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Abstract—In this work, we analyse the proton paths
inference for the construction of CT imagery based on a new
proton CT proton system, which can record multiple proton
paths/residual energies. Based on the recorded paths of
multiple protons, every proton path is inferred. The inferred
proton paths can then be used for the residual energies
detection and CT imagery construction for analyzing a
specific tissue. Different regression methods (linear regression
and Gaussian process regression models) are exploited for the
path inference of every proton in this work. The studies on a
recorded proton trajectories dataset show that the Gaussian
process regression method achieves better accuracies for the
path inference, from both path assignment accuracy and root
mean square errors (RMSEs) studies.

I. INTRODUCTION

Proton therapy is becoming more and more important
in the field of radiotherapy, i.e., CT imagery for treatment
planning of cancer, as it can deliver the planned dose of
radiations over a specific region of the tumour,minimising
the damage to healthy tissue [1]. For a typical proton
CT instrument, protons are emitted and individual incident
and exit paths before/after passing through the tissues are
recorded by the two pairs of proton trackers (position
sensitive detectors); while the residual energy of protons
are recorded using a scintillator calorimeter. Based on
the recoded paths and residual energy, corresponding CT
imagery can be constructed. A limitation of such a CT
instrument is that only one event (i.e., incident/exit paths
of one proton and related residual energy) can be recorded
per instrument cycle, which is time-consuming.

Recently, a new proton CT system is developed [2].
Compared with the traditional one, multiple silicon strip
sensors (SSDs) operating at a multiple of the cyclotron
(proton generator) frequency are used as proton trackers;
while the residual energy can be recorded using a ‘range
telescope’ - an assemble of closely-packed large area
CMOS imagers. These CMOS imagers are 2-dimensional
sensors which allow multiple protons to pass through dur-
ing a certain time interval and store their residual energies.
Instead of recording only one event per instrument cycle,
multiple events (i.e., paths of multiple emitted protons
passing through the range telescope and related residual
energies) can be recorded by the new proton CT system,

which can potentially increase the efficiency of the CT
imagery generation.

From the recorded multiple events, the path of every in-
dividual proton going through the range telescope needs to
be inferred. The corresponding residual energy can then be
derived by finding the recorded one whose position is clos-
est to the inferred path for the CT imagery construction.
One straightforward idea for the path inference is to apply
multiple target tracking algorithms [3] to track the paths of
multiple protons by data association (i.e., associating each
proton with its corresponding measurement) [4]; however,
they are usually time-consuming which is not suitable for
the real-time application.

In this work, we refer to the regression method for
solving the path inference problem. By exploiting the re-
gression method [5], we estimate the relationship between
the entry position and exit position of protons for every
range telescope layer, which derives the inferred individual
path. Two types of regression methods have been tested in
this work:

i).Linear regression, which assumes linear relationship
between entry/exit positions of every layer

ii).Gaussian process regression methods, which assumes
non-linear position relationship considering both the reac-
tion and reflection effects as protons pass through different
layers

The rest of the paper is organized as follows: Section
II gives the overview of the proposed proton CT system
as in [2]. Regression methods based proton trajectory
inferring are presented in Section III. Experimental results
and comparative analyses are provided in Section IV and
the final conclusion is given in Section IV.

II. OVERVIEW OF THE PROTON CT SYSTEM

The overview of the new developed proton CT system
is shown in Fig. 1. The proton trackers on both sides
of the patient can detect each proton and its position.
They are composed of multiple silicon strip sensors (SSDs)
operating at a multiple of the proton generator frequency.
The paths and residual energies of multiple protons can be
recorded using a range telescope - a sandwich of closely-
packed large area CMOS imagers, which have passive
absorbers between each other as shown in Fig. 2. For
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Fig. 1. The new CT system which can record multiple proton paths and residual energies.

Fig. 2. The structure of stacked CMOS imagers.

a particular proton, its residual energy is given by the
location of the Bragg Peak, which is recorded as the
maximum absorbed energy on the CMOS imagers for this
proton.

During a certain time interval, multiple protons could
pass through the CMOS imagers while the residual en-
ergies of multiple protons are recorded. By applying a
particular regression model, we can infer the path of each
proton, from which its related recorded residual energy can
be obtained for the CT image construction.

