish homologue of frizzled-

3a (zfzd3a) was cloned and a 750 bp riboprobe was generated to analyse expression in 

embryonic brains by wholemount in situ hybridization.  zfzd3a was expressed in the 

neuroepithelium of both the presumptive telencephalon and ventral diencephalon (Fig. 1B).  In 

the telencephalon the expression of zfzd3a extended from the anterior commissure through the 

dorsorostral cluster to the dorsocaudal margins of this brain region.  In the ventral diencephalon 

zfzd3a was expressed from the post-optic commissure, through the ventrorostral cluster and into 

the trajectory of the tract of the post-optic commissure (Fig. 1B).  zfzd3a was also widely 

expressed in the mesencephalon and rhombencephalon (Fig. 1B) as previously observed in the 

mouse brain (Wang et al., 2002; Wang et al., 2006a).  

 

Next we examined the spatial relationship between zfzd3a expression in the commissural plate 

(rostral surface of the brain) and the trajectories of the anterior and post-optic commissures by 

confocal laser scanning microscopy (Fig. 1C-H).  Flat mounts of the rostral brain enabled the 

anterior and post-optic commissures to be scanned in the same plane.  Using this approach 

zfzd3a was found to be diffusely expressed by the neuroepithelium of the commissural plate.  

The strongest expression was detected in the regions dorsal to the anterior and post-optic 

commissure (Fig. 1E).  Control embryos incubated with sense RNA probes revealed negligible 

background staining (Fig. 1F-H). 

 

2.2. Loss of zFzd3a perturbs formation of the forebrain commissures 

 

We used an antisense morpholino knock down approach to examine the role of zFzd3a in early 

commissural formation in the embryonic forebrain.  Two independent morpholinos (MOs) 
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referred to as zfzd3a-UTR and zfzd3a-AUG were generated against the 5’ untranslated region of 

zfzd3a mRNA (Fig. 2A; Table I).  A randomly scrambled MO was used for control injections 

(Table I).  We tested the efficacy of the zfzd3a MOs by examining their ability to knock down 

the expression of GFP from a plasmid construct (Fig. 2A).  The GFP coding region was cloned 

downstream of the target untranslated region recognized by the two MOs.  When 50pg of this 

construct (zfzd3a-UTR-GFP) was injected alone or together with standard control MO into 

zygotes, GFP was mosaically expressed throughout the embryo at 24 hours post-fertilisation 

(n=45/59; Fig. 2B, E).  In contrast, co-injection of the construct with either 3.5ng of zfzd3a-UTR 

MO (n=38; Fig. 2C, F) or 1.25ng of zfzd3a-AUG MO (n=41; Fig. 2D, G) resulted in the 

complete loss of GFP expression.  This loss of GFP fluorescence confirmed that both zfzd3a 

MOs bound to their designed target sequence and were able to block translation of mRNA.  

 

Animals injected with up to 5 ng of control MO displayed normal wild-type formation of the 

anterior commissure (Fig. 2H).  In contrast, injection with either the 3.5 ng zfzd3a-UTR or 1.25 

ng zfzd3a-AUG MO resulted in a significant increase in embryos with a loss of the anterior 

commissure (44-55% penetrance).  Some embryos also showed reduced crossing of the POC 

(unfilled arrows, Fig 2 I-L) in addition to a loss of the AC, however the reason for this defect 

remains unclear.  It should be noted that we only examined animals that were not 

developmentally delayed and exhibited normal gross body morphology.  While axons appeared 

to project partially into the anterior commissure they typically failed to cross the rostral midline 

of the brain (arrowheads, Fig. 2I, J).  Most axons appeared to stall prior to reaching the midline.  

.  Taken together, the use of two independent antisense morpholinos that produced similar 

phenotypes, the fact that these morpholinos knocked down GFP expression from constructs 

containing zfzd3a target sequences, and that the anterior commissure defect observed in mice 

was recapitulated in zebrafish indicate the specificity of the morpholinos.  Interestingly, a single 

line of zebrafish carrying a point mutation in zfzd3a has been previously generated by N-ethyl-N-

nitrosourea mutagenesis (Wada et al., 2006).  Although the hindbrain phenotype in this line of 

zebrafish could not be rescued by injection of full-length mRNA line, it was recapitulated by a 

dominant negative truncated construct.  We observed the same morpholino-induced anterior 

commissure phenotype when embryos were injected with 375pg of mRNA encoding a dominant 

negative form of mouse Frizzled-3, but not in control embryos injected with an equivalent 

amount of GFP (data not shown). The dominant negative mouse Frizzled-3 was synthesized 

from a splice variant of mouse Frizzled-3 containing a premature stop signal following the 

cysteine rich domain.  These results further confirmed the specificity of our morpholino knock 
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down approach.  We have adopted the anti-sense morpholino approach here as it has allowed us 

to examine various gene-gene interactions underlying the phenotype (see below).   

 

Previous reports have shown the possibility of off-target effects resulting from morpholinos due 

to activation of the p53 apoptotic pathway (Robu et al., 2007; Gerety et al., 2011).  To ensure 

this was not the case we co-injected 2.0ng zFzd3a-AUG MO with p53 MO (5ng) to block p53 

activation (Fig. 2K-L).  Co-injection with p53 MO did not reduce the penetrance (Table II) or 

severity (Fig. 2L) of the AC defect (unfilled arrowhead, Fig. 2L. .  Thus, the  loss of the AC 

observed following knock down of zFzd3a is  not due to off-target activation of p53.  To further 

test whether our AC defect was specific to knock down of Frizzled-3 we co-injected 2.0ng of 

zFzd3a-ATG MO with 375pg of mouse fzd3 mRNA which lacked the morpholino binding 

sequence.  Injection of 2.0ng of zFzd3a-ATG MO alone resulted in an absent or severely reduced 

AC in 76% of embryos (unfilled arrowhead, Fig. 2K)  Co-injection of the morpholino with mfzd3 

mRNA significantly reduced the percent of embryos with a loss of the AC.  Rescued embryos 

showed the formation of a distinct fascicle in the AC (unfilled arrow head, Fig. 2M)..  These 

results confirmed that loss of the AC was specifically due to knock down of zFzd3a. 

