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The skin pigment melanin is one of a few bio-macromolecules that display electrical and

photo-conductivity in the solid-state. A model for melanin charge transport based on amorphous

semiconductivity has been widely accepted for 40 years. In this letter, we show that a central pillar

in support of this hypothesis, namely experimental agreement with a hydrated dielectric model, is

an artefact related to measurement geometry and non-equilibrium behaviour. Our results cast

significant doubt on the validity of the amorphous semiconductor model and are a reminder of the

difficulties of electrical measurements on low conductivity, disordered organic materials. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.3688491]

The electrical properties of bio-molecules such as pro-

teins and DNA have attracted significant scientific attention

for several decades.1–5 This interest stems from a desire to

understand fundamental processes in biology and from the

intriguing possibilities of using bio-molecules in electron-

ics,6 i.e., bioelectronics. The skin pigment eumelanin (here-

after referred to as melanin7) is one system that has recently

emerged as a strong candidate for bioelectronics because of

the advances in producing device-quality thin films8–10 and

the prevailing model that it is perhaps the only biological

amorphous semiconductor.7,11–16 A full model of charge

transport in melanin has remained elusive for a number of

reasons including (1) its electrical properties are very sensi-

tive to hydration9,16–20 and (2) there are difficulties associ-

ated with forming good ohmic contacts for accurate and

reproducible measurements (due to surface roughness).

These issues have led to observations of apparent n and/or

p-type transport dependent upon experimental conditions,19,21

anomalous Arrhenius behaviour,9,13,16,18,22 dominant capacita-

tive effects reminiscent of ionic materials,17,18,20 and a general

lack of agreement as to how electrically conductive melanin

actually is.7 In this letter, we report the first systematic and

controlled study of the conductivity of melanin as a function

of hydration (both in the dark and under illumination) with

different electrical contact geometries. We show that a change

in geometry leads to qualitatively and quantitatively different

behaviour and that the traditional sandwich measurement

architecture delivers misleading results.

Melanin has been described as a Mott-Davis amorphous

semiconductor (MDAS) for over 40 years.7 This model is

based primarily on the work of McGinness et al., in which

solid pellets of melanin were observed to switch between two

resistive states by the application of an external voltage.12 A

peculiar feature of these experiments was that switching was

only seen when the melanin samples were hydrated. To

account for this, the MDAS model was rationalized in terms

of a modified dielectric theory12,17 according to

r ¼ r0 exp
ED

2RT

� �
exp

e2

2RTr

1

j
� 1

j0

� �� �
; (1)

where r is the conductivity, r0 is the dry conductivity in the

infinite temperature limit, ED is the energy gap of dry mela-

nin, T is the temperature, r is the screening length, j is the

dielectric constant of dry melanin, and j0 is the effective

dielectric constant of melanin due to the presence of water.

Essentially, as water is added, the average dielectric constant

increases leading to a reduction in the effective energy gap.

This allows for the switching behaviour to emerge at vol-

tages lower than breakdown.

The modified dielectric MDAS model appears to have

support from two additional experiments measuring melanin

conductivity as a function of hydration.16,17 Although the

methodologies for controlling hydration in these two studies

were quite different, the experiments shared one feature—the

use of the sandwich contact geometry (inset of Fig. 1(a)). We

have previously reported the full water adsorption isotherms

for solid melanin pellets made from pressed powder.23 These

isotherms demonstrated that long timescales (of order hours)

are required to achieve equilibrium water content in the pel-

lets. This led us to question the validity of the sandwich geom-

etry given the dramatically reduced surface area available for

water absorption and the relatively short timescales allowed

for equilibration in the previous studies.16,17 Based upon this

insight, we redesigned the traditional sandwich geometry

experiments under more carefully controlled conditions and

also implemented “an open contact” geometry to ensure equi-

librium hydration conditions via a surface van der Pauw (vdP)

electrode architecture (inset of Fig. 1(b)). The latter four con-

tact geometry has the significant advantage of exposing more

surface area of the sample to the environment (�71%, see

supplementary information27) when compared to the sandwich

configuration (�37%).

Melanin was synthesised according to standard method-

ologies.23,24 Briefly, a basic solution (pH 8) of dl-dopa was

made and air bubbled through the solution for 3 days form-

ing a precipitate. The solution was then brought to pH 2, the

precipitate was filtered, washed with deionised water (Milli-a)Electronic mail: Meredith@physics.uq.edu.au.
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Q), and dried. The resultant powder was then pressed (10 t)

