
1

Event-driven Continuous STDP Learning with Deep
Structure for Visual Pattern Recognition

Daqi Liu and Shigang Yue, Senior Member, IEEE

Abstract—Human beings can achieve reliable and fast visual
pattern recognition with limited time and learning samples.
Underlying this capability, ventral stream plays an important
role in object representation and form recognition. Modeling the
ventral steam may shed light on further understanding the visual
brain in humans and building artificial vision systems for pattern
recognition. The current methods to model the mechanism of
ventral stream are far from exhibiting fast, continuous and event-
driven learning like the human brain. To create a visual system
similar to ventral stream in human with fast learning capability,
in this study, we propose a new spiking neural system with an
event-driven continuous spike timing dependent plasticity (STDP)
learning method using specific spiking timing sequences. Two
novel continuous input mechanisms have been used to obtain
the continuous input spiking pattern sequence. With the event-
driven STDP learning rule, the proposed learning procedure will
be activated if the neuron receive one pre- or post-synaptic spike
event. The experimental results on MNIST database show that the
proposed method outperforms all other methods in fast learning
scenarios and most of the current models in exhaustive learning
experiments.

Index Terms—Spiking neural network, event-driven STDP,
continuous learning, deep learning, visual pattern recognition.

I. INTRODUCTION

HUMAN beings are capable of processing complex visual
data effortlessly in an extremely short period of time

with extremely limited learning samples. Visual cortex within
the brain is the part of the cerebral cortex responsible for
processing visual information. There are two information
processing pathways originating in the occipital cortex: ventral
stream and dorsal stream, which are also known as what
(object recognition) and where (spatial vision) pathways. The
ventral stream plays an important role in object representation
and form recognition. Therefore, modeling the underlying pro-
cessing mechanism of the ventral stream becomes an essential
step for automatic visual pattern recognition.

Methods to model the underlying processing mechanism
of the ventral stream using spiking neural networks (SNNs)
have been proposed in the last decade. According to spiking
encoding mechanisms, those methods can be divided into two
main categories: spiking rate-based methods [1], [2], [3], [4],
[5], [6], [7], [8], [9] which count spikes within a time period,
and spiking time-based methods [10], [11], [12] which prefer
early spikes. Research showed that mammalian brains use only
millisecond scale time windows to process complicated real
life visual recognition tasks [13]. In such a short time window,

Manuscript accepted to publish on IEEE transactions on Cybernetics
at January 30, 2018.

it will not be enough to generate meaningful spiking rate if
using spiking rate-based coding methods. It is also clear that an
identical spiking rate may come from different spiking timing
sequences. Therefore, it is reasonable to choose time-based
coding methods in the model for fast information processing.

For the few publications on visual pattern recognition using
spiking time-based coding methods, the authors in [10], [11]
proposed a SNN framework and supervised Tempotron rule to
train the input visual stimuli. However, the supervisory error
signal, which is critical in Tempotron rule, is hard to obtain
in real scenarios. In [12], Thorpe et. al use SNN architecture
to simulate the processing procedure of HMAX model [14],
[15], [16]. The STDP learning rule used in their method is
only for local intermediate feature extraction instead of pattern
recognition [12].

Another issue for most of the SNN with time-based or rate-
based coding methods on pattern precognition is continuous
learning. It is obvious that neurons within ventral stream could
receive spiking patterns continuously without any resetting
involved. Continuous stimulus presentation is a significant
feature in generating a versatile and general spiking neural
network [17]. However, with the current methods [7], [10],
[11], to learn the spatiotemporal structures, a new input spiking
pattern is only allowed to feed into the learning system when
the membrane potential generated by the previous spiking
pattern has been reset. This means the learning procedures
have to be rested during learning and the time (gaps) between
adjacent spiking patterns are wasted.

Event-driven mechanism plays an important role in ventral
stream, which make the learning procedure more physiologi-
cally realistic and efficient. For a neuron within ventral stream,
event-driven mechanism means its learning procedure will be
activated when the neuron receives one pre- or post-synaptic
spike event. This implies that the neurons within ventral stream
can only, and need only, to remember local spike events with
the event-driven mechanism. However, with the current SNN
methods using STDP learning rule [1], [2], [3], neurons need
to integrate all the related spikes within the learning window,
which is obviously inefficient and physiologically unrealistic.

To build an efficient and biologically plausible ventral
steam model, we propose a novel SNN structure with an
event-driven continuous STDP (ECS) learning method using
specific spiking timing sequences in this study. For the areas
like machine learning or computer vision, the proposed ECS
method provides a fast, continuous and event-driven learning
procedure similar to the ventral stream within the human
brain, which is efficient and biologically plausible. To obtain
the continuous input spiking pattern sequence, two different

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/151431971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

continuous input sequence mechanisms have been used. The
first mechanism adds intervals between spiking patterns and
updates the synaptic efficiency sequentially, while the second
one divides the whole sequence into two subsequences and
updates the synaptic efficiency by alternating between those
two subsequences. Moreover, event-driven STDP learning
method has been employed by involving two on-line, local
learning rules that are activated only in response to occurrences
of spike events. For this spiking time-based model, neurons use
the first spike instead of average spiking rate to classify the
input images. The experiment results on MNIST [18] database
demonstrate the capability of the proposed ECS method - it
outperforms all other methods in fast learning scenarios and
most of the current models in exhaustive learning experiments.

The layout of this paper is summarized as follows: the re-
lated works are illustrated in Section II. Section III introduces
the framework of the proposed feed-forward spiking neural
network, along with its neuron model and event-driven STDP
learning method. The experimental results and its analysis are
depicted in Section IV. Finally, Section V summarizes this
paper, discuses the advantages and other potential applications
of the proposed method.

II. RELATED WORKS

Ventral stream is a hierarchical system in which each layer
extracts different level of abstractions [19]. Through such
hierarchical structure, the input visual stimuli will be trans-
formed to high level generalized abstractions. Deep learning, a
branch of machine learning, has often been used to accomplish
the above scenarios [20]. HMAX [14], [15], [16], a type of
convolutional neural networks (CNN) [21], [22] within deep
learning methods, has been proposed to provide the much-
needed framework for summarizing and integrating input
visual stimuli, and thus obtaining the high level abstractions
eventually.

Instead of analog values, neurons within ventral stream use
spikes to represent high level abstractions. To increase the
level of realism in neural simulation, spiking neural network
(SNN) [23], [24] is often used as the neural network modeling
tool. For SNN, neuron model is essential since it defines
how the activities of the neurons change in response to each
other. In this paper, conductance-based leaky integrate-and-
fire (LIF) neuron model [25], [26] has been used to regulate
the behaviors of the neurons as it improve the realism of the
neuron simulation.

For the neurons within SNN, the spike coding scheme is
also critical as it changes the format of information processing,
e.g. from analog feature values into spiking patterns (specific
spiking timing sequences). In this paper, rank order coding
(ROC) [27], a simple yet powerful spiking time-based coding
scheme, has been employed to generate the first spike wave,
which has been used to represent the high level abstractions.
ROC scheme considers the first spike wave conveys enough
significant structural information for further visual pattern
recognition application. ROC is proved to be more efficient
compare to other coding schemes [27]. Within SNN, neurons
use spiking patterns to convey the structural information from
one layer to another.

Fig. 1: The framework of the proposed timing-based feed-
forward spiking neural network. For simplicity, the lateral
inhibition connections of the last layer have not been included.

To learn the spiking patterns, spike timing dependent plas-
ticity (STDP) [28], [29], [30], a temporally asymmetric form
of Hebbian learning [31], has often been used within SNN. It
is widely believed that it underlies learning and information
storage in the brain, as well as the development and refinement
of neuronal circuits during brain development [32]. For SNN,
spiking learning rules are quite essential as they can “recall”
or “recognize” different spiking patterns. Other methods such
as back propagation (BP) (e.g. [7]) algorithm or Tempotron
rule can also be used to learn the spiking patterns. However,
for BP algorithm, there are three main drawbacks: 1) The
vanishing/exploding gradient problem will make the learn-
ing procedure inefficient and time-consuming; 2) The global
error information incorporated within the learning procedure
have no strong biological supports and difficult to obtain in
real world; 3) Overfitting problem will emerge if increasing
the number of hidden layers, which will make the learning
procedure not robust to interferences. For Tempotron rule,
the supervisory error signal, which is critical in the learning
procedure, is hard to obtain in real scenarios. Our previous
works [33], [34] have demonstrated the potential of STDP
learning in real time learning situation.