 

2.3. Loss of zFzd3a affects glial bridge formation 

 

 A local glial cell population has been shown to act as a substrate for axon growth (Barresi et al., 

2005).  To assess the patterning of these midline glia we used a previously characterized rabbit 

anti-GFAP antibody (Nona et al., 1989).  In control embryos, slit1a expressing GFAP positive 

(+) glia underlie the AC (Barresi et al., 2005) (Fig. 3A-C, supplementary Fig S1).  Following 

knock down of zFzd3a, GFAP+ glia (unfilled arrowhead, Fig. 3E; Fig. 3F) as well as AC axons 

(unfilled arrowhead, Fig. 3D; Fig. 3F) are lost from the midline.  Embryos injected with zFz3a-

AUG MO and mFzd3a mRNA showed a significant rescue of both the commissural axon and 

glial bridge defects (Fig. 3G-I).   

 

2.4. Loss of zFzd3a causes expansion of the slit2 expression domain in the telencephalon 

 

Slit2 has previously been shown to play a role in commissure formation by acting as a repulsive 

cue for commissural axons and a subset of GFAP+ midline glia (Barresi et al., 2005).  Thus, we 

next investigated whether the loss of commissural axons and glial cells at the midline of the AC 

was accompanied by abnormal expression of slit2 in this region.  In wildtype embryos slit2 is 
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principally expressed in a restricted triangular-shaped domain of neuroepithelium (dashed 

outline, Fig. 4A) in the region surrounding the anterior commissure (Fig. 4B-C).  By analyzing 

single optical slices obtained by confocal laser scanning microscopy we revealed that the axons 

in the anterior commissure crossed the midline within neuroepithelium that was not expressing 

slit2 (Fig. 4D-F).  The slit2 positive cells lay deeper beneath the axons of the anterior 

commissure.  Following knock down of zFzd3a, slit2 became more strongly and widely 

expressed in the neuroepithelium (dashed outline, Fig. 4G, M).  Embryos with expanded slit2 

expression had either a complete loss of axons (arrowhead, Fig. 4H, I) or exhibited few crossing 

axons (arrowhead, Fig. 4N, O) in the anterior commissure.  Analysis of single optical slices 

revealed ectopic expression of slit2 in the typically slit2-negative neuroepithelium where anterior 

commissure axons would normally cross the midline (compare Fig. 4D and 4J, and 4F and 4L).  

Uncrossed axons could be observed at the edge of this ectopic slit2 domain (arrowheads, Fig. 

4K).  The merged images revealed that the anterior commissural axons did not enter into the 

expanded domain of slit2 expression (Fig. 4L).  Similar results were obtained with both MOs 

(Fig. 4G-I and M-O; Table III).   

 

2.5. Loss of zFzd3a affects formation of the commissural plate  

 

Previous studies have shown that shh is involved in patterning of slit expression and glial 

formation in the rostral forebrain (Barresi et al., 2005).  We show here that shh is expressed in 

the wedge-shaped domain of neuroepithelium in the diencephalon beneath the POC (Fig. 5A-C) 

and weakly in two small patches lateral to the midline of the telencephalon (dashed yellow 

outline, Fig. 5A). One possibility is that aberrant expression of shh may account for some axon 

guidance defects as previously described (Barresi et al., 2005).  However, we found no 

difference in shh expression between control embryos or embryos injected with zFzd3a-AUG 

MO (compare Fig. 5A to G).  Thus shh does not appear to be involved in zfzd3a-dependent axon 

guidance across the rostral midline.  Next we asked if zfzd3a was not only affecting the 

distribution of glial cells and the expression of slit guidance molecules but whether it was also 

affecting the morphology of the midline.  We scanned the optic recess of control animals at 

higher resolution (Fig. 5D-F and supplementary Fig S2) which revealed the presence of a distinct 

linear border between cells of the telencephalon and diencephalon.  Following knock down of 

zFzd3a we found that the optic recess was severely disrupted at the midline (Fig. 5J-L and 

supplementary Fig. S2.).  The junctional border between the telencephalon and diencephalon 

appeared to be expanded (demarcated by arrowheads in Fig. 5K) by the presence of a 
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disorganized array of cells.  Since netrin1 is expressed within this region (Lauderdale et al., 

1997; Strähle et al., 1997) we next examined its distribution in control and zFzd3a knock down 

embryos.  We showed that netrin1a was expressed by cells lying dorsal to the optic recess and 

ventral to the anterior commissure in the rostral forebrain (Fig. 6 A-C).  A similar expression 

pattern was observed for netrin1b (supplementary Fig. S3A-C).  Following knock down of 

zFzd3a, netrin1a expression expanded dorsolaterally (filled arrows, compare Fig. 6D with 6A) 

into the region which also now expressed slit2 (compare with Fig. 4G-O).  In addition, the 

ventral borders of netrin1a (Fig. 6D-F) and netrin1b (supplementary Fig. S2D-F) expressing 

domains were no longer linear but displayed a distinctive lip about the midline, which was 

consistent with the abnormal morphology we previously noted in this region (Fig. 5K).  The 

ectopic cells that filled this split optic recess do not express either netrin1a (Fig. 6D) or netrin1b 

