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Abstract

Backround and Objectives: Diabetic retinopathy is a microvascular complica-

tion of diabetes that can lead to sight loss if treated not early enough. Mi-

croaneurysms are the earliest clinical signs of diabetic retinopathy. This paper

presents an automatic method for detecting microaneurysms in fundus pho-

tographies.

Methods: A novel patch-based fully convolutional neural network with batch

normalization layers and Dice loss function is proposed. Compared to other

methods that require up to five processing stages, it requires only three. Fur-

thermore, to the best of the authors’ knowledge, this is the first paper that shows

how to successfully transfer knowledge between datasets in the microaneurysm

detection domain.

Results: The proposed method was evaluated using three publicly available

and widely used datasets: E-Ophtha, DIARETDB1, and ROC. It achieved bet-

ter results than state-of-the-art methods using the FROC metric. The proposed

algorithm accomplished highest sensitivities for low false positive rates, which

is particularly important for screening purposes.

Conclusions: Performance, simplicity, and robustness of the proposed method

demonstrates its suitability for diabetic retinopathy screening applications.
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Convolutional Neural Networks, Retinal Fundus Images

1. Introduction

Diabetes affects one in eleven adults (over 400 million people worldwide) [1].

Diabetic retinopathy (DR) is a microvascular complication of diabetes which

is the leading cause of vision loss in the working-age population [2]. One out

of three diabetics has DR [3] and one in ten diabetic patients develops most5

vision-threatening form of DR [4]. Early detection of DR can prevent blindness

in 90% of cases [5].

DR screening is manually performed by ophthalmologists and trained graders

through a visual inspection of fundus photographs (FP). Unfortunately, the

grading process is time-consuming, tedious, and error-prone with high inter-10

observer variability. Due to the rising number of DR patients worldwide (ex-

pected to exceed 640m by 2040 [1]) and their location (75% live in underdevel-

oped areas [6]) the development of computer-assisted diagnosis and automatic

DR screening approaches are of the utmost importance.

Microaneurysms (MAs) are spherical swellings of the capillaries caused by15

weakening of the vascular walls; they appear as small round red dots. They

are the earliest clinical sign of DR and continue to be present as the disease

progresses. Consequently, automated detection of MAs can drastically reduce

the screening workload. MA detection is a challenging task even for the human

eye due to many factors including uneven image illumination, reflections, limited20

resolution and media opacity. The boundaries of MAs are not always well-

defined and local contrast to the background is low, even in high-resolution

images. Moreover, MAs may be confounded with visually similar anatomical

structures such as haemorrhages, junctions in thin vessels, disconnected vessel

segments, dark patches on vessels, background pigmentation patches and dust25

particles on the camera lense.

In general, the majority of MA detection methods consists of up to five

stages: 1) Preprocessing, 2) MA candidate extraction, 3) Vessel removal, 4) Can-
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didate feature extraction, and 5) Classification. The main goal of preprocessing

is to remove noise, correct non-uniform illumination, and to improve contrast30

between the MAs and background. The MA candidate extraction stage uses a

simple algorithm to identify a reasonably small set of locations with somewhat

“lesion-like” appearance, attempting to identify all actual lesions together with

many false positive regions. The vessel removal stage addresses the large number

of false positives that may otherwise be produced by vessels. Next, hand-crafted35

features are extracted from candidate regions; this is the most labour-intensive

and time-consuming part of the design stage. Finally, a classifier is trained to

distinguish MAs from non-MAs based on the extracted features.

Baudoin et al. [7] introduced the first MA detection algorithm applied to flu-

orescein angiogram images. They employed a mathematical morphology based40

approach to remove vessels and applied a top-hat transformation with linear

structuring elements to detect MAs. Several methods were built on this ap-

proach [8], however, since intravenous use of fluorescein can cause death in 1 in

222 000 cases [9], such methods are not suited for screening purposes. Walter et

al. [10] also used a top-hat based method and automated thresholding to extract45

