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Abstract

Surveys show strong evidence that disks typically dissipate in ∼5 Myr, there-

fore planets must form on a similar timescale. However, the primary mechanisms

driving disk-loss are still under investigation. Young binary stars are ideal targets

for studying disk evolution because their stellar component provides a small control

sample. This study probes the possibility that the relative rotation axes’ inclinations

of young binaries may significantly affect disk lifetime, thus impacting their ability

to form planets. A case study of the young binary DF Tau combines observational

and computational analyses to investigate component rotation axes’ inclinations and

compare them to the circumstellar disk properties of this system. Periodogram anal-

yses of unresolved time-series photometry recover a rotation period of 10.5 d for the

primary and an upper limit of 3.3 d for the secondary. Rotation periods combined

with spectrally-derived projected rotation velocities yield an inclination of 90 degrees

for both components. Additional investigation into a strong 9.3 d period present in

periodogram indicates accretion hot spots are likely the source. DF Tau is one ex-

ample target selected from a sample of ∼100 different young binary observations and

highlights the importance this data set has on informing our understanding of disk

evolution and planet formation.
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Chapter 1

Introduction

The formation and evolution of a circumstellar disk is a vital step in stellar

evolution–perhaps the most fundamental of astrophysical processes that ultimately

dictates the nature of planet-forming systems. The complexity of the problem can be

broken down into a sequence of evolutionary stages (Figure 1.1, Shu et al., 1987). The

process begins within a giant molecular cloud, a diffuse and irregular collection of gas

and dust, which forms self-gravitating, massive concentrations of matter in cold cores.

These cores eventually become unstable and collapse under their own gravity to form

a spherical mass supported by thermal hydrostatic equilibrium known as a proto-

star. Protostars are characteristically embedded in an envelope of infalling accreting

material and surrounded by optically thick disks; part of the envelope is eventually

ejected in high-energy bipolar outflows. However, the remaining matter continues to

drive the evolutionary process as the once-encompassing envelope accretes onto the

circumstellar disk. The disk itself accretes onto the now optically revealed pre-main

sequence (PMS) object, most commonly referred to as a T Tauri star (TTS). The

last stage of stellar evolution is the disappearance of the circumstellar disk and the

emergence onto the main sequence as a potentially planet-hosting star.

The prominent mechanism(s) behind disk-dispersal during the PMS evolutionary
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phase is not a well-understood phenomenon. Observationally, circumstellar disks that

may yet undergo, or are actively engaging in, planet formation are hosted by TTS.

TTS are extremely young (0.1-10 Myr), low-mass (0.1-1.0M�) objects that fall into

roughly two classifications: (1) classical T Tauri stars (CTTS), which show evidence

of hosting an optically thick circumstellar disk and exhibit varying amounts of star-

disk magnetic and dynamical interactions such as disk-locking and accretion (Bertout

et al., 1988), and (2) weak-line T Tauri stars (WTTS), which have also not yet evolved

onto the main sequence, but do not demonstrate significant mass accretion and show

no indication of an inner disk (Walter, 1987). It is thought that WTTS may be the

evolutionary product of CTTS because statistical surveys suggest circumstellar disks

are likely to dissipate in � 5 Myr into their lifetime (Hernández et al., 2007)(Figure

1.2). Understanding the interplay between CTTS and their disks is critical to our

comprehension of what drives the disks’ evolution (potentially through the WTTS

phase) toward becoming planet-hosting main sequence stars.