(supplementary Fig. 3D).  Taken together, our data suggests that there is aberrant formation of 

the commissural plate following knock down of zFzd3a.  There is expansion of slit2 expression 

and the abnormal presence of netrin1 negative ectopic cells within the optic recess.  This 

abnormal expression is specific to the commissural plate as analysis of markers involved in 

specification of regional brain territories appeared grossly normal following knock down of 

zFzd3a (supplementary Fig. S4) 

 

 

 

 

 

2.6. Knock down of Slit2 rescues the anterior commissure phenotype produced by loss of 

zFzda  

 

Since Slit2 acts as a repulsive cue for axons and glia and because the absence of the anterior 

commissure is correlated with mis-expression of slit2 we proposed that Slit2 was causative in the 

zFzd3a phenotype.  To investigate whether increased expression of slit2 in the commissural plate 

was indeed responsible for disruption of the anterior commissure following knock down of 

zFzd3a we decided to rescue the phenotype by simultaneous knock down of Slit2.  If expansion 

of slit2 expression was responsible for the anterior commissure phenotype then knock down of 

Slit2 should allow these axons to cross the midline.  Embryos were injected with either 6.25ng 

standard control MO alone (Fig. 7A), 5ng slit2-AUG MO alone (Fig. 7B-C), 1.25ng zfzd3a-AUG 

MO alone (Fig. 7D-E), or 1.25ng zfzd3a-AUG MO and 5ng slit2-AUG MO together (Fig. 7F-G).  
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Knock down of Slit2 resulted in axons defasciculating and aberrantly projecting into the 

neuroepithelium between the two commissures (arrowhead, Fig. 7B-C), which is consistent with 

previous reports (Barresi et al., 2005).  Although in some embryos this defasciculation reduced 

the size of the anterior commissure (Fig. 7B), it was never completely ablated (arrow, Fig. 7B).  

We therefore categorised anterior commissure defects into four different classes: (I) complete 

loss or failed formation; (II) marked reduction in fascicles or reduced formation; (III) crossing of 

the anterior commissural axons together with aberrant projection of some axons into the 

surrounding neuroepithelium; and (IV) normal formation.  Knock down of Slit2 did not result in 

a  significant loss or reduction of the AC, as penetrance of Class I or Class II embryos was not 

altered compared to control embryos (Table IV).  However, knock down of zFzd3a significantly 

increased the incidence of embryos with a failed or severely reduced anterior commissure, as 

shown by an increased penetrance in Class I (arrow in Fig. 7D; 60%, n=24; Table IV) or Class II 

(arrow in Fig. 7E; 5%, n=10; Table IV) phenotypes in comparison to controls (Fig. 7A).  

Simultaneous knock down of both Slit2 and zFzd3a significantly decreased the proportion of 

embryos with a loss of the anterior commissure (Class I phenotype;Fig. 7F and G; 16%, n=6, 

p<0.001; Table IV).  Rescue of this phenotype indicated that the increased expression of slit2, 

associated with the knock down of zFzd3a, was indeed responsible for the aberrant formation of 

the anterior commissure.  The misprojecting axons observed in the neuroepithelium surrounding 

the commissures in the double knock downs (arrowheads, Fig. 7F and G) was due to the 

reduction of slit2 since these aberrant axons were observed in the single Slit2 knock down 

embryos (arrowheads in Fig. 7 B-C).  

 

 

3. Discussion 
 

The mammalian anterior commissure is highly vulnerable to genetic perturbations in a number of 

axon guidance receptors and ligands as well as their associated signaling pathway molecules 

including Netrin-1 (Serafini et al., 1996), DCC (Fazeli et al., 1997), EphA4 (Kullander et al., 

2001), Sema3B and 3F (Falk et al., 2005), Nrp2 (Falk et al., 2005), NrCAM (Falk et al., 2005), 

Plexin-A4 (Suto et al., 2005), Fzd3 (Wang et al., 2006), Trio (Briancon-Marjollet et al., 2008), 

Rac1 (Kassai et al., 2008) and Celsr3 (Zhou et al., 2008).  The lack of redundancy between these 

different axon guidance molecules suggests that each acts discretely during formation of this 

commissure.  Unfortunately our understanding of the role of these different genes in the 

guidance of axons across the rostral midline is fragmentary.  In the present study we analysed the 
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cell and molecular mechanisms underlying the role of Fzd3 in the development of the anterior 

commissure using zebrafish as an experimental model.  We show that zFzd3a influences the 

localisation of midline glia and the expression of guidance molecules in the commissural plate 

during the guidance of axons across the rostral midline.  We also show that expansion of the slit2 

expression domain following knock down of zFzd3a is responsible for  the absence of the 

anterior commissure.  How zFzd3a acts to confine slit2 expressing cells at the appropriate 

regions of the midline is uncertain.  The expansion of slit2 and loss of the local glia population 

could be a consequence of aberrant morphogenetic movements at the rostral midline or due to 

inappropriate specification of midline cells. 