into pellets. Sandwich samples were contacted by thermal

evaporation of gold onto both faces of the pellet, out of

which a rectangle was cut. Samples for the vdP geometry

were contacted via evaporation through a shadow mask leav-

ing 2 mm for an active channel and then mounted on a plastic

sample holder with a hole so as to expose the non-contacted

face. In both the experiments, wires were attached with silver

paint and the samples placed within an aluminium vacuum

chamber (see Fig. S1 (Ref. 27)) with a separate vapour sys-

tem capable of delivering pure water vapour at a defined

pressure. It is important to note that creating ohmic contacts

using gold electrodes is troublesome due to diffusion of the

metal into the pellet, the microscopic surface roughness, and

carrier blocking at low hydration levels. The samples were

hydrated by increasing the vapour pressure in 1.5 mbar–3

mbar increments, and the system allowed to reach partial or

full equilibration for 1 h in a similar manner to our previous

adsorption study.23

Current-voltage (IV) measurements were performed

using a Keithley 2400 Source Meter Unit (SMU) under both

dark and illuminated conditions. For the case of the sand-

wich geometry, brief details of the electrical measurements

were as follows: (1) dark—a potential of 15 V was applied

for around 50 s and subsequent current recorded and (2) illu-

minated—a white light source (spectrum Fig. S6) was

switched on at time t� 50 s, and the sample illuminated for a

further 50 s and the peak photocurrent recorded. For the vdP

sample: (1) dark—a linear voltage sweep (in 4 terminal

mode) was applied between �5 V and þ5 V and the average

current measured and (2) illuminated—as per the sandwich

geometry sample. Further details of the preparation, meas-

urements, and data analysis are given in the supplementary

information.27

The procedure was repeated up to a relative water

vapour pressure of 0.8 (�21 mbar at room temperature). The

water contents of the samples were determined using adsorp-

tion isotherms published previously.23 Our measurement sys-

tem was designed to alleviate two basic issues with the

previous published experiments: (1) the problem of contami-

nation arising from the use of salts to achieve set levels of

environmental humidity16 and (2) the improvement in sig-

nal-to-noise (S/N) afforded by using the aluminium chamber

as a Faraday cage.17

The results of the sandwich geometry measurements are

shown in Fig. 1(a). The qualitative behaviour is very similar

to that reported previously16,17 albeit with lower error and

higher S/N—the conductivity increases by orders of magni-

tude in a sub-exponential manner. Critically, the data appears

to fit the MDAS model (Eq. (1)) very well (as did Rosenberg

and Powell’s data17), although we note the fitting parameters

are wholly unrealistic (see Table SI (Ref. 27)). This experi-

ment at face-value agrees with the historical record.

The vdP geometry closely approximates the conditions

under which previous adsorption isotherm studies estab-

lished the equilibrium hydration time and water content.23

Fig. 1(b) (Al chamber) shows the van der Pauw conductivity

as a function of hydration which demonstrates a dramatic

qualitative difference relative to the sandwich geometry.

There are three distinct regimes in the “conductivity iso-

therm”: an initial sharp increase up to �6.5 wt. %, a plateau

up to �11 wt. %, and super-exponential behaviour up to

maximum hydration. This data cannot be rationalised in

terms of the MDAS model irrespective of the fitting parame-

ters. It should be noted that we also performed the identical

measurement in a glass chamber similar to Rosenberg and

Powell17 and obtained identical results to the Al chamber

albeit with significantly increased noise (Glass chamber in

Fig. 1(b) with data only accessible >10 wt. %).

We now turn to the photoconductivity data. Since illu-

mination should produce an instantaneous change in conduc-

tivity, the magnitude of which depends upon the state of

hydration, we should observe no qualitative differences

between the two geometries. Furthermore, photoconductivity

measurements have been used to justify the MDAS model.14

Representative data for the sandwich configuration are pre-

sented in Figure 2 with additional data provided in Fig. S4.

Qualitatively similar results were obtained for the vdP geom-

etry (Fig. S5) although we note the lower currents (and hence

lower S/N) generated for the same illumination intensity due

to the differing field geometries. In all cases, after the initial

application of a measurement voltage, a stable current level

is attained (normalised as the zero photocurrent value). Illu-

mination induces a photocurrent response which reaches a

maximum value with a time constant of the order of seconds.

Heating from strong nonradiative coupling of white light

into the melanin samples25,26 causes a reduction in water

content and a subsequent increase in resistance—this effect

is more pronounced at higher water content as expected from

melanins’ water binding capacity.17,23 When the illumination

FIG. 1. (Color online) Melanin conductivity vs. water content utilizing the

sandwich geometry (a) and vdP geometry (b). The solid lines indicate the

MDAS model prediction. Furthermore, contact geometries are indicated.
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is removed, the photocurrent dissipates with a time constant

again of the order of a few seconds and finally a new

(lower—due to the reduced water content) equilibrium dark

conductivity is re-established. The fact that heating and sub-

sequent water desorption produces an apparent negative con-

ductivity must be emphasised, since as mentioned earlier, it

has been used to justify and strengthen the case for the

MDAS model. Specifically, it was argued by Crippa et al.14

that the negative conductivity was due to trap states in the

photo-bandgap of melanin—a feature seen in amorphous

semiconductors. The simpler explanation of heating induced

water desorption emerges under careful environmental con-

trol and through a detailed knowledge of nonradiative con-

version of absorbed photons,25,26 and the adsorption,23 and

conductivity isotherms.

Taken together, these results, made using a carefully

controlled dark/photoconductivity measurement protocol,

show behaviour very different to that predicted by the

MDAS model. We have demonstrated that the standard sand-

wich contact geometry for measuring the electrical proper-

ties of melanin has led to systematic errors in interpreting

the charge transport behaviour. These errors arise due to

non-equilibrium water adsorption behaviour—a feature that

only emerges with an understanding of the relevant adsorp-

tion isotherms. A vdP contact geometry allows for equilib-

rium hydration to be established on a reasonable time scale

and reveals the true conductivity versus water content behav-

iour of melanin. Analogous photoconductivity measurements

confirm the findings from the dark measurements and reveal

a simple explanation for negative conductivity—that is heat-

ing induced water desorption, not trapping/de-trapping in the

melanin photo-bandgap. We, therefore, submit that there is

no longer any reason for considering melanin an amorphous

semiconductor, and a new model accounting for the domi-

nance of hydration is required. A more detailed analysis of

the possible transport models consistent with our findings

and reliable literature has been completed and will be

reported elsewhere. This analysis strongly suggests that mel-

anin is a hybrid ionic-electronic conductor which raises the

intriguing possibility of using these materials as a bioelec-

tronic interface. Finally, our study emphasises the difficulties

in measuring the properties of low conductivity, moisture

sensitive, disordered organic solids.
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FIG. 2. (Color online) Two representative photoconductivity traces obtained

using the sandwich geometry and a white light source illumination. The dark

conductivity (initial equilibrium value pre-illumination), hydration level,

and the light on/off points are indicated.
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