The goal of this study is to use time-series photometry of TTS to help identify

periodic signals that may be the result of flux modulation induced by giant spots on a

rapidly rotating star, as well as potential sources of aperiodic variability that may help

characterize mass accretion rates, outflow activity, and additional important processes

such as occultations resulting from disk inhomogeneities. A likely ubiquitous source

of variability among all young stars is the effect of cool spots on a star’s observed

photospheric flux, which provides a direct probe of a star’s rotation period. Rotation

periods provide a basic snapshot of the state of a star’s angular momentum during

its evolution into a main sequence star. Magnetic interactions (Figure 1.3) between a

young star and even a small fraction of ionized gas in a disk regulate stellar rotation

by “locking” the star into a state of co-rotation with inner edge of the disk (Stassun

et al., 2000; Cauley et al., 2012). The star will spin up as it contracts upon the

eventual dissipation of the disk. If CTTS in fact do evolve into WTTS, it would
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then be expected that WTTS typically rotate more quickly than CTTS. However,

recent evidence (Figure 1.4) suggests there is a difference in rotation periods among

stars that differ in age but no statistically significant difference in rotation period

between CTTS and WTTS (Karim et al., 2016). Although this is consistent with the

prediction that TTS lose their inner disk at ∼5 Myr, the results show inconsistencies

in the hypothesis that CTTS evolve into WTTS and spin up.

Figure 1.2: Disk frequency vs. age of young stellar clusters may provide an indication of
the typical disk lifetime (Hernández et al., 2007). Filled symbols represent values calculated
using IRAC data for stars in the PMS mass range (0.1-1.0M�), and open symbols represent
those determined with JKHL observations.

Acquiring optical photometry that clearly indicates rotational modulation is most
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temperature, spectral type, magnetic field strength, radial velocity, and projected ro-

tational velocity (v sin i). When analyzed together, photometric and spectroscopic

data can be used to provide evidential support for or against potential causes of an

observed periodic signal. For example, starspots lead to variability in the photo-

spheric absorption lines used to determine stellar radial velocity and can introduce

periodicity, which may by misinterpreted as arising in radial velocity (RV) motion.

To best interpret the photometry analyzed in this work, a combination of spectra and

time-series photometry are analyzed together to disentangle observational degenera-

cies such as stellar equatorial rotation velocity (v) and inclination (i) in spectral

measurements of v sin i.

Young visual (angular sep > 0.04 arcsec, the diffraction limit of the worlds largest

telescope, the 10 meter Keck, at 1.6 μm) binary and multiple stars are excellent labo-

ratories for studying stellar and disk evolution because their companion stars provide

a control sample. Also, most stars in the galaxy are a part of multiple-component

systems (Raghavan et al., 2010), emphasizing the importance of understanding cir-

cumstellar disk lifetimes for binaries in particular. One consequence of binarity is the

possibility for a stellar companion to disrupt the disk around the other star, which

will affect the lifetime and/or morphology of the disk(s) (Cieza et al., 2009; Kraus

et al., 2016). Artymowicz and Lubow (1994) theorized that for close binary systems,

stability of a disk requires a radial upper limit 1/3 of the stars’ orbital separation.

However this is under the assumption that both stars’ rotational axes are perpen-

dicular to the orbital plane and parallel with each other. We do not know whether

non-zero relative rotational inclinations of binary stars have a significant affect on

disk lifetime. It is possible to investigate this if the relative rotational inclinations

are known and the presence of a disk around one or both components is known.

This work focuses on one peculiar TTS system in the Taurus star forming region:

DF Tau, a young visual binary with only one component that shows evidence of
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Chapter 2

Methodology

2.1 Observations

2.1.1 Time-Series Photometry

We acquired unresolved BVI photometry of DF Tau using the Lowell Observatory

0.7-m f/8 telescope in robotic mode. The CCD camera provides a 15 × 15′′ field at

an image-scale of 0′′.9/pixel. The system was observed on 35 nights over four months

between 2015 November 1 and 2016 February 28 UT. The field was visited up to five

times each night. Exposures were 180, 60, and 20 seconds in the B, V, and I filters,

respectively.

We used the commercial software Canopus (version 10.4.0.6) to perform stan-

dard photometric reductions, with bias and flat-field correction followed by ordinary

differential aperture photometry. The diameter of the photometry apertures were

typically 15′′ depending on the nightly image quality. We adopted BVI magnitudes

for the three comparison stars from the wide-field photometric surveys ASAS-3 (Po-

jmanski, 1997), TASS MkIV (Droege et al., 2006), and APASS DR9 (Henden, 2016),

VizieR item II/336. These adjust the photometric zero-points close to the standard

system. Interplay of the variable emission lines in DF Tau’s spectrum, comparison
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stars’ colors, and passbands of the filters + CCD system will inevitably cause small

zero-point shifts in magnitude. However, the magnitudes are nevertheless comparable

to long-term means in all three filters.