 

 

 

 

 

 

3.1. zFzd3a patterns the commissural plate and controls midline axon crossing   

 

The rostral surface of the embryonic vertebrate brain or commissural plate contains the anterior 

and posterior commissures which lie dorsal and ventral to the telencephalic-diencephalic 

boundary demarcated by the optic recess.  Axons in both of these commissures grow across a 

substrate or bridge of glial cells and shh induced perturbations in the migration of these glia are 

known to affect commissural formation (Barresi et al., 2005).  The zebrafish homologue of Fzd3, 

is expressed by the neuroepithelial cells of the commissural plate.  Consequently, knock down of 

zFzda3a led to loss of the anterior commissure which phenocopied the effects of Fzd3 loss-of-

function previously reported in the mouse brain (Wang et al., 2002).  We further revealed that 

telencephalic neurons in zebrafish projected axons rostrally within the initial pathway of the 

anterior commissure in the absence of zFzd3a.  Thus, zFzd3a does not appear to be important for 

axon outgrowth per se, but is rather required for midline crossing during commissure formation.  

This is consistent with reports that dissociated neurons cultured from embryonic Fzd3 knock-out 

mice grow normally and display normal axonal and dendritic morphology (Wang et al., 2002).   

.  

 

 Our results show that in contrast to the chemoattractant role of Fzd3 in spinal cord commissural 

axons of mice (Lyuksyutova et al., 2003), the zebrafish orthologue Fzd3a acts to regulate 
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patterning of the commissural plate thereby indirectly influencing axon guidance.  We have 

shown here that knock down of zFzd3a resulted in a loss of glia within the pathway of the 

anterior commissure, suggesting that the loss of the anterior commissure is due to abnormal 

localization GFAP+ glia in the commissural plate.  These glial defects arose from an aberrant 

and expanded expression of slit2 in the rostral midline which then led to axon guidance defects 

in this commissure.  This patterning defect was highly localized to the rostral midline, as the 

gross regionalisation of the forebrain, as indicated by the expression patterns of hlx, wnt1, shh, 

pax6, dlx2 and emx, was unaltered.  The significance of the expanded expression of slit2 was 

revealed when the midline crossing defects were rescued by the simultaneous knock down of 

zFzd3a and Slit2.  Thus zFzd3a acts to regulate slit2 distribution within the neuroepithelium 

which when perturbed affects the formation of glial bridges thereby indirectly regulating axon 

navigation in the anterior commissures (Fig. 8).  

 

The GFAP positive glial cells that reside in the zebrafish midline express slit1a (Barressi et al ., 

2005) and presumably act as an axon growth substrate as in the zebrafish tectum  (Xiao et al., 

2011).  Consequently, along with a loss of midline glia in zFzd3a knock down embryos we also 

observed a reduction in slit1a expression (Supplementary Fig. S1).  These glia also express a 

combination of Robo receptors which are known to bind the Slit family of proteins (Barressi et 

al., 2005).  Most likely it is the expression of these receptors that causes their exclusion from 

regions of slit2 expressing neuroepithelium (Barressi et al., 2005).  Thus Slit2 presumably acts as 

a repulsive guidance cue for glia as well as for axons.  This results in the inability of glial cells to 

migrate to the midline due to the expansion of repulsive slit2 in zFzd3a knock down embryos.  

Specification of glia does not appear to be an issue as GFAP staining confirms their presence in 

more lateral regions of the commissural plate (Fig. 4).   

 

The expansion of slit2 that we observed in the commissural plate was not due to aberrant 

expression of shh, which is expressed normally despite the absence of the anterior commissure in 

zFzd3a knock down embryos.  In addition to aberrant expression of slit2 we also observed 

spatial changes in expression of netrin1a and netrin1b and the appearance of ectopic midline 

cells in the commissural plate.  These ectopic cells expand the optic recess and appear similar to 

the aberrant midline cells observed in the neural keel following knock down of planar cell 

polarity pathway components (Ciruna et al., 2006)..  It is possible that these ectopic cells 

contribute to the disruption of the slit2 and netrin expression domain by disrupting the 

appropriate morphogenetic movements required to form the commissural plate.  
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In wild-type embryos the triangular shaped slit2 expression domain surrounds the AC and forms 

a channel so that the axons cross in a region devoid of slit2 neuroepithelial cells.  In contrast, 

knock down of zFzd3a results in slit2 positive neuroepithelial cells being present where axons 

normally cross.  Whether the localization of the slit2 message reflects the expression of Slit2 

protein could not be ascertained as no working antibody was available.  Since Slit2 is a secreted 

protein it is possible that in wild-type embryos the protein itself is in closer proximity to the 

commissural axons than suggested by the in situ hybridisation experiments.  Nevertheless, the 

expansion of slit2 positive neuroepithelium in zFzd3a knock down embryos suggests that the 

protein is now secreted in an expanded region compared to control embryos.   

 

In embryos injected with only the slit2 morpholino, commissural axons aberrantly coursed into 

the region between the anterior and post-optic commissures as previously described (Barresi et 

al., 2005).  These results support the previously proposed “surround repulsion” model of Slit2 

function in the zebrafish optic commissure whereby Slit2 surrounds the commissure and forces 

axons to grow on a substrate of neuroepithelium not expressing this chemorepellent (Hutson and 

Chien, 2002) (Fig. 8A).  This model is also supported by the inability of anterior commissural 

axons to cross the midline following the loss of zFzd3a and the resulting ectopic expression of 

slit2 in the neuroepithelium which normally supports the growth of these axons (Fig. 8B).  In this 

case, the expansion of the slit2 zone in zFzd3a loss-of-function embryos caused axons to stall or 

turn prior to entering the anterior commissure.  These zFzd3a mediated changes in slit2  

expression are similar to the hedgehog mediated changes in slit2 expression observed previously 

in the pathway of the post-optic commissure (Barresi et al., 2005).  Loss of hedgehog signaling 

in gli mutants caused expansion of slit2 expression, mis-patterning of midline slit1a-expressing 

glia and defasciculation of the post-optic commissure (Barresi et al., 2005).  However, we have 

shown here that zFzd3a causes preferential effects on expression of slit2 in the anterior 

commissure which are unrelated to shh.   
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4. Experimental procedures 

4.1. Zebrafish maintenance 

 

Zebrafish were maintained on a 14 hour light and 10 hour dark cycle at the University of 

Queensland fish facility. Light induced mating of adult fish was used to obtain embryos.   