III. REGRESSION FOR THE PATH INFERENCE

The positions relationship between different layers can
be constructed through regression models, from which the
path of each proton through the CMOS imager can be
inferred.

A. Linear regression

For the linear regression, it is assumed that there exists
linear relationship between input x and output y, with:

y = wT x (1)

where w represents a weight vector. Based on a training
dataset {(x1, y1)..., (xN , yN )}, we can find the optimal w
by minimizing the following cost function F representing
errors between the actual values and predicted results as:

F = ∥XwT − y∥2 (2)

where X = [x1, ..., xN ]T and y = [y1, ..., yN ]T .

By setting the derivation of (1) to be zero, we can find
the optimal w∗ as:

w∗ = (XTX)−1XT y (3)

which is used for predicting the output y∗ when new input
x∗ comes.

B. Gaussian process regression

Different from traditional regression methods (i.e., linear
regression), it estimates both the predicted output value
and uncertainty based on an input vector. Gaussian process
regression is based on the following model:

y = wTϕ(x) + ε, (4)

where x, y represent the input and output, ϕ(·) is a mapping
function which maps the input x to a higher dimensional
space for modelling the non-linear relationship between
x and y, ε represents a noise term with the following
distribution:

ε ∼ N(0, σ2). (5)

where N(0, σ2) represents a Gaussian distribution with the
mean 0 and standard deviation σ.

The model (4) can be trained based on a dataset contain-
ing N input-output pairs–{(x1, y1)..., (xN , y1)} associated
with that model. According to equations (4) and (5), we
have:



p(y|X,w) =
N∏
i=1

p(yi|ϕ(x), w)

=
N∏
i=1

1√
2πσ

exp(− (yi − ϕ(x)T w)2

2σ2
)

=
1

(2πσ2)N/2
exp(− 1

2σ2
∥y − ΦT (X)w∥2)

= N(ΦT (X)w, σ2I)

(6)

where the input vector ensemble X = {x1, ..., xN},
Φ(X) = {ϕ(x1), ..., ϕ(xN )}, y = [y1, ..., yN ] represents
the corresponding outputs and I represents an identity
matrix.

Meanwhile, we assume that weights w follow a Gaus-
sian distribution:

w ∼ N(0,Σw) (7)

According to the Bayesian rule, we have:

p(w|y, X) =
p(y|X,w)p(w)

p(y|X)
∝ p(y|X,w)p(w) (8)

By substituting (6) and (7) into (8), we have:

p(w|y,X) ∝ exp(− 1

2σ2
(y − Φ(X)T w)T (y − Φ(X)T w))

exp(−1

2
wTΣww)

∝ exp(−1

2
(w − w̄)T (

1

σ2
(Φ(X)Φ(X)T +Σ−1

w )(w − w̄))

(9)

where w̄ = σ−2(σ−2Φ(X)Φ(X)T +Σ−1
w )−1Φ(X)y. From

(9), we can see that the posterior of w based on the training
data follows a Gaussian distribution, with:

p(w|y, X) ∼ N(w̄ = σ−2A−1Φ(X)y, A−1) (10)

where A = σ−2Φ(X)Φ(X)T +Σ−1
w .

For a new input x∗, the distribution of the predicted
value y∗ is also a Gaussian based one, which can be
estimated from (4) and (10) as:

p(y∗|x∗, y, X) = N(
1

σ2
ϕT (x∗)A−1Φ(X)y, ϕT (x∗)A−1ϕ(x∗))

(11)

(11) forms the basis of the Gaussian process regression.
From (11), we obtain a whole distribution related to the
predicted y∗ instead of a single value, from which more
information (i.e., the predicted value and uncertainty) can
be obtained.