III. PROPOSED FRAMEWORK AND LEARNING METHOD

Ventral stream is a hierarchical visual processing pathway,
which aims to build an invariance to position and scale
first, and then to viewpoint and other transformations [35].
To simulate the hierarchical ventral stream, in this paper,
a novel feed-forward SNN framework has been proposed,
which includes three layers: feature extracting layer, spiking
encoding layer and spiking pattern learning layer. Fig.1 shows
the framework of the proposed feed-forward SNN with several
keywords highlighting the key methodology used in each layer.

To provide an overview of the proposed ECS learning
method, we have shown its pseudo code in the Algorithm
1. Given an input image sequence, feature extracting layer
extracts its corresponding C2 feature vector sequence through
five sub-layers. Within the spiking encoding layer, the above
C2 feature vector sequence is transformed into spiking patterns
using the modified ROC scheme, and these spiking patterns
are further linked into a continuous spiking pattern sequence



3

Algorithm 1 ECS Learning Method

1: (I1, I2, . . . , IN )← image sequence
2: w ← random values within wmin and wmax

3: Feature Extracting Layer:
4: Input image: Iσ(x,y)

5: S1 features: Fσ,θ(x,y) = exp

(
− (x2

0+γ
2y20)

2σ2

)
× cos

(
2π
λ x0

)
6: C1 features: rσ,θ(x,y) = max

j=1···m
Fσ,θ(xj ,yj)

7: S2 features:R(X,P ) = exp
(
−‖X−P‖

2

2σ2α

)
8: C2 feature vector: (r1, r2, . . . , rd)
9: Spiking Encoding Layer:

10: Modified ROC scheme: t = p(maxr − r)
11: Continuous sequence mechanism: sequential or parallel
12: Spiking Pattern Learning Layer:
13: Weight sharing mechanism: applied for parallel sequences
14: Event-driven STDP learning method:
15: when fired a pre-synaptic spike

16:

gex = gex + w

A+ = A+ + α+

w = hardbound(w +A-, w
min, wmax)

17: when fired a post-synaptic spike

18:
A- = A- + α-

w = hardbound(w +A+, w
min, wmax)

19: when received an inhibitory pre-synaptic spike
20: gin = gin + win

21: Adaptive thresholding:
22: τv

d
dtVt = Vthr − Vt;Vt = Vt + Vi

23: if Fed spiking pattern sequence once then
24: End
25: else
26: Goto the spiking pattern learning layer again

return w

through the proposed continuous input sequence mechanism.
Spiking pattern learning layer employs a weight sharing
mechanism, an event-driven STDP learning and an adaptive
thresholding strategy to train the synaptic weights from the
input continuous spiking pattern sequence. The learning pro-
cedure is fast because we only need to feed the continuous
spiking pattern sequence once. The details of each layer will
be explained in the following subsections.

A. Feature Extracting Layer

Feature extraction is an essential capability of a visual sys-
tem. From the computational model point of view, the visual
system is an information processor performing computations
on internal symbolic representations of visual information
[36]. The computational model plays an important role in
obtaining the invariant high level features from the input visual
stimuli and the high level features should strike a balance state
between invariance and distinguishability [20].

To extract balanced high level features, Riesenhuber and
Poggio [14] proposed a feed-forward processing computational
model (named HMAX model) based on the knowledge of
the visual cortex and achieved promising results on some of

the standard classification databases. Such a model focuses
on the object recognition capabilities of the ventral stream in
an “immediate recognition” mode, independent of attention
or other top-down effects [14]. Inspired by the simple and
complex cells within V1 (discovered by Hubel and Wiesel
[37]), Serre, Wolf and Poggio [15], [16] extended the orig-
inal HMAX model and thus built an increasingly complex
and invariant feature representation by alternating between a
template matching and a maximum pooling operation. Increas-
ing the sparsity of basis functions is equals to reduce the
capacity of the classifier [38], [39]. Localized intermediate
approaches retain some coarsely-coded location information
[40] or record the locations of features relative to the object
center [41]. After incorporating some additional biologically-
motivated properties of the visual cortex, Mutch and Lowe
[42] proposed a novel model by adding sparsity and localized
intermediate-level features into the model proposed by Serre
et al. Such a model achieves a significant improvement in final
classification performance.

Inspired by the computational model proposed by Mutch
and Lowe [42], this paper tries to build the feature extracting
layer based on the base computational model proposed by
Mutch and Lowe, as depicted in Fig.2. The aim is to build a
feature dictionary or feature vector for each input image. The
framework contains five hierarchical layers, besides the input
image layer, each built from the previous layer by alternating
template matching and max pooling operations. Note, cortical
network simulator (CNS) [43], a GPU-based framework, has
been used to simulate the feature extracting layer. Below, we
will briefly introduce each layer of the framework used in the
feature extracting layer:

1) Input image layer: All input images have been converted
to grayscale and scale the shorter edge to 140 pixels while
retaining the aspect ratio. An image pyramid Iσ(x,y) (σ depicts
the scale and (x, y) denotes its location) with 10 scales has
been built, each a factor of 21/4 smaller than the last.

2) Gabor filter (S1) layer: Basically, at each possible
position and scale, S1 layer applies the Gabor filters with four
different orientations (0o, 45o, 90o, 135o). For an input image
Iσ(x,y), its corresponding Gabor response Fσ,θ(x,y) can be used
to mimic the simple cell within the primary visual cortex V1,
which can be described as follows:

Fσ,θ(x,y) = exp

(
−
(
x20 + γ2y20

)
2σ2

)
× cos

(
2π

λ
x0

)
, s.t.

x0 = xcosθ + ysinθ; y0 = −xsinθ + ycosθ

(1)

where x0 and y0 represent abscissa and ordinate after rotating
θ, respectively. γ represents aspect ratio and λ the wavelength.
The Gabor filters are 11×11 in size. The components of each
filter are normalized so that their mean is 0 and the sum of
their squares is 1. The same size filters have been used for all
scales.

3) Local invariance (C1) layer: This C1 layer pool over
retinotopically organized afferent S1 units from the previous
S1 layer with the same orientation and from the same scale
band. Basically, the response rσ,θ(x,y) of a complex C1 unit



4

Fig. 2: The computational base model proposed by Mutch
and Lowe [42]. This base model consists of 5 layers, besides
the input image layer, each built from the previous layer by
alternating template matching and max pooling operations. ⊗
means the template matching operation. For each input image,
a C2 feature vector with d elements will be generated.

corresponds to the maximum response of its m afferents(
Fσ,θ(x1,y1)

, · · ·Fσ,θ(xm,ym)

)
from the previous S1 layer:

rσ,θ(x,y) = max
j=1···m

Fσ,θ(xj ,yj)
(2)

Through the maximum pooling operation, the generated C1
units will obtain certain local invariance.

Unlike the traditional HMAX model [15], a lateral inhibition
mechanism has been used between S1/C1 units encoding
different orientations at the same position and scale. Basi-
cally, such a mechanism ensures these units are competing
to describe the dominant orientation (maximally responding
C1 unit) at their location. By doing this, those non-dominant
orientations will be ignored.

4) Intermediate feature (S2) layer: Within the computa-
tional model proposed by Serre. et al [15], for every posi-
tion and scale, the template matching operations have been
conducted between the patch of C1 units centered at that
position/scale and each of d prototype patches. Here, a patch
means a set of processing units and the prototype patches
can be considered as templates within the template matching

operations, as described in [15]. Those prototype patches
are randomly sampled from the C1 layers of the training
images in an initial feature-learning stage, which represent
the intermediate-level features of the base model. During the
feature learning stage, sampling is performed by centering
a patch of vary sizes at a random position and scale in the
C1 layer of a random training image. Therefore, a prototype
consists of all the C1 units within the patch. Note, for
each position, there are units representing each of the four
orientations. A Gaussian radial basis function has been used to
compute the response of a patch of C1 units X to a particular
S2 prototype P with size of n× n:

R(X,P ) = exp

(
−‖X − P‖

2

2σ2α

)
(3)

with X and P have dimensionality n × n × 4, where n ∈
{4, 8, 12, 16}. The standard deviation σ is set to 1 and the
parameter α represents a normalizing factor for different patch
size.