 

4.2. Isolation of full length zFzd3a and in situ hybridization probes 

 

zfzd3a was isolated from zebrafish random primed cDNA using primers designed to the putative 

frizzled fragment.  5' and 3' regions were subsequently isolated using a Rapid Amplification of 

cDNA ends protocol followed by polymerase chain reaction (Frohman et al., 1988) and then 

sequenced. Overlapping fragments were joined to create the full-length mRNA sequence 

(Genbank accession number DQ200953).  This sequence was used to design a 750bp in situ 

probe covering 500bp of the C-terminal end and 300bp of the 3’ UTR of zfzd3a mRNA.  BLAST 

analysis revealed that this region had the greatest variance between frizzled homologues.  Gene 

specific primers 5’-AGT GGG CCA GTT TCT TCA GTG-3’ and 5’-GTT TGG TAT CCT CTG 

ATT TGG-3’ were used to amplify the probe cDNA (corresponding to fragment 1998bp-2747bp 

of DQ200953).  For cloning of a Slit2 contruct, to be used as a template for riboprobe synthesis, 

a 2.4kb fragment  was amplified from cDNA using primers 5’-ACA TTG AAC TTG CTG GGC 

CCA-3’ and 5’-CGA CAC GCC ATC TCT CTG T-3’.  PCR products were subsequently gel 

extracted and cloned into pGemT-easy (Promega Corporation, Madison, WI, USA) for 

generation of riboprobes.   

 
4.3. Morpholino and DNA microinjections 

 

Morpholino (MO) phosphodiestermer oligonucleotides were purchased from Gene Tools LLC 

(Philomath, OR).  Two non-overlapping translational blocking morpholinos were designed 

against zfzd3a (Table I).  Morpholinos were used to allow precise control of protein knockdown 

through titration of the MO amount, as opposed to the use of truncation mutants where the 

biological consequence of cellular protein aggregates failing to reach the membrane is difficult to 

ascertain (Wada et al., 2006).  A control morpholino which does not bind to zebrafish transcripts 

was used as a test for non-specific effects (Table I).  To suppress any potential off-target effects 

induced by some MOs due to p53 activation, a previously published MO to block p53 (Table I) 
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was used (Robu et al., 2007).  For knock down of Slit2a, a morpholino designed against the 5’ 

UTR region was used (Table 1) that phenocopied the commissural axon guidance defect of a 

previously published morpholino (Barresi et al., 2005), without affecting other developmental 

processes  MOs were resuspended in sterile water at a concentration of either 50mg/ml or 

25mg/ml and then stored at -20oC.  The stock solution was diluted to the desired concentration in 

water and injected into the yolk of 1-4 cell staged embryos.  For combinatorial knock down  

experiments, zFzd3a MO, Slit2 MO and Std-cont MO were loaded into separate needles and 

embryos were injected with either zFzd3a MO and control MO, or Slit 2 MO and control MO, or 

zFzd3a MO and slit2 MO.  This approach ensured the total amount of morpholino injected 

remained constant.  Std-cont MO alone was also injected into control embryos at matched 

concentrations.  For the MO rescue experiment, zFzd3a-AUG MO and mFzd3a mRNA were 

loaded in different needles for injection which ensured that the same amount of MO was 

delivered to embryos injected with MO alone or with MO and mRNA.   

 

An enhanced green fluorescent protein (eGFP) reporter construct was used to test the efficacy of 

zfzd3a-UTR MO and zfzd3a-AUG MO.  The 5’UTR and coding sequence containing the MO 

target sequences was cloned upstream of eGFP in the pCS2+ vector (Turner and Weintraub, 

1994).  Plasmids were co-injected with standard control or zFd3a MOs into the cytoplasm of 1-

cell embryos at a final concentration of 70 ng/µl. 

 

4.4. mRNA microinjection 

 

Capped poly-adenylated mRNA was synthesized using the SP6 message mMachine kit (Ambion 

Inc., TX).  zfzd3a and mfzd3  cDNA was cloned into the pCS2+ plasmid  and linearised at the 

3’end of the inserted sequence via enzymatic digestion with Not-1 before being transcribed in 

vitro.  The transcribed mRNA was diluted to an appropriate concentration in nuclease free water 

before injection into the yolk of the embryo at the 1-cell stage at a volume of 0.5-1nl.  