However, sometimes the dimensionality of a mapped
feature ϕ(x) may be high for highly non-linear regression
problems or even without an explicit representation [5],
thus (11) can not be derived directly. To solve this issue,
we can re-write (11) in the following form by applying the
matrix operations and the matrix inverse lemma [6] as:

p(y∗|x∗, y,X) = N(ϕT (x∗)ΣwΦ(X)(K + σ2I)−1y,
ϕT (x∗)Σwϕ(x∗)− ϕT (x∗)ΣwΦ(X)(K + σ2I)−1

ΦT (X)ΣwΣwϕ(x∗)

(12)

where K = ΦT (X)ΣwΦ(X).
According to [5], the concept of the kernel function is

introduced and defined in (13) as:

k(xi, xj) = ϕT (xi)Σwϕ(xj) (13)

From (13), (12) can be represented by the kernel func-
tion as:

p(y∗|x∗, y, X) = N(k(x∗, X)(K + σ2I)−1y,
k(x∗, x∗)− k(x∗, X)(K + σ2I)−1kT (x∗, X)

(14)

where k(x∗, X) = [k(x∗, x1), ..., k(x∗, xN )]. Different
types of kernel functions can be chosen in (14), in this
work a Gaussian kernel–k(x, x′) = exp(−γ∥x − x′∥) is
chosen, with γ being a parameter controlling the radius of
this kernel.

From a particular regression model, a proton path will
be inferred by mapping the positions between every pair
of consecutive layers for every proton by the model.
The corresponding proton residual energy can then be
further detected as the largest recorded energy value among
the ones whose corresponding position is closest to the
inferred path for every layer, from which the CT imagery
can be finally obtained.

IV. EXPERIMENTAL RESULTS

In the experimental studies, we evaluate the paths infer-
ence by different regression models. The dataset we use
come from the University of Birmingham [7], containing
both the positions and recorded energy values of protons
from thirteen CMOS layers in the telescope range. For a
preliminary study, it is assumed that the recorded energies
single point measurements (spread clutter measuremnts
will be investigated for future studies) and all protons
have gone through the thirteen CMOS layer. 100 proton
trajectories are chosen which are shown in Fig. 3, with
75 of which being chosen as the training data and 25 of
which being chosen as testing. Both linear and Gaussian
models have been trained for deriving position relation-
ships of protons between consecutive layers according to
the training dataset.

For every single particular proton, its position on every
single layer is predicted by the trained regression model.
The measurements whose positions are closet to the pre-
dicted ones for every layer are connected as the inferred
path. Table I shows the percentage of the ‘correctly inferred
path’ (if the inferred path for a proton is equivalent to the
groundtruth one) for the test dataset. Results show that the
Gaussian process regression achieves a better performance
with more paths being correctly inferred.



TABLE I
THE MEAN AND STANDARD DEVIATION OF RMSES FOR ALL LAYERS.

Linear regression Gaussian process regression
Mean (1st dimensionality) 2.53 1.48
Std (1st dimensionality) 1.11 0.71

Mean (2nd dimensionality) 2.57 1.18
Std (2nd dimensionality) 1.22 0.56

Mean (total) 3.61 1.91
Std (total) 1.63 0.88

Fig. 3. The proton trajectories used in the experiment.

Next, we calculate the RMSEs between the groundtruth
and predicted positions for protons in the test dataset.
The averaged RMSEs of all tested protons for every layer
are plotted in the Fig. 4. Furthermore,both the mean and
standard deviation of the averaged RMSEs for all layers
are calculated, which are shown in Table II. Again, we
can see that the Gaussian process method achieves a
better performance, with both smaller mean and standard
deviation of errors. The reason why the Gaussian process
method achieves the best performance is that: there exist
reaction and reaction for the proton paths which makes
paths non-linear while Gaussian process regression can
better deal with these non-linear properties.

TABLE II
THE ASSIGNMENT ACCURACIES BY DIFFERENT REGRESSION

METHODS.

Linear regression GP regression
Accuracy 68% 72%

V. CONCLUSION

In this work, we have evaluated the performance of
different regression models, for the inferring the proton
paths in the range telescope of a new proton CT system,
which can be applied for the CT imagery construction. The
results show that the Gaussian regression method achieves
better performance than the linear regression method.

Our future works could be expanded from the following
two directions: firstly, we will increase the size of the
dataset (both training and testing) for evaluation; besides,
other machine learning methods which can better deal

(a)

(b)

(c)

Fig. 4. The RMSEs comparisons between the inferred and groundtruth
proton positions for every layer by different regression models. (a).
RMSEs comparison for the Dimension 1 of the CMOS imager (b).
RMSEs comparison for the Dimension 2 of the CMOS imager (c). 2-
D RMSEs comparison of the CMOS imager

with the large dataset, such as deep neural networks, will
be applied for constructing the corresponding regression
models.
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