However, real neurons are likely to be more selective
among potential inputs. Therefore, by storing the identity and
magnitude of the dominant orientation at each of the n × n
positions in the patch, the number of inputs to an S2 feature
has been reduced to one per C1 position. Trough this, the
dense prototype in the old model has been reduced to sparse
prototype, which makes the S2 units less sensitive to local
clutter and thus improves the generalization.

5) Global invariance (C2) layer: Within the traditional
HMAX model [15], by pooling the maximum response from
one of d prototype patches, one element of the d-dimensional
vector (C2 features vector) will be obtained. All position and
scale information will be removed if using this mechanism.
However, neurons in visual areas like V4 and inferior temporal
cortex (IT) do not exhibit full invariance and are known to have
receptive fields limited to only a portion of the visual field
and range of scales. Therefore, in this paper, certain limits
has been incorporated into the global position/scale invariance
mechanism used in [15].

B. Spiking Encoding Layer

Within SNN, spiking encoding scheme plays an important
role since it transforms the analog feature values into real
spikes. The generated spikes are also known as spiking pat-
terns, which are used by the neurons within ventral stream to
represent the spatiotemporal structural information. Moreover,
neurons need neuron model to transmit information from one
layer to another. Note, Brian simulator [44] has been used to
model the proposed SNN framework within this paper. In this
section, the proposed spiking encoding scheme and continuous
input sequence mechanism will be illustrated firstly, followed
by the neuron model.

1) spiking encoding scheme: Spiking encoding scheme
transforms the analog feature values into spike sequences, and
thus accomplishes the information format transformation task
of the ventral stream. Both spiking rate and spiking time can
be used to represent the spatiotemporal structural information
within ventral stream.



5

Fig. 3: Rank order coding scheme diagram. The short horizon-
tal line within the spike part represents the latency of firing a
spike. It can be seen that the higher the intensity of the input
visual stimulus, the earlier the spike will be fired.

Traditionally, spiking rate is considered to represent most,
if not all, information of the input visual stimuli. Spiking
rate-based coding scheme assumes that as the intensity of
a stimulus increases, the rate of spikes increases. However,
electrophysiological studies [45], [46] indicate the neurons
within the inferotemporal cortex (IT) respond selectively to
faces only 80-100 ms after presenting the visual stimulus. Such
short time window is not enough to generate a meaningful
spiking rate. Moreover, the specific spiking timing sequence
may convey much more important information than the spiking
rate itself. Therefore, spiking time-based coding scheme is
superior than the spiking rate-based coding scheme.

Within the spiking time-based coding schemes, rank order
coding (ROC) [27], a simple yet powerful time-to-first-spike
temporal coding scheme, stands out from the competition.
Basically, this coding scheme can be summarized as the higher
the intensity of the input visual stimulus, the earlier the spike
will be fired, as shown in Fig.3. ROC scheme only allows the
neuron to fire at most once and considers the first spike wave
conveys enough information for further visual processing.
Furthermore, it only uses the relative firing orders to represent
the input visual stimuli.

However, countless spiking patterns may have an identical
relative firing order and the traditional ROC scheme, in such
scenarios, cannot distinguish these spiking patterns. In this
paper, we use specific absolute spiking timings to replace
the relative orders. Similarly, within the proposed spiking
encoding scheme, the higher the intensity of the input visual
stimulus, the earlier the spike will be fired. For a global
invariant C2 feature response r, the corresponding spiking
timing t (with the unit s) can be computed as follows:

t = p(maxr − r) (4)

where maxr is the maximum value of all related C2 features
in the receptive filed and p is a positive constant within the
range from 0 to 1. Here, p is used to control the length of
the processing time window of a specific spiking pattern. As
mentioned in the above section, the C2 feature response r
has been normalized to [0, 1]. If p takes 1, then the maximum
processing time window of a specific spiking pattern will be
1 s. In this paper, the processing time window of a specific
spiking pattern is set to 0.2 s (p = 0.2).

Fig.4 shows one input image and its corresponding spiking
pattern. Note, the C2 feature vector has 4096 (d feature re-

(a) Input image

0 20 40 60 80 100 120 140
Spiking time(ms)

0

1000

2000

3000

4000

Sy
na

ps
e 
in
de

x

Input spiking pattern sequence

(b) Spiking pattern

Fig. 4: One input image and its corresponding spiking pattern.
Given an input image (a), the feature extracting layer extracts
its C2 feature vector, and the modified ROC scheme further
transforms this feature vector into the spiking pattern shown
in (b) using the Equation 4.

(a) Spiking pattern sequence with no interference

(b) Spiking pattern sequence with time jitter and neural noise

Fig. 5: Spiking pattern sequence (10 input images) without
interference and with interference. The interference includes
time jitter to the input spiking pattern itself and background
neural noise between adjacent spiking patterns.

sponses in Fig.2) elements, and thus there are 4096 neurons to
fire spikes. Only those neurons with spiking timings less than
150 millisecond will fire spikes. By feeding 10 input images
into the proposed feed-forward SNN, Fig.5 shows spiking
pattern sequence without interference and with interference,
respectively. Specifically, the interference includes time jitter
to the input spiking pattern itself and background neural noise
between adjacent spiking patterns, which will be discussed in
section IV-B2.

2) Continuous input sequence mechanism: Within ventral
stream, neurons receive the spiking patterns continuously with-
out any resetting procedures involved. Continuous stimulus
presentation is a significant feature in generating a versatile
and general spiking neural network [17]. However, with the
current input mechanisms, a new spiking pattern is only
allowed to feed into the learning system after the membrane



6

Fig. 6: The proposed two continuous input sequence mecha-
nisms. The squares (1, 2, 3, 4, 5, 6) represent spiking patterns
with same time span and interval. The second parallel mecha-
nism generates two subsequences in which the intervals of one
subsequence can be used by another to increase the processing
efficiency.

Fig. 7: Learning mechanism for the first sequential mech-
anism. Each spiking pattern within the sequence will be
sequentially generated in the spiking encoding layer, i.e.
(1,2,3,4,5,6)→(a1,a2,a3,a4,a5).

potentials generated by the current spiking pattern have been
reseted to their resting values. Otherwise, the previous spiking
pattern will influence the learning procedure of the current
spiking pattern. Such input mechanism is very inefficient and
not biologically plausible.

To address the above drawbacks, two different continuous
input sequence mechanisms have been proposed. The first
mechanism applies a sequential strategy while the second
one follows a parallel fashion. Fig.6 shows the proposed two
continuous input sequence mechanisms in which the spiking
patterns have the same time span (Ts) and interval (Ti = Ts).
Unlike the first sequential mechanism, the second parallel
mechanism generates two subsequences in which the intervals
of one subsequence can be used by another to increase the
processing efficiency.

3) Neuron model: For SNN, neuron model is a critical
building block since it defines how the activities of the neurons
change in response to each other. To obtain a compromise
between biological plausibility and computational complexity,
conductance-based leaky integrate-and-fire (LIF) model [25],
[26] is used as the neuron model in this paper.

Similar to [25], [26], within the proposed SNN, the postsy-
naptic membrane potential V (with the unit mV ) of a neuron
is determined by

dV /dt = (gex(Eex − V ) + gin(Ein − V ) + Vr − V )/τm
(5)

where τm is the postsynaptic neuron membrane time constant.
Eex and Ein represent the membrane potential of excitatory

Fig. 8: Learning mechanism for the second parallel mech-
anism. Here, two neuron groups are created and each
group corresponds to different spiking subsequence, i.e.
(1,3,5)→(a1,a2,a3,a4,a5), (2,4,6)→(b1,b2,b3,b4,b5). The cor-
responding synaptic connections within the two groups share
the same weights: when update the synaptic weight Wa1c1, the
associated synaptic weight Wb1c1 will be immediately updated
to the same value as Wa1c1.

synapse and inhibitory synapse, respectively. Vr depicts the
resting membrane potential. The excitatory/inhibitory synaptic
conductance gex/gin and its related peak conductance are
measured in units of the leakage conductance of the neuron
and are thus dimensionless. When the postsynaptic membrane
potential of a neuron reaches the threshold Vt (with the unit
mV ),

V ≥ Vt (6)

the neuron fires a spike, and then enters the absolute refrac-
tory period, in which the postsynaptic membrane potential is
reseted to Vr. The absolute refractory time is Trf . The exci-
tatory/inhibitory synaptic conductance decays exponentially:

dgex/dt = −gex/τex
dgin/dt = −gin/τin

(7)

where τex/τin represents the excitatory/inhibitory synaptic
conductance time constant.