 
 

4.5. In situ hybridization and immunofluorescence 

 

Dioxigenin-labeled anti-sense RNA probes were synthesized from T7/SP6 transcription initiation 

sites using a commercially available kit (F. Hoffman-La Roche Ltd., Basel, Switzerland). The 
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following probes were generated: zfzd3a, pax6 (Krauss et al., 1991), wnt1 (Molven et al., 1991), 

emx1 (Kawahara and Dawid, 2002), dlx2 (Akimenko et al., 1994), hlx1 (Fjose et al., 1994) shh 

(Krauss et al., 1993), slit1a (Hutson et al., 2003), slit2, netrin1a (Lauerdale et al., 1997) and 

netrin1b (Strähle et al., 1997).  Gene expression patterns were visualised using Nitro-blue 

tetrazolium chloride and 5-Bromo-4-chloro-3-indolyl phosphate (F. Hoffman-La Roche Ltd., 

Basel, Switzerland).  Staining with the slit2 riboprobe was identical to previously published 

expression patterns (Miyasaka et al., 2005) 

 

Immunocytochemical labeling of wholemount zebrafish brains with acetylated α-tubulin was 

performed as previously described (Devine and Key, 2003) using an anti-mouse IgG conjugated 

to Alexa 594 secondary antibody (1:200). To label glial cells a rabbit anti-goldfish GFAP 

antibody was used (Nona et al., 1989) as previously described (Barresi et al., 2005).  

Wholemount in situ hybridization using Fast Red (F. Hoffman-La Roche Ltd.) as a substrate 

combined with HNK-1 or acetylated α-tubulin immunocytochemical staining was described 

previously (Hjorth and Key, 2001; Barressi et al., 2005). Fluorescence labeled brains were 

mounted laterally or anteriorly between two coverslips and serial parasagittal optical sections 

were collected every 1µm using a Zeiss LSM 510 laser scanning confocal microscope or a 

Biorad MRC-1000 confocal microscope. The z-stacks were compiled using Zeiss-LSM software 

or Image-J (Abramoff et al., 2004).  The significance of difference in penetrance of phenotypes 

was assessed using Fisher’s exact test. Analysis of mean fluorescence values of slit1a expression 

levels was performed on control and experimental embryos processed for in situ hybridization 

under identical conditions.  Confocal images were subsequently collected using the same 

microscope settings and mean fluorescence values were obtained using Image-J software. The 

significance of differences in levels was examined using Student’s t-test.  
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Fig. 1.  zfzd3a expression in the brain at 24-28 hours post-fertilization (hpf).  (A) Lateral 

view of the 24hpf brain demonstrating the major axon tracts.  Neurons in the dorsorostral cluster 

(drc) project axons across the midline via the anterior commissure and ventrally via the 

supraoptic tract (SOT).  The ventrorostral cluster of neurons projects rostrally across the midline 

via the post-optic commissure and caudally via the tract of the post-optic commissure (TPOC).  

The epiphyseal cluster (ec) projects ventrally via the dorsoventral diencephalic tract (DVDT).  

The ventrocaudal cluster (vcc) projects axons into the medial longitudinal fascicle (MLF) and the 

ventral commissure (VC).  Axons of the tract of the posterior commissure (TPC) cross the dorsal 

midline via the posterior commissure (PC).  (B) In situ hybridisation using a probe specific to 

zfzd3a shows expression of the transcript throughout the mid (mesencephalon; me) and hindbrain 

(rhombencephalon; rh) (n=7).  In the forebrain, expression is strongest in the telencephalon (te) 

and in ventral diencephalon (di) (dashed outline).  The commissural plate was simultaneously 

examined for expression of (C) HNK-1 to label axons and (D) zfzd3a.  HNK-1 depicts the 

anterior comissure (AC) and the post-optic commissure (POC) as well as the intervening optic 

recess (OR).  A merged image is presented in panel (E) with axons in green and zfzd3a in red 

(n=5).  Strongest zfzd3a expression was detected both dorsal to the anterior commissure (stars) 

and the post-optic commissure (stars).  (F-H) Hybridisation using sense control RNA did not 

result in any background non-specific staining.  Rostral is facing and dorsal to the top in all 

panels.  Scale bar in E is 20µm. 

 

Fig. 2.  Knock down of zFzd3a results in loss of the anterior commissure  Embryos were 

injected with 5ng of Std-cont MO, 3.5ng of zFzd3a-UTR MO or 1.25ng of zFzd3a-AUG MO at 

the 1-4 cell stage and raised to 28hpf-30hpf.  To ensure morpholinos block zFzd3a translation a 

GFP reporter construct containing the MO target sites upstream of the GFP coding sequence was 

constructed (A).  Embryos injected with 50pg of zFzd3a (UTR)-GFP plasmid and Std-cont MO 

showed mosaic GFP fluorescence at 28hpf (B, E).  Embryos injected with either 3.5ng of Fzd3a-

UTR MO (C, F) or 1.25ng of zFzd3a-AUG MO (D, G) and 50pg of zFzd3a (UTR)-GFP did not 

show GFP fluorescence, indicating the ability of either morpholino to block protein translation. 

The commissural plate was labeled with anti-acetylated tubulin to visualise the anterior 

commissure (AC) and the post-optic commissures (POC) (H-M).  Rostral is facing and dorsal is 

to the top in these panels.  Control embryos show the distinct formation of commissures (H).  In 

contrast, following injection of either of the two zFzd3a MOs defects were observed in the 

formation of the anterior and post-optic commissures (I-K).  Knock down of zFzd3a resulted in a 

loss of the anterior commissure (unfilled arrowhead, I-K) and in some cases a reduction and 
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disorganization of the POC crossing axons (unfilled arrow, I, J).  Co-injection of zFzd3a-AUG 

MO with p53 MO did not change the severity of the AC defect (unfilled arrowhead L).  In 

contrast Co-injection of zFzd3a-AUG MO with mfzd3a RNA resulted in significant reduction in 

the number of embryos with a loss or severe reduction of the AC (Table II).  Rescued embryos 

showed a clear formation of an AC fascicle (unfilled arrowhead, M). Scale bar in M is 20µm.  