MA candidates. They extracted 15 features and applied kernel density estima-

tion with variable bandwith for MA classification. In general, morphology-based

approaches are sensitive to changes in size and shape of structuring elements

which result in significant variations in MAs detection results. Zhang et al. [11]

proposed a method based on dynamic thresholding and correlation coefficients50

of a multi-scale Gaussian template. They used 31 manually designed features

based on intensity, shape and response of a Gaussian filter. Veiga et al. [12]

presented an algorithm using Law texture features. Support Vector Machines

(SVM) were used in a cascading manner: first SVM was used to extract MA can-

didates whereas the second SVM performed final MA classification. Haloi [13]55

used a vanilla convolutional network with 3 convolutional layers and 2 fully

connected layers to detect MAs. Javidi et al. [8] proposed a technique which

used 2D Morlet wavelet to find MA candidates. At the next stage, a discrimina-

tive dictionary learning approach was employed to distinguish MAs from other
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structures. Srivastava et al. [14] used Frangi-based filters that were manually60

designed to distinguish vessels from red lesions. Filters were applied to multiple

sized image patches to extract features. Finally, these features were classified

using a SVM.

Compared to the methods mentioned above, the proposed algorithm requires

only three stages instead of five (preprocessing, patch extraction and classifica-65

tion). There is no need for MA candidate detection, vessel removal or feature

extraction. Furthermore, the proposed method does not require manually hand-

crafted features, it automatically learns the most discriminative features for MA

detection. The vast majority of MA detection algorithms employ features based

on MA shape, colour and texture. Unfortunately, many image modalities makes70

it virtually impossible to model them manually. To address this challenge, a

Convolutional Neural Network (CNN) was used. CNNs have emerged as a

powerful family of algorithms for solving computer vision tasks such as object

detection [15], semantic segmentation [16] and image classification [17]. Com-

pared with [13] method, the presented algorithm proposes a novel fully convo-75

lutional neural network (FCNN) architecture and transfers knowledge between

MA datasets.

Training CNNs from scratch is not a trivial task, as they require large

amounts of labelled data for training. In the MA detection domain, public

datasets are small, scarce, and local lesion annotations on a per-pixel level are80

almost non-existent (to the best of authors knowledge, only one such dataset

exists [18]). Moreover, the CNNs have vast capacity as learning models with

millions of learnable parameters. As a result, they are very prone to overfitting

and various convergence difficulties. Consequently, the initial values of a net-

work’s weights have paramount importance in the learning process, especially85

for avoidance of local minima and saddle points.

To address these challenges, prior knowledge in the form of a network’s

weights can be transferred between models that are later fine-tuned with new

data. Azizpour et al. [19] showed that the success of knowledge transfer depends

on the similarity between the training dataset of a CNN, and the dataset to90
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which the knowledge is transferred. Given the limited availability of large medi-

cal datasets, research on transfer learning in medical imaging is largely focussed

on transferring knowledge from general natural images datasets. However, these

datasets have very different properties to medical datasets, including the fact

that in medical datasets objects of interest may be very small and boundaries95

are of paramount importance. Consequently, knowledge transfer between these

two domains is not optimal and produces various success rates [19]. In this pa-

per we show that knowledge transfer even between small medical datasets can

produce state-of-the-art results with an appropriate network architecture. To

the best of our knowledge, this is the first time that deep transfer learning has100

been applied in the MA detection domain.

The main contributions of this paper are as follows. First, we propose a

MA detection method that requires only three stages of analysis. Second, we

present a novel CNN with a dedicated architecture for MA detection that does

not require hand-crafted features. Third, we show how to successfully transfer105

knowledge between small datasets in MA domain - an important innovation in

this domain as retinal image set characteristics vary between cameras, so that

any practically useful method must be capable of simple and reliable retraining.

This paper is organized as follows. The proposed method is described in

Section II. Section III describes the datasets and performance metrics used for110

experiments. In Section IV the evaluation results are presented and compared

with existing approaches. Finally, in Section V discussion and conclusions are

given.

2. Proposed Method

Fig. 1 shows a general overview of the proposed method. It consists of three115

main stages: preprocessing, patch extraction and pixel-wise classification. The

main objective of the preprocessing stage is to remove the non-uniform illumi-

nation and redundant data from images. The patch extraction stage prepares

data for analysis, whereas the pixel-wise classification is performed by a CNN
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with a novel architecture.120

2.1. Preprocessing

First, we extract the green plane of the fundus image as it provides the

highest contrast between foreground structures, such as lesions and vessels, and

the background. Since we are only interested in pixels inside a Field-of-View

(FOV), we automatically generate a mask for pixels outside the FOV. A mask125

is generated by applying Otsu thresholding [20] to the green plane of the im-

age. Noisy regions are removed by morphological opening and closing with a

structuring element of size five. Next, the image is cropped to the size defined

by its FOV to accelerate further processing. Subsequently, the image is resized

to the smallest image width of the E-ophtha dataset [18], while maintaining the130

aspect ratio, using bicubic interpolation. Simultaneously, the same operations

are applied to the corresponding annotation image. Finally, each image (I) was

preprocessed (Ip) by computing a weighted sum as in Eq. 1:

Ip = I · α+ IGauss · β + γ (1)

where alpha = 4 and β = −10 are weight factors; IGauss is Gaussian blurred

image that was created using filter computed as described in Eq. 2 with σ = 10;135

γ = 128 is a scalar added to each sum.