C. Spiking pattern learning layer
Within the proposed SNN framework, spiking pattern learn-

ing layer is essential since it can distinguish different con-
tinuous input spiking pattern sequences after learning the
corresponding synaptic weight matrices (selectivities). Specif-
ically, within the spiking pattern learning layer, there are n
maps corresponding to n classes within the database. Each
map corresponds to one possible class. The neurons within
each map are fully connected to the previous layer. Within
each map, there are k neurons corresponding to k possible
sub-classes (intra-class variances). To achieve a competitive
learning, a soft winner-take-all strategy is used by adding lat-
eral inhibition connections within the spiking pattern learning
layer. Each neuron has lateral inhibition connections to all the
other neurons. The input image belongs to the map (class)
with the largest number of neurons firing the first spikes.

In this section, the weight sharing learning mechanism
for the second parallel continuous input sequence has been
introduced first, followed by the event-driven STDP learning
rule and the adaptive thresholding method.



7

1) Weight sharing learning mechanism: For the first se-
quential continuous input sequence, the learning mechanism
is simple and intuitive: when receiving an incoming spiking
pattern, the associated synaptic weights of the neurons within
spiking pattern learning layer will be updated. Within the
interval between adjacent spiking patterns, the membrane
potentials of these neurons will be gradually reduced to their
initial values and then these neurons can start to receive the
next spiking pattern, as shown in Fig.7.

Unlike the above learning mechanism, for the second
parallel continuous input sequence, two neuron groups are
created and each group corresponds to different spiking pattern
subsequence, as demonstrated in Fig.8. The number of neurons
within the spiking encoding layer has been expanded to twice
of the original. Basically, this weight sharing learning strategy
can be summarized as: when neurons within one group up-
date their synaptic weights, the corresponding neurons within
another group will be in an idle state and then update their
synaptic weights to the same values as the first group right
after the neurons within the first group finishes the update
procedure, and vice versa. For instance, within the Fig.8, when
the synaptic efficiency Wa1c1 updates, its associated synaptic
efficiency Wb1c1 within the second neuron group will also be
immediately updated to the same value as Wa1c1.

2) Event-driven STDP learning rule: To learn the synaptic
weight matrices from the continuous input spiking pattern
sequences, spike timing dependent plasticity (STDP) [28],
[29], [30], a temporally asymmetric form of Hebbian learning
[31], has been applied within the proposed SNN. STDP
requires no prior information or teaching signals since it is
essentially an unsupervised learning rule.

In neuroscience, long-term potentiation (LTP) is a persistent
strengthening of synapses based on recent patterns of activity,
while long-term depression (LTD) is an activity-dependent
long-lasting reduction in the efficacy of neural synapses.
Thus, STDP learning rule can be described as: when a pre-
synaptic spike fires slightly earlier than the post-synaptic spike,
the associated synaptic efficacy will be potentiated (LTP);
Otherwise, the associated synaptic efficacy will be depressed
(LTD). The STDP function W(t) can be expressed as follows
(t is the time difference between pre and post-synaptic spikes):

w (t) = A+ exp

(
− t

τ+

)
for t > 0

w (t) = −A- exp

(
t

τ-

)
for t < 0

(8)

where A+ and A- represent amplitude of LTP part and LTD
part of the learning window, respectively. τ+ and τ- are time
constant for LTP and LTD, respectively. Fig.9 shows one
example of STDP learning window.

For biological reasons, it is desirable to keep the synaptic
efficacy in a predefined range. A hard bound strategy has been
used to ensure the synaptic efficacy remains in the desired
range wmin ≤ w ≤ wmax, where wmin and wmax are
minimum and maximum value, respectively. Basically, if wmin

and wmax are specified, values smaller than wmin become

Fig. 9: STDP learning window. When a presynaptic spike fires
slightly earlier than the post-synaptic spike, the associated
synaptic efficacy will be potentiated; Otherwise, the associated
synaptic efficacy will be depressed.

wmin, and values larger than wmax become wmax, which can
be described as:

hardbound(w,wmin, wmax) =


wmax, if w > wmax

wmin, if w < wmin

w, if wmin ≤ w ≤ wmax
(9)

Traditional STDP learning rule needs to sum over all pairs
of spikes to update the learning synaptic weight matrix, which
is very inefficient. Moreover, it is also physiological unrealistic
since the neurons, in real scenarios, cannot remember all its
previous spike times within the learning time window.

To address the above problems, in this paper, an event-
driven STDP learning rule has been applied to the proposed
SNN framework by involving two on-line, local learning rules
that are applied only in response to occurrences of spike
events. Two new variables α+ and α- are used in the above
event-driven STDP learning rule, which represent the “traces”
of pre and postsynaptic activity.

Within the traditional STDP learning procedure, a postsy-
naptic neuron will only update its synaptic weights after it fires
a postsynaptic spike. However, by tuning the “traces” vari-
ables, the neuron can update the synaptic weights whenever
it receive a presynaptic spike or firing a postsynaptic spike.
These “traces” can be computed by the following equations:

τ+
d

dt
α+ = −α+

τ-
d

dt
α- = −α-

(10)

here, τ+ and τ- represent the pre- and post-synaptic activity
traces time constant, respectively. The update procedure of
the traditional STDP learning involves summing pairs of pre-
and post-synaptic spike events, while the event-driven learning
mechanism has divided the above learning procedure into two
separated stages: presynaptic event learning and postsynaptic
event learning. Within the training procedure, the learning
procedures of these two events do not affect each other.



8

When received a presynaptic spike, gex, A+ and w will be
updated as follows:

gex = gex + w

A+ = A+ + α+

w = hardbound(w +A-, w
min, wmax)

(11)

where the hardbound function will make the synaptic weight
remains in the desired range wmin ≤ w ≤ wmax, when fired
a post-synaptic spike, A- and w will be modified according
to following equations:

A- = A- + α-

w = hardbound(w +A+, w
min, wmax)

(12)

and when received an inhibitory presynaptic spike, gin will be
updated as follows:

gin = gin + win (13)

where win represents the fixed inhibitory synaptic weight,
which can be used to achieve a soft winner-take-all strategy.
The inhibition should set to the right level, since strong
inhibition will limit the number of neurons trained while weak
inhibition will lead to same synaptic weights. In other words,
this soft winner-take-all strategy ensures each neuron can learn
different input spiking pattern.

3) Adaptive thresholding method: As an asynchronous neu-
ral network, the proposed SNN suffers a major drawback: the
neurons fired the first spikes will tend to fire spikes more
easier than other neurons. This is because these neurons will
immediately start integrating incoming spikes right after firing
the first spikes. Hence, the membrane potentials of these
neurons will be activated most and then fire spikes earlier than
other neurons. The lateral inhibition will further accelerate
such situation and this will in turn affect the final classification
performance.

To achieve a stable network, we incorporate an adaptive
thresholding method [2] into the spiking pattern learning layer.
By incorporating such method, the more a neuron fires, the
higher its membrane threshold will be. In other words, to fire
a spike, the neuron needs to integrate more presynaptic spikes.
Specifically, for each neuron, instead of using the predefined
membrane threshold Vthr, an adaptive membrane threshold Vt
will be incorporated within the spiking pattern learning layer,
which can be computed by the following equation:

τv
d

dt
Vt = Vthr − Vt (14)

where τv is the time constant of the adaptive membrane
threshold Vt. Vt will increase every time the neuron fires a
spike, as shown in the follows:

Vt = Vt + Vi (15)

where Vi represents a predefined increment (unit: mV ).

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To verify the proposed ECS learning algorithm, in this
paper, we compare it with two types of method: the deep
SNN learning methods and the conventional deep learning

Fig. 10: Random examples of MNIST database.

TABLE I: Parameter settings of the proposed SNN.