 

 

Fig. 3.  Abnormal commissure formation correlates with abnormal patterning of glial 

bridges.  Compiled confocal sections of wholemount zebrafish brains at 28-30hpf stained for 

GFAP (B,E,H and in red C,F,I) and acetylated tubulin (A,D,G and in green C,F,I).  Rostral is 

facing and dorsal to the top in all panels.  Embryos were injected with Std-cont MO (A-C), 

zFzd3a- AUG MO (D-F) or zFzd3a-AUG MO and mfzd3 mRNA.  In control embryos GFAP 

spans the midline where the AC and POC cross acting as a growth substrate.  Knock down of 

zFzd3a results in an absence of glial cells where the AC normally forms coinciding with an 

absence of the tract (unfilled arrowheads in D and E).  Embryos where the AC has been restored 

with ubiquitous expression of mFzd3a show the reestablishment of the glial bridges associated 

with the AC. Scale bar in C is 20µm.  

 

 

Fig. 4.  zFzd3a knock down results in an expansion of the slit2 expression domain in the 

commissural plate.  Compiled confocal z-sections (A-C, G-I, M-O) or single 1µm optical slices 

(D-F, J-L) of wholemount zebrafish brains at 28hpf-30hpf.  Rostral is facing and dorsal to the 

top in all panels.  Embryos were injected with Std-cont MO (A-F), zfzd3a-UTR MO (G-L) or 

zfzd3a-AUG MO (M-O).  slit2 RNA expression (A, D, G, J, M; and in red in C, F, I, L, O) is 

shown in relation to formation of the axon scaffold labeled with HNK-1 (B, E, H, K, N; and in 

green in C, F, I, L, O).  In control embryos slit2 expression is restricted to the midline in a region 

dorsal to the optic recess (A-C).  Single optical slices reveal that anterior commissural axons 

(arrowhead in E) cross the midline in a region devoid of slit2 expression (as delineated by the 

bracket in panel D; also see merged image in F).  Injection of zfzd3a-UTR MO or zfzd3a-AUG 

MO resulted in expansion of the slit2 expression domain in the commissural plate (compare 

outline in G and M with that in A).  Expansion of slit2 at the region of commissure formation 

correlated with a failure of the AC to cross the midline (H, N, unfilled arrows; see also I and O).  

Single optical slices show slit2 expression now extending into the region where the anterior 
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commissure (unfilled arrows K; also see merged image in L) would normally cross the rostral 

midline (compare J and K to D and E, respectively).  Scale bar in C is 20µm. 

 

Fig. 5.  Knock down of zFzd3a results in the malformation of the telencephalic-diencephalic 

boundary at the optic recess.  Compiled confocal z-sections (A-C, G-I) or single 2µm optical 

slices (D-F, J-L) of wholemount zebrafish brains at 28-30hpf.  Yellow boxed areas in B and H  

are shown as single confocal slices in D-F and J-L respectively.  Rostral is facing and dorsal to 

the top in all panels.  Embryos were injected with Std-cont MO (A-F) or zfzd3a-AUG MO (G-L).  

Embryos were stained for shh RNA expression (A, D, G, J, and in red in C, F, I, L, O) and anti-

acetylated tubulin (B, E, H, K; and in red C, F, I, L).  In control embryos shh is normally 

expressed in the diencephalon, in a triangular domain underlying the POC with its apex just 

below the optic recess (A, D; and in red C, F).  A small group of cells in the telencephalon are 

also positive for shh expression (dashed yellow outline, A).  Embryos injected with zfzd3a-AUG 

MO that show commissural defects (unfilled arrowhead in H) show normal expression of shh in 

both the diencephalon (G, J; and in red I, L) and in the telencephalon (dashed yellow outline in 

G).  In addition to staining the commissural axon, anti-acetylated α−tubulin also demarcates cell 

membranes.  In control embryos a clear demarcation between the basal surface of telencephalic 

cells and the apical surface of diencephalic neuroepithelial cells is evident (filled arrowhead in 

E).  However following knock down of zFzd3a a cluster of cells that have failed to integrate into 

the surrounding neuroepithelium are present at the junction of the telencephalon and 

diencephalon (filled arrowheads in K). Scale bar in C and F are 20µm. 

 

 

Fig. 6.  Abnormal patterning of netrin 1a expression domain following knock down of 

zFzd3a.  Confocal z-series of wholemount zebrafish brains at 28-30hpf.  Rostral is facing and 

dorsal is to the top in all images.  Embryos were injected with Std-cont MO (A) or zfzd3a-AUG 

MO.  Expression of netrin1a (A, G and in red C, I) is evident in a strip of cells above the optic 

recess and more caudally in cells adjacent to the rostral midline.  Following knock down of 

zFzd3a, netrin1a expression expands into areas normally absent for netrin1a (compare filled 

arrows A and G).  Scale bar in F is 20µm. 
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Fig. 7.  Knock down of Slit2 rescues the anterior commissure phenotype. Confocal z-series 

of wholemount zebrafish brains at 28hpf stained with anti-acetylated tubulin to visualise axons.  

Rostral is facing and dorsal is to the top in all images. Embryos were injected with Std-cont MO 

(A), slit2-AUG MO (B, C), zfzd3a-AUG MO (D,E) or a combination of zfzd3a-AUG MO and 

slit2-AUG MO (F, G). The anterior commissure developed normally in embryos injected with 

Std-cont MO. Injection with slit2-AUG MO caused axons to project inappropriately in the 

neuroepithelium between the two commissures (unfilled arrowheads in B, C).  In addition to this 

phenotype, some slit2-AUG MO injected embryos also showed a marked reduction of the 

anterior commissure (unfilled arrow in C).  Knock down of zFzd3a resulted in a complete (arrow 

in D) or partial loss (arrow in E) of the anterior commissure.  Knocking down both Slit2 and 

zFzd3a resulted in a significant decrease in embryos with a complete loss of the anterior 

commissure (arrow in F).  Instead many axons now crossed the anterior commissure in these 

embryos (G).  Knock down of Slit2 and zFzd3a did not affect the extent of axon wandering in 

between the commissures (unfilled arrowheads in F and G). Scale bar in A is 20µm. 