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (2)

All values were determined experimentally. Fig. 3 shows an example prepro-

cessed image.

2.2. Pixel-Wise Classification

The main goal of this stage is to classify each pixel as either MA or non-140

MA. We cast pixel-wise classification as a probabilistic classification task, where

each pixel can be assigned a continuous value between 0 (non-MA) and 1 (MA).

Compared to other works which perform a binary classification, this learning

task is more challenging because the expected output is more complex, hence

the underlying data distribution function is harder to model.145
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The CNN is trained to map an image patch P to the corresponding annota-

tion A(P ) for all possible locations within an image. A training sample consists

of S × S sized P and A(P ) : {P,A(P )}.

The goal of training is to learn a mapping P → A(P ) in the form of a CNN

by minimizing150

L =

N∑
i=1

l(A(P )i, f(Pi; Θ)) + Φ(Θ)), (3)

where A(P )i and Pi are the i-th annotation patch and i-th image patch,

N is the number of training samples, l(·) is the loss function, Θ are learning

parameters, and Φ(Θ) is the regularization term.

2.2.1. Patch Generation

At training time, all possible image patches are extracted from each training155

image using a sliding window approach with 2 × 2 stride. The patches are

divided into two groups: MA patches containing at least 1 MA pixel and non-

MA patches consisting of all remaining patches. Both MA and non-MA patches

are randomly sampled from the set of all possible patches. Patches that are

completely outside the FOV are discarded. Each training sample is subject160

to random artificial transformations (AT) including rotation, horizontal and

vertical reflections with 0.5 probability. The ATs are performed to increase

variety in the training set and combat overfitting; they are performed during

CNN training so their computational footprint is limited. The proposed method

works on a pixel level hence even MA patches consist of more non-MA pixels165

than MA pixels. As such, MA patches provide both positive and negative

training samples. Nevertheless, we added a small set of non-MA patches to the

training set to provide network with examples of as many as possible retinal

structures(e.g. fovea, optic nerve head) and backgrounds. As a result, the

training set consists in 80% of MA patches and in 20% of non-MA patches.170

At testing time, all possible image patches from inside of a FOV are ex-

tracted. To reconstruct the final image segmentation a voting mechanism is
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used. Each A(P ) produced by the model provides a single vote for all pixels it

contains. Given that patches are centred at all possible locations and the A(P )

size is S × S, each pixel receives S2 votes, and a pixel receiving v votes as an175

MA is assigned a probability of v/S2. As a result, a confidence map for pixel

MA membership is created.

2.2.2. CNN Architecture and Training

Inspired by [21], we adopted a fully convolutional approach when designing

the CNN. The architecture of the CNN is similar to a convolutional autoencoder:180

it consists of “contracting” and “expanding” paths. The “contracting” path is

used to extract most discriminative features from input (encode the input),

whereas the “expanding” path is tasked with recreating and classifiying the

input by using upscaling and 1 × 1 convolution operations. Skip connections

between the two paths allow for a direct flow of feature maps from earlier to185

latter layers, which is beneficial for the learning process [22]. Ronnenberg et

al. [21] designed their fully convolutional neural networks for segmentation of

whole images in one pass. As MAs are local features, it is more appropriate

here to use a network with a small receptive field and a sliding window approach

to processing. Compared with [21], the proposed architecture works on small190

image patches, incorporates batch normalization (BN) layers and uses different

loss function. As MAs occupy a very small proportion of fundus images that

feature them, there is a significant class imbalance in the problem domain. To

address this we incorporated a Dice coefficient function [23] as a loss function

as it effectively handles the overwhelming number of true negatives. The Dice195

coefficient loss function was used before with CNNs [22] but not in context of

MA detection. The training algorithm maximises the Dice loss function which

measures the overlap between ground truths y and predicted segmentation ŷ. Its

values range between 0 (no overlap) and 1 (perfect agreement) and is calculated

as200

DICE =
2 ∗ |y

⋂
ŷ|+ δ

|y|+ |ŷ|+ δ
(4)
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where δ is a small smoothing factor that counteracts against zero value and

zero denominator.