Parameter Description Value

d the number of elements in a C2 vector 2 4096

τm membrane time constant 1 10 ms

τv potential threshold time constant 1 20 ms

τex excitatory conductance time constant 1 5 ms

τin inhibitory conductance time constant 2 10 ms

τ+ presynaptic trace time constant 1 20 ms

τ− postsynaptic trace time constant 1 20 ms

p a positive constant for ROC 2 0.2

Ts real processing time window 2 150 ms

Ti interval time window 2 150 ms

Trf absolute refractory time 1 1 ms

Eex excitatory membrane potential 1 0 mV

Ein inhibitory membrane potential 2 -85 mV

Vr resting membrane potential 1 -74 mV

Vthr membrane potential threshold 2 -45 mV

Vi increment for adaptive potential threshold 2 5 mV

wmin minimum synaptic weight 1 0

wmax maximum synaptic weight 2 0.01

win fixed inhibitory synaptic weight 2 0.05

α+ the presynaptic trace 1 0.01wmax

α− the postsynaptic trace 1 −α+(τ+/τ +−)1.05

1 Take the same value as [25].
2 Optimized to achieve the best classification performance.

methods. Essentially, the proposed ECS learning algorithm is
a deep SNN learning method. Unlike the conventional deep
learning methods which employ gradient descent mechanism
(especially back propagation) to train the spatial structures,
the deep SNN learning methods could support other efficient
biologically plausible learning mechanisms to train the spa-
tiotemporal structures.

To accomplish the above comparison, two datasets - MNIST
[18] and Caltech 101 [47] - are used in this paper. MNIST
handwritten digital dataset includes 10 classes and it contains
60,000/10,000 training/testing samples (with the size of 28×28
for each sample image). Fig.10 shows some random examples
of the MNIST database. Caltech 101 contains a total of 9,146
images, split between 101 distinct object categories (faces,
watches or pianos, etc.) and a background category. In the
following subsections, the parameter settings and the conver-
gence/robustness verification of the proposed ECS learning
method are introduced first, followed by experimental compar-
ison with the deep SNN learning methods and the conventional
deep learning methods, respectively.

A. Parameter settings

Within the feature extracting layer, all parameters besides d
take the same values as [42]. Normally, to achieve a realistic



9

0 50 100 150

Training samples

0

50

100

150

200

250

300

350

C
o

n
v

e
rg

e
n

c
e

 i
n

d
e

x

Convergence dynamics

Fig. 11: Convergence dynamics of the proposed ECS method.
The learning procedure enters a relatively stable stage after
feeding around 50 random samples extracted from a randomly
chosen class.

neural simulation, the parameters often take the values within a
limited predefined range. Table I shows the parameter settings
used in the proposed SNN framework. Specifically, some of
the parameters used in the proposed SNN framework take the
the same values as [25] while the values of other parameters,
like [26], are chosen by optimizing the whole classification
performance. Note, the time resolution of this experiment is
0.1 ms.

B. Convergence and robustness of the proposed ECS method

In this section, we will validate the convergence and robust-
ness of the proposed ECS learning method. On one hand, the
proposed method should ensure it can achieve convergence
so that the synaptic weights with selectivity can be learned
eventually. On the other hand, the proposed method should be
robust enough to ignore the interferences and only concentrate
on learning the input visual stimuli.

1) Convergence analysis: In this section, we will verify the
convergence property of the proposed ECS method since the
learned synaptic weights would become random if the learning
method does not achieve the convergent state.

Ideally, when the learning procedure reaches convergence,
the number of spiked neurons and their spiking timings would
remain at a fixed state with most learned synaptic weights
taking 0 and the rest taking 1 [48]. However, in reality, it
is impossible to achieve the fixed state since the learning
methods, in most cases, cannot fully learn the abundant intra-
class variances that exist in the input visual stimuli. Instead,
they would enter a a stable stage (not fixed) with some of the
learned synaptic weights scattering between 0 and 1.

To verify whether a learning method becomes convergent or
not, in this paper, a convergence index f has been proposed by
summing the spiking timings of all fired neurons within a spik-
ing pattern period. For each spiking pattern period (including
spiking pattern time window and the interval between adjacent
spiking patterns) within the whole spiking pattern sequence,
f can be computed as follows:

f =

n∑
i=1

(sti − init) (16)

(a) The whole input and output spiking pattern
sequences using 150 random samples within the
same randomly chosen class

(b) The first four input and output spiking pattern
sequences extracted from (a)

(c) The last four input and output spiking pattern
sequences extracted from (a)

Fig. 12: Robustness of the proposed ECS method to the inter-
ferences. In (b), there are spikes fired within the background
neural noise time window while no spikes fired within that
period after learning, as shown in (c). This proves that the
proposed ECS method will gradually ignore the interferences
and only concentrate on learning the real spiking patterns.

where n means the number of spiked neurons within the
current spiking pattern period, sti represents the spiking time
(unit: ms) of that specific fired neuron and init depicts the
starting time (unit: ms) of the current spiking pattern period.

We then use the proposed ECS method to train 150 random
samples extracted from a randomly chosen class and compute
the convergence dynamics, as demonstrated in Fig.11. It can
be seen that the convergence index f sharply decreases until
around 50 and then enters a relatively stable stage. It is noted
that f , as expected, still fluctuates slightly after the learning
method becomes convergent.



10

0 50 100 150

Training samples

0

500

1000

1500

2000

C
o

n
v

e
rg

e
n

c
e

 i
n

d
e

x

Convergence dynamics

var=1,F=7.5hz

var=1.5,F=7.5hz

var=2,F=7.5hz

(a) Same frequency and different variance

0 50 100 150

Training samples

0

500

1000

1500

2000

2500

3000

3500

4000

4500

C
o

n
v

e
rg

e
n

c
e

 i
n

d
e

x

Convergence dynamics

var=1,F=7.5hz

var=1,F=10hz

var=1,F=12.5hz

(b) Same variance and different frequency

0 50 100 150

Training samples

0

500

1000

1500

2000

2500

3000

3500

4000

4500

C
o

n
v

e
rg

e
n

c
e

 i
n

d
e

x

Convergence dynamics

var=1,F=7.5hz

var=1.5,F=10hz

var=2,F=12.5hz

(c) Different variance and different frequency

Fig. 13: Dynamic convergence index under different interfer-
ences settings, in which var represents the variance of the time
jitter and F is the frequency of the background neural noise.
It can be seen that the convergence is harder to achieve if
increasing the level of the interferences. Moreover, the back-
ground neural noise has more influence on the convergence
performance.

2) Robustness analysis: In this section, we will verify
whether the proposed ECS method is robust enough to ignore
the interferences and only concentrate on learning the input
visual stimuli. Here, interferences include the time jitter and
the background neural noise, which are ubiquitous in the
ventral stream and would deteriorate the information trans-
mission quality. To accomplish the above verification, we will
investigate the dynamic spiking status of the output neurons by
incorporating the time jitter and the background neural noise
into the learning procedure.

Specifically, the time jitter obtained from a standard normal
distribution will be added into each spiking pattern itself. The
probability density function (φ(x)) of the standard normal

distribution is as follows:

φ(x) =
e−

1
2x

2

√
2π

(17)

Meanwhile, the background neural noise generated from an
uniform poisson point progress with frequency of 7.5 Hz
(simulating a common α brainwave) will be inserted into the
interval between the adjacent spiking patterns.

Given a compact set K, a point process X is defined as a
mapping from a probability space to configurations of points of
K [49]. Note, N(A) is the number of point of a point process
X falling in the Borel set A. Let v(.) be a Borel measure on
K, then a point process X on K is a poisson point process
with intensity v(.) if N(A) is poisson distributed with mean
v(A) for every bounded Borel set A included in K and the
random variables N(A1), ..., N(Ak) are independent for any k
disjoint bounded Borel set A1, ..., Ak. Uniform poisson point
process [50], the most simple poisson point process, is the
point process with intensity measure being proportional to the
Lebesgue measure on K:

v(.) = βλk(.) (18)

The mean number of points falling into K is then:

E[N(K)] = βλK(K) (19)

where E represents expectation symbol and λK depicts the
frequency of the poisson law. β is a positive constant value.
A two steps procedure can be used to generate points in K
with the distribution of this point process: Firstly, simulate
N according to poisson law with mean given by the latter
equation (it gives N = n); Secondly, sample each of the n
points according to a uniform law on K.

With the above interferences settings, we then train 150
random samples extracted from a randomly chosen class and
investigate the dynamic spiking status of the output neurons,
as demonstrated in Fig.12. Specifically, (a) shows the whole
dynamic learning procedure using 150 random samples, (b)
represents the dynamic learning procedure of the first four
spiking pattern period and (c) depicts the dynamic learning
procedure of the last four spiking pattern period. From Fig.12
(b), it can be seen that there are several output spikes during
the background neural noise time window, while in Fig.12 (c),
the output spikes only appear within the input spiking pattern
time window and there are no spikes generated within the
background neural noise time window.