 

Fig. 8. Working model for the role of zFzd3a in midline axon crossing in the commissural 

plate.  (A) In wild type embryos axons in the anterior commissure grow across the midline 

surrounded by glia (green).  The chemorepulsive Slit2 expressing cells (red) lie deep to the tract.  

(B) Following knock down of zFzd3a, the region of Slit2 expression is expanded due to 

malformation of the commissural plate.  This expansion of Slit2 disrupts the axon growth 

substrate, in particular glia.  In addition to perturbation of the growth substrate Slit2 also acts as a 

repulsive cue for axons.  Thus axons stall and fail to cross the midline.  
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Supplementary Fig. 1..  Knock down of zFzd3a reduced expression of slit1a at the midline.  

Embryos were injected with Std-cont MO (A-F), zFzd3a-UTR MO or zFzd3a-AUG MO (G-I) 

and co-stained for expression of slit1a (A, D and G) and HNK-1 (B, E and H).  C, F and I are 

merged images of A-B, D-E and G-H, respectively.  HNK-1 staining is green and slit1a 

expression is red.  Rostral is facing and dorsal to the top in all panels.  (A-C) In wild-type 

embryos slit1a appears to be expressed in cells surrounding both the anterior commissure (AC) 

and the post-optic commissure (POC). (D-F)  Single 1µm optical slices at the same level from 

the complied z-sections in panels A-C.  Anterior commissure axons cross the midline by passing 

between slit1a expressing neuroepithelial cells.  slit1a expression is reduced and the anterior 

commissure is absent following knock down of zFzd3a with either the zfzd3a-UTR or the 

zfzd3a-AUG MO (G-I).  At the midline the expression of slit1a is almost completely absent 

(unfilled arrow,G), being confined  to regions adjacent to the midline (dashed outline, G).  The 

defasciculation of the post-optic commissure (filled arrowhead, H) correlates with reduced 

expression of slit1a in cells surrounding this tract. Scale bar in C is 20µm. 

 

 

 

Supplementary Fig. 2. High resolution confocal microscopy reveals the presence of 

aberrant cells at the telencephalic/diencephalic boundary. Single 2µm optical slices (A-B) of 

wholemount zebrafish brains at 28-30hpf. Rostral is facing and dorsal to the top in all panels. 

Embryos were injected with Std-cont MO (A) or zFzd3a-AUG MO and p53 MO).  In control 

embryos background staining from anti-α-acetylated tubulin shows a clear boundary between the 



telencephalon and diencephalon (filled arrowhead in A). Following injection with zFzd3a-AUG 

MO and p53 MO to control for any potential off-target effects a cluster of cells are present 

between the telencephalon and diencephalon (filled arrowheads in B). Similar to injection of 

zFzd3a-AUG MO alone. Scale bar in C is 20µm. 

 

Supplementary Fig. 3. Expression of netrin1b in the rostral midline.  Netrin1b (D,J and in 

red F,L) is present at the rostral midline in a domain similar to slit2 it is also expressed in more 

lateral areas of the forebrain (data not shown).  Following knock down of zFzd3a,  netrin 1b is 

still expressed at the rostral midline but in a broader domain as the the midline itself fails to form 

properly (unfilled arrow D, J) due to the presence of disorganized  cells at the 

telencephalic/diencephalic boundary (unfilled arrowheads K) not evident in control embryos 

(unfilled arrowhead E). Scale bar in C is 20µm. 

 

Supplementary Fig. 4.  Gene expression patterns of region specific markers in the brains of 

control and zfzd3a morpholino injected embryos. Embryos were injected with Std-cont MO 

(A, C, E, G, I, K, M) or zfzd3a MO (B, D, F, H, J, L, N) and stained for expression of forebrain 

region specific markers.  In the caudal diencephalon and in the mesencephalon the expression of 

hlx remained unchanged following knock down of zFzd3a (A, B). Formation of the MHB 

boundary also appeared normal in zFzd3a MO injected embryos as indicated by expression of 

wnt1 (C-D). Shh shows normal expression in the hypothalamus of Fzd3a-MO injected embryos 

but is reduced in the zona limitans intrathalamica in 29% of embryos (E-H). Expression of dlx2 

and pax6.1 in the telencephalon and in the ventral thalamus remained unaltered in zFzd3a MO 

injected embryos (I-L). Similarly no change was seen in the expression of emx in the more dorsal 



region of the telencephalon (K, L). Lateral views with rostral to the left are shown for all panels 

except for G and H which are anterior views. 

 

Supplementary Fig 5.  GFAP staining following separate knockdown of zFzd3a or Slit2. 

Embryos injected with std-cont MO show normal expression of acetylated tubulin (A) and GFAP 

(B).  In embryos injected with zfzd3a-AUG MO an absence of axons crossing at the AC is 

accompanied by an absence of glial cells at the AC (D-E).  Injection of slit2 (G-I) shows 

association of glial cells with axons that have wandered between commissures (arrowhead, I), 

but an otherwise normal formation of the glial bridge and AC. 

 