The MA detection domain suffers from a common problem in medical imag-

ing that stems from data scarcity, known as Covariate Shift : the distribution

of features is different for subsets of training and test datasets which violates205

the i.i.d.(independent and identically distributed) assumption of many machine

learning (ML) algorithms [24]. This may result from the use of different retinal

camera systems and/or camera settings. The Covariate Shift in small datasets

renders the modelling of true data distribution using ML models virtually im-

possible. To mitigate this difficulty and make data comparable across features,210

a normalization technique (shifting data to zero mean and unit variance) is

used as a preprocessing step [24]. The same phenomenon occurs during training

deep CNNs which are hierarchical in nature and is called Internal Covariate

Shift [25]. A small change in lower layers can cause a landslide effect in up-

per layers due to changes in the distribution of upper layer inputs. Ioffe and215

Szegedy [25] proposed a batch normalization layer that partially alleviates the

Internal Covariate Shift by normalizing/whitening data flowing between layers.

The use of BN layers in CNNs results in faster convergence (higher learning

rates) and better regularization (by constraining layer’s inputs, it’s weights are

also indirectly constrained).220

The CNN architecture was determined experimentally and is depicted in

Fig. 2. It consists of 18 convolutional layers, each followed by a BN layer apart

from the final classification layer; three 2×2 max-pooling layers in the “contrac-

tive” path and corresponding three 2×2 simple upsampling layers that replicate

rows and columns of data in the “expanding” path; 4 skip connections between225

both paths. Double inputs in the “expanding” path are merged by concatena-

tion. All convolutional layers use 3×3 filters and ReLU activation function [26]

apart from the final layer which uses a sigmoid activation function. Weights

are updated using stochastic gradient descent with batch size 128 and Adam

optimization technique [27] with 0.0001 initial learning rate. All training pairs230

are shuffled between each epoch.
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Fine-tuning is a process of training a neural network from a set of pre-

defined weights [28]. A traditional approach to fine-tine deep neural networks

(DNN) is to train only the final layers of a network using a small learning

rate. Similarly to [28], it was observed that such approach can provide sub-235

optimal performance. To find the best ratio between trained and frozen layers,

an iterative approach with varying train/freeze ratio was employed on a small

dataset.

3. Materials and Evaluation

The proposed algorithm was evaluated using most widely used performance240

metrics and publicly available datasets which are described below.

3.1. Datasets

E-Ophtha dataset [18] consists of 381 compressed images of which 148 have

MAs presents and 233 depict healthy FPs. Images were acquired at more than

30 screening centres around France at various resolutions at 45◦ FOV. There245

are no separate testing and training datasets provided. The variety of image

quality, resolution and illumination conditions makes it the most challenging

publicly available dataset. To the best of the authors’ knowledge, this is the

only public dataset that provides pixel-wise ground truths of MAs.

ROC dataset [29] is composed of 50 training and 50 test compressed images.250

Images were captured by three different fundus cameras at various resolutions

ranging from 768× 576 to 1389× 1383 at 45◦ FOV. All images were annotated

by four experienced graders. Since test ground truths were never made public

and the ROC competition website is inactive [29], only training ground truths

are available. 37 images of the training set have at least one MA present, and255

remaining 13 images present healthy FPs.

DIARETDB1 dataset [30] comprises of 28 training and 61 test uncom-

pressed images acquired at 50◦ FOV. Each 1500 × 1152 image was manually

annotated for presence of MAs and HEs by four medical experts. The final
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ground truths were created by fusing all annotations with 75% confidence. 38260

FPs have no MAs present whereas remaining 51 FPs have at least one MA.

Since the E-Ophtha dataset does not provide separate train and test sets, it

is randomly divided into two sets containing 190 and 191 images respectively.