The possible reason for the above behaviors is that the
integral area of LTD is larger than the integral area of LTP
within the proposed ECS method. If there are no repeating
inputs fed into the proposed ECS method, all learned synaptic
weights would saturate to 0. Moreover, those background
neural noise patterns are irrelevant since they are indepen-
dent and identically distributed. Thus, for the proposed ECS
method, only the repeated input visual stimuli can be learned
eventually, as demonstrated in Fig.12.

To further investigate the influences of the interferences to
the proposed ECS learning procedure, the dynamic conver-
gence indexes with three different interferences settings have
been used in this subsection, as shown in Fig.13. With the



11

TABLE II: Correct classification performance using different
random training samples with two different methods, in which
CNN[42] without interferences (var=0, F=0hz) and ECS with
interferences (var=1, F=7.5hz)

Condition CNN[42]:var=0, F=0hz; ECS:var=1, F=7.5hz

Random test

Number of training samples

50 100 150

CNN[42] ECS CNN[42] ECS CNN[42] ECS

1 0.8 0.86 0.87 0.89 0.82 0.85

2 0.83 0.83 0.86 0.85 0.88 0.86

3 0.83 0.86 0.82 0.84 0.87 0.91

4 0.82 0.86 0.83 0.87 0.88 0.87

5 0.8 0.81 0.85 0.87 0.82 0.87

6 0.84 0.87 0.86 0.88 0.83 0.88

7 0.8 0.87 0.87 0.89 0.87 0.88

8 0.84 0.86 0.85 0.83 0.89 0.84

9 0.81 0.79 0.84 0.85 0.82 0.86

10 0.87 0.8 0.85 0.88 0.85 0.82

average 0.824 0.841 0.85 0.865 0.853 0.864

running time 22.8s 23.1s 23.1s 23.3s 23.1s 23.4s

• Note: 0.8 in this table means 80% correct classification rate. To be fair, for each
random test with specific number of training samples, CNN [42] and ECS use
the same random training samples and the same 100 random testing samples.

increase of the variance var of the time jitter and the frequency
F of the background neural noise, more training samples are
needed for the proposed ECS learning method to enter the
convergence state. Besides, the background neural noise has
more influence than the time jitter.

C. Comparison with deep SNN learning methods

In this section, we use MNIST dataset to accomplish the
comparison task. From the conventional deep learning point
of view, it may seem small for evaluating the scaling of
architectures and learning methods to larger applications.
However, we are only in the initial stage of understanding the
connections between the temporal dynamics of biologically
realistic networks, and mechanisms of temporal and spatial
credit assignment [51]. For deep SNN learning methods,
MNIST dataset still remains important since almost all re-
cently published SNN papers are evaluated on this benchmark,
meaning it remains the only dataset allowing for comparisons.

Two types of experiments are investigated in this section.
One type of experiment is using a simple random sampling
scheme in which only a small part of training/testing samples
has been used to learn/test the selectivities. Another one is
employing an exhaustive scheme in which all training/testing
samples have been used to learn/test the selectivities. Unlike
the ideal exhaustive scheme which remains in a static state
(with no new training/testing samples added into the dataset),
the simple random sampling scheme requires the learning
methods to generate acceptable performance based on quite
limited learning resources (such as running time or computa-
tional capacity).

1) Simple random sampling experiments: To verify the
performance of the proposed ECS method on the real learning

TABLE III: Correct classification performance com-
parison between CNN [42] and ECS using 100 train-
ing samples without any interferences (var=0, F=0hz).

Condition CNN [42]:var=0, F=0hz; ECS:var=0, F=0hz

Random test CNN [42] ECS

1 0.85 0.88

2 0.87 0.86

3 0.83 0.87

4 0.87 0.89

5 0.82 0.90

6 0.9 0.91

7 0.83 0.86

8 0.86 0.95

9 0.8 0.91

10 0.84 0.88

average 0.847 0.891

running time 23.15s 22.75s

• Note: 0.85 in this table means 85% correct classification rate.
To be fair, CNN [42] and ECS use the same random training
samples and the same 100 random testing samples.

scenarios, simple random sampling experiments have been
used in this section, which randomly select limited samples
for training and testing. This is because it is often hard to
fully exploit a huge database (such as MNIST database) with
limited time, let alone the size of database is changing over
time in some cases.

In this section, two types of experiments are conducted
to compare the proposed ECS method with a typical CNN
method [42] - one adds interferences (var = 1 for time jitter,
F = 7.5hz for background neural noise) into the proposed
ECS method and no interferences for the CNN method, while
another incorporates no interferences to both methods. Within
the training period, 50/100/150 random training samples are
employed for each class, meaning totally 500/1000/1500 sam-
ples are extracted from the whole 60000 training samples.
Within the testing period, we randomly extract 100 testing
samples from the whole 10,000 testing database.

Table II shows the correct classification performances of
the first type of experiment. To be fair, for each random test
with specific number of training samples, CNN [42] and ECS
use the same random training samples. It can be seen that
the proposed ECS method with 100 random training samples
strike the balance state between the processing time and final
classification performance, which only use 23.3s to achieve
86.5% correct classification performance. More importantly,
this performance is achieved when incorporating interferences
into the proposed ECS method.

For the second type of experiment, we compare the dynamic
convergence index of three random tests (without adding any
interferences) using the proposed ECS method, as shown in
Fig.14. It can be seen that the proposed ECS method would
roughly hit the stable period around 100 training samples. For
the sake of simplicity, we only demonstrate the classification



12

TABLE IV: Classification accuracy performance using different methods on MNIST database.

Spiking Coding-type Architecture Preprocessing (Un-)supervised Learning Rule Performance
Simple random sampling a Exhaustive b

Time-based

Spiking convolutional
neural network Modified HMAX Supervised ECS(this paper) 89% 93.0%

Two layer network[10] Simplified HMAX Supervised Tempotron rule 79.0% N/A
Two layer network[11] Simplified HMAX Supervised Tempotron rule N/A 91.3%

Rate-based

Dendritic neurons[4] Thresholding Supervised Morphology learning N/A 90.3% d

Spiking RBM[5] None Supervised Contrastive divergence,
linear classifier N/A 89.0%

Spiking RBM[6] Enhanced training set
to 120,000 examples Supervised Contrastive divergence N/A 89.0%

Spiking convolutional
neural network[7] None Supervised Backpropagation N/A 99.1%

Spiking RBM[8] Thresholding Supervised Contrastive divergence N/A 92.6% c

Spiking RBM[8] Thresholding Supervised Contrastive divergence N/A 91.9% c

Two layer network[9] Edge-detection Supervised STDP with calcium
variable N/A 96.5% e

Multi-layer hierarchical
neural network[1] Orientation-detection Supervised STDP with calcium

variable N/A 91.6%

Two layer network[2] None Unsupervised Rectangular STDP N/A 93.5%
Two layer network[3] None Unsupervised Exponential STDP N/A 95.0%

a Simple random sampling performance has been generated by averaging 10 random tests using 50 random training samples per class and 100 random testing samples,
which is suitable for real-time learning since the whole database is impossible to obtain in most real scenarios.

b Exhaustive performance shows the ideal experimental results by using whole 60000 training samples and 10000 testing samples within MNIST database.
c The authors only use 1000 testing samples to obtain the performance
d The authors only use 5000 testing samples to obtain the performance
e The authors use 10000 randomly chosen samples from MNIST database instead of the dedicated testing database

0 50 100 150

Training samples

0

50

100

150

200

250

300

350

C
o

n
v

e
rg

e
n

c
e

 i
n

d
e

x

Convergence dynamics

The first test

The second test

The third test

Fig. 14: Dynamic convergence index of three random tests
using the proposed ECS method without adding any interfer-
ences (var=0, F=0hz). It shows the proposed ECS method
will enter the stable stage after feeding 100 training samples
if adding no interferences.

performance comparison using 100 training samples within the
learning procedure, as shown in Table III. Compared with the
CNN [42] method, the proposed ECS method uses slightly less
time (22.75s) to generate a quite higher correct classification
performance (89.1%).

2) Exhaustive experiments: For fair comparison with the
current deep SNN learning methods, exhaustive experiments
using all training/testing samples have also been conducted in
this paper. Unlike the simple random sampling experiments,
exhaustive experiments use the whole 60,000 training samples
to learn the synaptic weights and then distinguish the whole
10,000 testing samples based on the above learned synaptic
weights.