2.1.2 High-Resolution Spectroscopy

Our team acquired spatially resolved spectroscopic observations of the DF Tau

using NIRSPEC (McLean et al., 1998, 2000) aided by the adaptive optics (AO) sys-

tem (NIRSPAO) on the Keck II 10 meter telescope. Observations were acquired on

2009 December 6, 2010 December 12, and 2013 December 13 UT (Figure 2.1). The

NIRSPAO 2-pixel slit was 0.027 × 2′′.3, and produced spectra (R =30,000) in or-

der 49 (with a central wavelength of 1.555 μm). This order was used for analysis

because of the lack of telluric absorption lines as well as the abundance of atomic

and molecular lines (Mace et al., 2012). Dark frames, flat-field frames, and arc-lamp

frames were obtained to correct for dark current, nonuniform pixel-to-pixel detector

response and wavelength calibration. Target observations were made with an AB

nodding pattern at two locations along the slit. The integration time for each nod

was 300 seconds, and internal Ne, Ar, Xe, and Kr comparison lamps were used for

wavelength calibration.

The data were reduced using REDSPEC (Kim et al., 2015), which utilizes routines

for the spatial rectification, wavelength calibration, removal of detector, atmospheric

and optical path artifacts, and extraction of spectra. The 2D spectra were rectified by

3rd order polynomial fits to the spatial dimensions and 2nd order polynomial fit to the

spectral dimensions. We used comparison-lamp emission lines in order to determine

the wavelength solution. Any instrumental fringing and bad pixels were removed.

Two Gaussians were fit to each pixel of the spectral profile in the cross-dispersion

direction to extract the individual component spectra. Further observing details are

provided in Schaefer et al. (2012). The spectra were normalized to unity and were
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provides an analytic solution equivalent to fitting sine waves to time-series data (ti, yi

with ȳ = 0) of the form y = a cosωt+b sinωt. Provided a spectrum of frequencies, sine

waves are fit by the least-squares method to the data, and the reduced residual sums

are plotted against their corresponding frequencies to produce a power spectrum,

which is the amount of power each frequency contributes to the data’s variance. The

equations for the periodogram are given by Barning (1963), Lomb (1976), and Scargle

(1982):

p(ω) =
1∑
i y

2
i

{
[
∑

i yi cosω(ti − τ)]2∑
i yi cos

2 ω(ti − τ)
+

1∑
i y

2
i

[
∑

i yi sinω(ti − τ)]2∑
i yi sin

2 ω(ti − τ)

}
(2.1)

where ti is the time at each measurement, yi is the value of each measurement, ω is

the angular frequency of the sine wave, and τ is given by

tan 2ωτ =

∑
i sin 2ωti∑
i cos 2ωti

. (2.2)

There are a few drawbacks to this method which must be noted: First, in order for

this method of analysis to be valid, the mean of the data must be subtracted (ȳ = 0).

This implies the mean of the fitted sine function is equivalent to the mean of the data,

which may not be true, and can be overcome by simply adding a vertical shift, c to the

sine function such that y = a cosωt+ b sinωt+ c (Cumming et al., 1999). Second, the

periodogram does not take into account measurement uncertainty. Gilliland and Bal-

iunas (1987) and Irwin et al. (1989) tackle this issue by implementing weighted sums.