During experimentation 2-fold cross-validation is performed, with each subset

alternatively treated as the training or testing set. A similar approach is used265

with the ROC training dataset, which is split into two sets of 25 images each. DI-

ARETDB1 is explicitly divided into training and testing datasets and we utilise

the standard split during experiments. ROC and DIARETDB1 datasets do not

provide pixel-wise ground truths however they offer central points and radii of

all MAs. Following common practice, we use this information to calculate eval-270

uation metrics. All datasets have been acquired using similar FOV(either 45◦

or 50◦). As a result, the downsampling process produces lesions with a common

scale. It is important to note that when dealing with images acquired using very

different FOVs, the downsampling alone is not enough to successfully normalize

lesions and other techniques are necessary (e.g. FOV cropping).275

3.2. Evaluation Metrics

The free-response ROC (FROC) curve is the most commonly used metric for

abnormality detection in medical imaging. It plots per-lesion sensitivity against

the average number of false positives per image for different threshold values.

In contrast to ROC or specificity-based measures, FROC provides meaningful280

statistics despite the class imbalance between non-MA and MA pixels in an

image. Following common practice we calculate a sensitivity score at seven

average false positives per image (FPI) points: 1/8, 1/4, 1/2, 1, 2, 4, 8 [29]. Fol-

lowing common practice, we define lesion as a true positive if at least one pixel

overlaps with a corresponding ground truth lesion [12]. We performed Wilcoxon285

signed ranked tests to estimate the statistical significance of results. Tests were

conducted using 255 sensitivity values corresponding to all possible greyscale

threshold values produced by tested methods.
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4. Experimental Results

To assess the performance of the proposed method we performed two sets290

of experiments. In the first set of experiments we evaluate and compare fine-

tuning schemes. In the second, we compare the performance of proposed MA

detection technique with other state-of-the-art methods.

The implementation was based on Keras deep learning framework [31] and

Tensorflow numerical computation library [32]. The experiments were con-295

ducted using a PC with Intel Core i7-6700K CPU, two NVIDIA TitanX graphics

cards, and 64GB of RAM.

4.1. Model Description

Table 1: Training data.

Dataset Nr of training images Nr training patches

ROC 50 72 481

DIARETDB1 28 40 549

E-Ophtha 381 552 451

Table 1 shows the amount of training images and patches used for experi-

ments. 10% of the training samples are held back as a validation set and an300

early stopping criteria is used: training stops when validation error does not im-

prove for 20 epochs. If the validation error does not improve for 10 epochs, the

learning rate is reduced by a factor of 0.3. During testing all possible patches

are extracted from the FOV and forward propagated through the network. All

experiments apart from the E-Ophtha evaluation use a network trained on 354305

randomly selected E-Ophtha images, and evaluated on remaining 27 images, as

the base model. All parameters were determined empirically based on authors

experience or successful deep learning works ( [15], [16], [21]). We observe that

the proposed approach is robust to changes in parameters’ values. The modifi-

cation of parameters barely affects the final results, however it has a moderate310
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impact on speed of error convergence. We conclude that the system is not sen-

sitive to small parameters change, however such changes can affect the amount

of time needed for training.

4.2. Fine-Tuning

Table 2: Comparison od fine-tuning schemes.

Fine-tuning scheme % trainable parameters Test Dice FROC score

No fine-tuning 100 0.0376 0

Full fine-tuning 100 0.0271 0.139

Freeze 3 98.44 0.0616 0.195

Freeze 5 94.12 0.0715 0.215

Freeze 5+BN 94.10 0.0257 0.152

Freeze 8 73.96 0.0970 0.218

Freeze 8+BN 73.88 0.0255 0.154

Freeze 11 39.40 0.1030 0.233

Freeze 14 4.85 0.1060 0

Freeze 16 1.24 0.0981 0.109

To find the optimal fine-tuning scheme we performed 10 experiments using315

ROC training dataset; we randomly divided this into a 25 image training set

and 25 image test set, using the same split for all experiments. The base model

for fine-tuning was trained on the E-Ophtha dataset as described above. Unless

stated otherwise, during fine-tuning the same early stopping and training hyper-

parameters were used as in the case of base model training.320

Table 2 shows a comparison of all fine-tuning schemes. The Dice metric was

calculated on per-pixel basis for the test dataset. In our experiments we ap-

plied both “shallow” and “deep” fine-tuning by iteratively freezing more initial
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layers as proposed by [28]. As expected, networks trained from scratch (no fine-

tuning) and fully retrained (full fine-tuning) provided the worst results. The325

network without any fine-tuning did not produce a FROC score because the

lowest achieved FPI was just below 0.5, and to calculate the FROC score all

seven FROC values are required. For comparison purposes we assign a 0 value

to all methods that fail to produce the FROC score. These approaches do not

take full advantage of already provided knowledge in the form of a base model.330