Table IV shows the simple random sampling and exhaustive
classification accuracy performance using the proposed ECS
method and different state-of-the-art deep SNN learning meth-
ods. According to their spiking coding type, the learning meth-
ods within Table IV have been divided into two categories:

time-based and rate-based. From Table IV, it can be seen that,
within the time-based spiking learning methods, the proposed
ECS method achieves the best classification performances in
both simple random sampling and exhaustive experiments.
Moreover, it achieves this performance by only using one
run (feeding the whole training samples into SNN framework
once), which greatly improve the learning efficiency and thus
reduce the whole processing time. For instance, with the same
experimental platform (Intel Corporation Xeon E3-1200, 16
GB DDR3 RAM, 120 GB SSD, NVIDIA GeForce GT 640),
it takes around one day for the SCNN [7] method to finish
the training, while the proposed method only takes less than
one hour. Furthermore, we use various biologically plausi-
ble models to build the proposed SNN framework, such as
conductance-based LIF model, adaptive thresholding method
and event-driven continuous STDP learning rule. The above
experiments have demonstrated the capacity and potential of
a biologically plausible model in efficient learning for pattern
recognition.

It is noted that few rate-based methods achieve better
performance. However, they suffer two main drawbacks: 1)
To achieve the best performance, all those methods need to
feed the whole training samples into their SNN frameworks
at least several times (several runs) since one run is not
enough to generate a meaningful spiking rate. This is very
time consuming. For instance, since the two layer network [3]
needs to run at least 15 times to obtain the performance, its
running time is at least 15 times longer than the proposed
ECS method. The actual running time differences should
be much larger since we have incorporated efficient event-
driven continuous mechanisms into the proposed method. 2)
Some methods incorporate global information into the learning
procedure which is not feasible in real world conditions. For
instance, based on back propagation (BP) algorithm, a spiking
convolutional neural network [7] used a global error signal to
update the synaptic weights however such global error signal is



13

5 10 15 20 25 30

Number of training examples per class

25

30

35

40

45

50

55

60

M
e

a
n

 r
e

c
o

g
n

it
io

n
 r

a
te

 p
e

r 
c

la
s

s

Performance comparison

ECS

CNN[42]

CNN[52]

Fig. 15: Performance comparison of the three methods using
different numbers of training samples per class.

impossible to obtain within a biological system. Based on the
current knowledge in neuroscience, the special computational
circuit for obtaining such global back propagation errors seems
unlikely to have arisen in an evolved organism.

D. Comparison with conventional deep learning methods

For fair comparison, in this section, we challenge the pro-
posed ECS learning rule with two conventional CNN methods
[42], [52] on a more complicated Caltech 101 dataset. The
reason why we choose these specific methods to compare
is because their architectures have the same depth as the
proposed ECS learning method. Specifically, we use different
number of samples per class (5/10/15/20/25/30) to train the
synaptic weights and then test the classification performance
on the remaining samples, as shown in Fig.15. Compared with
the conventional CNN methods [42], [52], the proposed ECS
learning method clearly achieves better performance when
using different number of training samples per class.

While some of the current conventional deep learning meth-
ods may achieve better performance, they are often challenged
by two main issues: 1) Inefficiency. They are inefficient in
terms of computational resource and running time, i.e. the
hardware mapping analysis in [53] demonstrated that SNN
implementation on a spike-based hardware is two orders
of magnitude more energy-efficient than the similar CNN
implementation on off-the-shelf FPGA-based hardware. 2)
Biologically implausible. In visual cortex, neurons use spikes
to transmit information and the gradient descent mechanism
is almost impossible to train the spiking neural network due
to the non-differentiable nature of spike events.

Even though the biologically plausible spiking neural net-
work learning methods are still in their initial stage, the exist-
ing evidence suggests that it is possible to efficiently optimize
complex functions of temporal history in the context of spiking
networks of biologically realistic neurons, which indicates they
have the great potential to accurately and efficiently train the
complicated datasets [51].

V. CONCLUSION

In this paper, an event-driven continuous STDP (ECS)
learning method using specific spiking timing sequences has
been proposed. Within the proposed SNN framework, we use

image sequence as the input and extract the high level abstrac-
tions by using the modified HMAX model with sparsity and
intermediate variables. Through the modified ROC scheme,
the extracted high level abstractions have been transformed
into separated spiking patterns. Two novel continuous input
sequence mechanisms have been proposed to connect these
separated spiking patterns into spiking pattern sequences.
For different continuous input sequence mechanism, we use
different event-driven STDP learning procedure to train the
final synaptic efficiency matrix. A soft winner-take-all strategy
has been used within the above learning procedure so that
neurons can compete with each other to represent the input
images. The experimental results on MNIST database show
that the proposed ECS method outperforms all other methods
in fast learning scenarios and most of the current models
in exhaustive learning experiments. For future work, a new
comprehensive spiking encoding scheme may be integrated
to generate more than one spike per synapse connection and
new feature extracting layers may be added to extract more
features.

ACKNOWLEDGMENT

The authors have been supported by EU FP7 project
HAZCEPT(318907) and EU Horizon 2020 project
STEP2DYNA(691154).

REFERENCES

[1] M. Beyeler, N. D. Dutt, and J. L. Krichmar, “Categorization and
decision-making in a neurobiologically plausible spiking network using
a STDP-like learning rule,” Neural Networks, vol. 48, pp. 109–124, Dec.
2013.

[2] D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat, “Immunity to Device
Variations in a Spiking Neural Network With Memristive Nanodevices,”
IEEE Transactions on Nanotechnology, vol. 12, no. 3, pp. 288–295, May
2013.

[3] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition
using spike-timing-dependent plasticity,” Frontiers in Computational
Neuroscience, p. 99, 2015.

[4] S. Hussain, S. C. Liu, and A. Basu, “Improved margin multi-class
classification using dendritic neurons with morphological learning,” in
2014 IEEE International Symposium on Circuits and Systems (ISCAS),
Jun. 2014, pp. 2640–2643.

[5] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S.
Modha, “A digital neurosynaptic core using embedded crossbar memory
with 45pj per spike in 45nm,” in 2011 IEEE Custom Integrated Circuits
Conference (CICC), Sep. 2011, pp. 1–4.

[6] P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer, “Real-
time classification and sensor fusion with a spiking deep belief network,”
Neuromorphic Engineering, vol. 7, p. 178, 2013.

[7] P. U. Diehl, D. Neil, J. Binas, M. Cook, S. C. Liu, and M. Pfeiffer,
“Fast-classifying, high-accuracy spiking deep networks through weight
and threshold balancing,” in 2015 International Joint Conference on
Neural Networks (IJCNN), Jul. 2015, pp. 1–8.

[8] E. Neftci, S. Das, B. Pedroni, K. Kreutz-Delgado, and G. Cauwenberghs,
“Event-driven contrastive divergence for spiking neuromorphic systems,”
Neuromorphic Engineering, vol. 7, p. 272, 2014.

[9] J. M. Brader, W. Senn, and S. Fusi, “Learning Real-World Stimuli
in a Neural Network with Spike-Driven Synaptic Dynamics,” Neural
Computation, vol. 19, no. 11, pp. 2881–2912, Sep. 2007.

[10] Q. Yu, H. Tang, K. Tan, and H. Li, “Rapid feedforward computation
by temporal encoding and learning with spiking neurons,” IEEE Trans.
Neural Networks and Learning Systems, vol. 24, no. 10, pp. 1539–1552,
2013.

[11] B. Zhao, R. Ding, S. Chen, B. Linares-Barranco, and H. Tang, “Feedfor-
ward Categorization on AER Motion Events Using Cortex-Like Features
in a Spiking Neural Network,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 26, no. 9, pp. 1963–1978, Sep. 2015.



14

[12] T. Masquelier and S. J. Thorpe, “Unsupervised learning of visual
features through spike timing dependent plasticity,” PLoS Computational
Biology, vol. 3, no. 2, p. e31, 2007.

[13] S. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the human
visual system,” Nature, vol. 381, no. 6582, pp. 520–522, 1996.

[14] M. Riesenhuber and T. Poggio, “Hierarchical models of object recog-
nition in cortex,” Nature Neuroscience, vol. 2, no. 11, pp. 1019–1025,
Nov. 1999.

[15] S. Thomas, W. Lior, B. Stanley, R. Maximilian, and P. Tomaso, “Robust
object recognition with cortex-like mechanisms,” IEEE Trans. Pattern
Anal. Mach. Intelli., vol. 29, no. 3, pp. 411–426, 2007.