Freezing BN layers results in worse performance compared with the same models

when BN layers are trainable. The network with 14 initial layers frozen achieved

a comparably high test DICE, which means that it still produced competitive

results for all possible pixels. However, the per-lesion evaluation showed that

the lowest FPI it managed to reach was around 0.25 which is not enough to cal-335

culate a FROC score. As expected, freezing the final most task-specific layers

results in decreased performance. We observe that by increasing the number of

frozen initial layers, our model accomplishes the best performance by freezing

11 initial layers and training 7 final layers. As a result, all following experiments

will use this fine-tuning scheme when transferring knowledge between datasets.340

4.3. Microaneurysm detection

Table 3: The sensitivies at various FPIs using ROC training dataset.

Method 1 2 4 8 12 16 20 Score

Zhou et al. [33] 0.135 0.155 0.232 0.288 0.325 0.370 0.420 0.275±0.099

Javidi et al. [8] 0.130 0.147 0.209 0.287 0.319 0.353 0.383 0.261±0.093

Zhang et al. [11] 0.127 0.150 0.197 0.289 0.31 0.316 0.330 0.246±0.079

Niemeijer et al. [29] 0.072 0.087 0.101 0.121 0.130 0.185 0.210 0.129±0.047

Freeze All 0.090 0.108 0.128 0.139 0.156 0.163 0.177 0.137±0.029

Proposed Method 0.174 0.243 0.306 0.385 0.431 0.461 0.485 0.355±0.109
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Table 4: The sensitivies at low FPIs using ROC training dataset.

Method 1/8 1/4 1/2 1 2 4 8 Score

Freeze All 0.028 0.040 0.063 0.090 0.108 0.128 0.139 0.085±0.040

Proposed Method 0.039 0.067 0.141 0.174 0.243 0.306 0.385 0.193±0.116

Table 3 presents a performance comparison between the proposed method

and state-of-the-art methods using the ROC training dataset. The Freeze All

method corresponds to a FCNN without any fine-tuning. Compared to other

techniques, the proposed algorithm achieves the highest average FROC score of345

0.355. Most importantly, it provides much better performance for low FPIs. For

comparison purposes, we present the sensitivites at seven high FPIs. Nonethe-

less, similarly to [29] we think that sensitivity values at FPI higher than 1.08 are

of little clinical importance. Consequently, we provide the performance metrics

for much lower FPI in Table 4.350

Table 5 shows a comparison of MA detection methods using the DIARETDB1

dataset. Consistently with ROC results, the proposed algorithm produces the

highest average score of 0.392. Furthermore, the sensitivities for all FPIs are

higher than provided by other methods. To transfer knowledge from the base

model to models used with ROC and DIARETDB1 datasets, 11 initial layers355

of the base model were frozen with remaining 7 trained with new data. Table 6

presents the performance comparison using E-Ophtha dataset. This dataset is

much bigger than the previous datasets which results in bigger training datasets.

The DNNs benefit from bigger datasets [34] hence the results are better than

compared with other datasets. Fig. 4 presents FROC curves produced by the360

proposed algorithm for all three datasets.

Table 7 shows results of Wilcoxon signed rank tests between the proposed

method and Freeze All method for ROC and DIARETDB1 datasets. The null

hypothesis is that the proposed method provides similar results to Freeze All

method, whereas the alternative hypothesis is that the proposed method pro-365
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vides better results than Freeze All method. In our case, the null and alternative

hypotheses can be defined as H0 : MP = MF and H1 : MP > MF , where MP

and MF are medians of sensitivity values produced by the proposed method

and Freeze All method respectively. Following common practice, we set the

significance level at 0.05. Wilcoxon signed rank tests show statistically signifi-370

cant improvement in the sensitivity values when using the proposed approach

(p� 0.05).

Table 5: The sensitivies at various FPIs using DIARETDB1 dataset.

Method 1/8 1/4 1/2 1 2 4 8 Score

Seoud et al. [35] 0.139 0.176 0.242 0.318 0.427 0.543 0.639 0.355±0.175

Antal et al. [36] 0.015 0.020 0.027 0.068 0.118 0.204 0.316 0.110±0.105

Adal et al. [37] 0.029 0.036 0.044 0.102 0.205 0.303 0.568 0.184±0.183

Freeze All 0 0 0.039 0.082 0.125 0.163 0.189 0.085±0.071

Proposed Method 0.187 0.246 0.288 0.365 0.449 0.570 0.641 0.392±0.157

Table 6: The sensitivies at various FPIs using E-ophtha dataset.

Method 1/8 1/4 1/2 1 2 4 8 Score

Veiga et al. [12] 0.110 0.152 0.222 0.307 0.383 0.494 0.629 0.328±0.174

Proposed Method 0.185 0.313 0.465 0.604 0.716 0.801 0.849 0.562±0.233

Table 7: Wilcoxon signed rank test results. Since p � 0.05, results are statistically significant.

Compared Methods p-value

ROC: Proposed method vs Freeze All 1.97 ×10−43

DIARETDB1: Proposed method vs Freeze All 2.02 ×10−43
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Fig. 6 presents examples of lesion detection results. The detection results

were calculated at 1.08 FPI rate which is regarded as clinically acceptable [29].

We observe that many false positive detections are difficult to discern even for a375

human eye. Similarly to [30] we observe high inter-observer variability between

human graders, which negatively affects the quality of provided ground truths

and trained models.

Fig. 5 shows examples of various challenging detections. Many detection al-

gorithms have to extract and remove vessels first to correctly detect MAs close380

to vessels. Fig. 5 (a) shows that the proposed method can successfully detect

MAs very close to vessels. In fig. 5 (b) the MA is almost at the end of a small

vessel. Fig. 5 (c) presents a false positive example, which is a subtle pigmenta-

tion change. DIARETDB1 dataset contains dust artefacts located in exactly the

same location across many images. Fig. 5 (d) shows that the proposed method385

correctly ignores such artefact.

5. Discussion

The proposed algorithm achieves better results than state-of-the-art methods

in terms of the FROC metric. Most importantly, it provides highest performance

at low FPIs which are particularly significant for screening application. An MA390

detection system for screening purposes does not have to find all MAs, but

enough MAs to help a clinician decide if a patient needs referral. As such, we

think that the proposed algorithm would prove useful as a component of a DR

screening process.

The total time required to process a single image is around 220 seconds.395

The majority of this time is spent on forward propagating the large amount of

patches through the network. However, during this study we did not concentrate

on algorithm’s efficiency, hence the implementation is experimental and can be

improved. The processing time per image could be drastically reduced if the

forward propagation step would be parallelized across multiple devices. This400

will reduce the per-image processing time by a factor close to the number of
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used devices.

6. Conclusions

This paper presents a novel MA detection method evaluated using three

publicly available datasets. The proposed algorithm uses a novel FCNN archi-405

tecture with BN layers and Dice coefficient loss function to segment and detect

MAs. Compared to other techniques that typically require five computational

stages, the proposed method requires only three. Furthermore, we show how

to successfully and efficiently transfer knowledge between small datasets in the

MA detection domain.410

Almost all current MA detection methods rely on human-crafted features,

hence their usability and robustness is dependent on the designer’s knowledge,

experience, and skills. Such systems have to be manually recalibrated due to

ever-changing image modalities. The proposed method extracts the most dis-

criminative features for MA detection automatically and proves to be robust415

against changes in image illumination or contrast. In the future, we are plan-

ning to parallelize the inference step and reduce the processing time to the range

of seconds.
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Figure 1: Overview of the proposed algorithm.
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Figure 2: CNN Architecture. Each block provides the shape of its output. Solid line blocks

consists of a convolutional and batch normalization layers. Dashed line blocks correspond to

pooling layers. Dotted line blocks represent upsampling layers. The final grey block is the

final convolutional layer.
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Figure 3: Example image from E-Ophtha dataset. From left to right: original image; prepro-

cessed image.

Figure 4: FROC curves produced by the proposed method. (a) E-Ophtha; (b) DIARETDB1;

(c) ROC Training.
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Figure 5: Detection results in presence of common challenges using image regions extracted

from E-Ophtha and DIARETDB1. True positives are green circled and false positives are

yellow circled. (a) Correct detection of an MA close to a vessel; (b) Correct detection of

a subtle MA close to the end of a small vessel; (c) False detection of a small pigmentation

change; (d) Dust artefact close to the optic nerve head which is correctly ignored.
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Figure 6: Examples of lesion detection results for E-Ophtha dataset. The probability threshold

is set to 0.68 which corresponds to 61.86% per-lesion sensitivity and 1.08 average FPI rate.

True positives are green circled, false positives are yellow circled and false negatives are red

circled.
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