[16] T. Serre, G. Kreiman, M. Kouh, C. Cadieu, U. Knoblich, and T. Poggio,
“A quantitative theory of immediate visual recognition,” Progress in
Brain Research, vol. 165, pp. 33–56, 2007.

[17] T. Rumbell, S. Denham, and T. Wennekers, “A Spiking Self-Organizing
Map Combining STDP, Oscillations, and Continuous Learning,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 25, no. 5,
pp. 894–907, 2014.

[18] [Online]. Available: http://yann.lecun.com/exdb/mnist/
[19] T. Poggio and E. Bizzi, “Generalization in vision and motor control,”

Nature, vol. 431, no. 7010, pp. 768–774, Oct. 2004.
[20] Y. Bengio, “Learning deep architectures for ai,” Found. Trends Mach.

Learn., vol. 2, no. 1, pp. 1–127, 2009.
[21] Q. Wang, J. Gao, and Y. Yuan, “Embedding structured contour and loca-

tion prior in siamesed fully convolutional networks for road detection,”
IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 1,
pp. 230–241, 2018.

[22] ——, “A joint convolutional neural networks and context transfer for
street scenes labeling,” IEEE Transactions on Intelligent Transportation
Systems, 2017.

[23] E. Nichols, L. J. McDaid, and N. Siddique, “Biologically Inspired SNN
for Robot Control,” IEEE Transactions on Cybernetics, vol. 43, no. 1,
pp. 115–128, Feb. 2013.

[24] Q. Kang, B. Huang, and M. Zhou, “Dynamic Behavior of Artificial
Hodgkin Huxley Neuron Model Subject to Additive Noise,” IEEE
Transactions on Cybernetics, vol. 46, no. 9, pp. 2083–2093, Sep. 2016.

[25] S. Song, K. D. Miller, and L. F. Abbott, “Competitive Hebbian learn-
ing through spike-timing-dependent synaptic plasticity,” Nature Neuro-
science, vol. 3, no. 9, pp. 919–926, Sep. 2000.

[26] S. Song and L. F. Abbott, “Cortical development and remapping through
spike timing-dependent plasticity,” Neuron, vol. 32, no. 2, pp. 339–350,
Oct. 2001.

[27] A. Delorme and S. Thorpe, “Face identification using one spike per
neuron: resistance to image degradation,” Neural Networks, vol. 14, no.
6-7, pp. 795–803, 2001.

[28] W. Gerstner, R. Kempter, J. L. van Hemmen, and H. Wagner, “A
neuronal learning rule for sub-millisecond temporal coding,” Nature,
vol. 386, pp. 76–78, 1996.

[29] R. Kempter, W. Gerstner, and J. L. van Hemmen, “Hebbian learning and
spiking neurons,” Phys. Rev. E, vol. 59, pp. 4498–4514, 1999.

[30] P. J. Sjstrm, G. G. Turrigiano, and S. B. Nelson, “Rate, timing, and
cooperativity jointly determine cortical synaptic plasticity,” Neuron,
vol. 32, pp. 1149–1164, 2001.

[31] D. O. Hebb, The Organization of Behavior: a neuropsychological theory.
New York: Wiley, 1949.

[32] P. J. Sjstrm, E. A. Rancz, A. Roth, and M. Husser, “Dendritic excitability
and synaptic plasticity,” Physiological Reviews, vol. 88, no. 2, pp. 769–
840, Apr. 2008.

[33] D. Liu and S. Yue, “Visual pattern recognition using unsupervised
spike timing dependent plasticity learning,” in 2016 International Joint
Conference on Neural Networks (IJCNN), Jul. 2016, pp. 285–292.

[34] ——, “Fast unsupervised learning for visual pattern recognition using
spike timing dependent plasticity,” Neurocomputing, vol. 249, pp. 212–
224, Aug. 2017.

[35] T. Serre, M. Kouh, C. Cadieu, U. Knoblich, G. Kreiman, and T. Poggio,
“A theory of object recognition: Computations and circuits in the
feedforward path of the ventral stream in primate visual cortex,” 2005.

[36] D. . T. P. Marr, “From understanding computation to understanding
neural circuitry,” Neurosciences Res. Prog. Bull., vol. 15, pp. 470–488,
1977.

[37] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in
the cat’s striate cortex,” The Journal of Physiology, vol. 148, no. 3, pp.
574–591, Oct. 1959.

[38] M. Figueiredo, “Adaptive sparseness for supervised learning,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 25,
no. 9, pp. 1150–1159, Sep. 2003.

[39] B. Krishnapuram, L. Carin, M. Figueiredo, and A. Hartemink, “Sparse
multinomial logistic regression: fast algorithms and generalization
bounds,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 27, no. 6, pp. 957–968, Jun. 2005.

[40] S. Agarwal, A. Awan, and D. Roth, “Learning to detect objects in images
via a sparse, part-based representation,” IEEE transactions on pattern
analysis and machine intelligence, vol. 26, no. 11, pp. 1475–1490, Nov.
2004.

[41] A. Berg, T. Berg, and J. Malik, “Shape matching and object recogni-
tion using low distortion correspondences,” in IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2005. CVPR
2005, vol. 1, 2005, pp. 26–33.

[42] J. Mutch and D. G. Lowe, “Object Class Recognition and Localization
Using Sparse Features with Limited Receptive Fields,” International
Journal of Computer Vision, vol. 80, no. 1, pp. 45–57, Jan. 2008.

[43] J. Mutch, U. Knoblich, and T. Poggio, “CNS: a GPU-based framework
for simulating cortically-organized networks,” Massachusetts Institute
of Technology, Cambridge, MA, Tech. Rep. MIT-CSAIL-TR-2010-013
/ CBCL-286, February 2010.

[44] D. F. Goodman and R. Brette, “The brian simulator,” Frontiers in
neuroscience, vol. 3, no. 2, p. 192, 2009.

[45] S.-I. Amari and N. Kasabov, Eds., Brain-like Computing and Intelligent
Information Systems, 1st ed. Springer-Verlag Singapore Pte. Limited,
1998.

[46] L. C. Jain, U. Halici, I. Hayashi, S. B. Lee, and S. Tsutsui, Intelligent
Biometric Techniques in Fingerprint and Face Recognition. CRC Press,
Jun. 1999.

[47] [Online]. Available: http://www.vision.caltech.edu/Image Datasets/
Caltech101/

[48] R. Guyonneau, R. VanRullen, and S. J. Thorpe, “Neurons tune to the
earliest spikes through STDP,” Neural Computation, vol. 17, no. 4, pp.
859–879, Apr. 2005.

[49] V.-J. D. Daley, D.J, An Introduction to the Theory of Point Processes.
New York: Springer, 1988.

[50] W. S. K. D. Stoyan and J. Mecke., Stochastic geometry and its
applications. Wiley, 1988, vol. 2.

[51] A. H. Marblestone, G. Wayne, and K. P. Kording, “Toward an inte-
gration of deep learning and neuroscience,” Frontiers in computational
neuroscience, vol. 10, 2016.

[52] T. Serre, L. Wolf, and T. Poggio, “Object recognition with features
inspired by visual cortex,” in Computer Vision and Pattern Recognition,
2005. CVPR 2005. IEEE Computer Society Conference on, vol. 2. Ieee,
2005, pp. 994–1000.

[53] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural
networks for energy-efficient object recognition,” International Journal
of Computer Vision, vol. 113, no. 1, pp. 54–66, 2015.

http://yann.lecun.com/exdb/mnist/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/

	Introduction
	Related Works
	Proposed Framework and Learning Method
	Feature Extracting Layer
	Input image layer
	Gabor filter (S1) layer
	Local invariance (C1) layer
	Intermediate feature (S2) layer
	Global invariance (C2) layer

	Spiking Encoding Layer
	spiking encoding scheme
	Continuous input sequence mechanism
	Neuron model

	Spiking pattern learning layer
	Weight sharing learning mechanism
	Event-driven STDP learning rule
	Adaptive thresholding method


	Experimental Results and Analysis
	Parameter settings
	Convergence and robustness of the proposed ECS method
	Convergence analysis
	Robustness analysis

	Comparison with deep SNN learning methods
	Simple random sampling experiments
	Exhaustive experiments

	Comparison with conventional deep learning methods

	Conclusion
	References