These alterations to Scargle (1982)’s periodogram made for a more robust analysis in

the case of a small number of observations by accounting for potential statistical fluc-

tuations in the mean of the sampled observations and applying appropriate weights

to measurements with varying uncertainties.
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2.2.1.1 The Generalized Lomb-Scargle (GLS) Periodogram

The periodogram analysis procedure utilized in this work is presented by Zech-

meister and Kürster (2009), and is known as the Generalized Lomb-Scargle (GLS)

periodogram. The GLS periodogram is the most up-to-date adaptation of the tradi-

tional CLS periodogram. The GLS periodogram is acquired the same way as described

by Lomb (1976), by fitting a full model sine function, y(t) = a cosωt + b sinωt + c,

to a time series of N measurements at time ti and errors σi. The function includes

an offset, c. For a given grid of frequencies (ω) or periods (P = 2π
ω
), Zechmeister

and Kürster (2009) determine the minimum squared difference between the observed

data, yi, and the sine function y(t):

χ2 =
N∑
i=1

[yi − y(ti)]
2

σ2
i

. (2.3)

After applying normalized weights (wi =
1
W

1
σ2
i
, where W =

∑
1
σ2
i
, and

∑
wi = 1),

equation (2.3) becomes

χ2 = W
N∑
i=1

wi[yi − y(ti)]
2. (2.4)

The periodogram, p(ω), can be written as the normalized relative χ2 reduction:

p(ω) =
χ2
o − χ2

χ2
o

(2.5)

p(ω) =
1

Y Y ·D [SS · Y C2 + CC · Y S2 − 2CS · Y C · Y S] (2.6)

where

D(ω) = CC · SS − CS2 (2.7)

and

Y =
∑

ωiyi (2.8)
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C =
∑

ωi cosωti (2.9)

S =
∑

ωi sinωti. (2.10)

Y Y = ˆY Y − Y · Y

Y C(ω) = ˆY C − Y · C

Y S(ω) = Ŷ S − Y · S

CC(ω) = ĈC − C · C

SS(ω) = ŜS − S · S

CS(ω) = ĈS − C · S

ˆY Y =
∑

ωiy2i (2.11)

ˆY C =
∑

ωiyi cosωti (2.12)

Ŷ S =
∑

ωiyi sinωti (2.13)

ĈC =
∑

ωi cos2 ωti (2.14)

ŜS =
∑

ωi sin2 ωti (2.15)

ĈS =
∑

ωi cosωti sinωti (2.16)

The abbreviations with hats on the right-hand column represent the classical sums.

The weighted sum of the squared deviations from the weighted mean, χo
2, is defined

as W · Y Y .

Equation (2.5), the generalized Lomb-scargle periodogram, lies within the range

0 ≤ p ≤ 1, where p = 0 indicates no improvement of the fit and p = 1 indicates

χ2 = 0 (in other words, a “perfect” fit). An arbitrary time reference point, τ , can

be introduced into the time-dependent sums, which will not affect the χ2 of the fit

(ti → ti − τ). If τ is chosen as

tan 2ωτ =
2CS

CC − SS

=

∑
wi sin 2ωti − 2

∑
wi cosωti

∑
wi sinωti∑

wi cos 2ωti − [(
∑

wi cosωti)2 − (
∑

wi sinωti)2]

(2.17)

Equation (2.5) becomes

p(ω) =
1

Y Y

[
Y C2

τ

CCτ

+
Y S2

τ

SSτ

]
(2.18)

because the interaction term, CSτ , disappears and the index, τ , is added to the
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time-dependent sums. The difference between Equations (2.1) and (2.18) is that in

(2.18) the errors are weighted and there is the second term accounting for the floating

mean in Equations (2.14), (2.15), (2.16), and (2.17) (CCτ , SSτ , CSτ , and tan 2ωτ ,

respectively).

2.2.1.2 False Alarm Probability (FAP)

One major challenge when interpreting periodograms arises when noise in the

time-series data produces various peaks in the resulting periodogram that are not

real. This must be combated by determining the false alarm probability (FAP) for

resulting periodogram. The FAP determines the likelihood that at least one of M

power values within a prescribed frequency grid computed from a white-noise time-

series will equal or exceed a specified value. The greater a signal’s power, the less

likely it will be flagged as a false alarm. Calculating the FAP can be done analytically

and/or by Monte Carlo or bootstrap simulations.

The probability that a specified power can arise purely from noise must first be

calculated to determine the FAP. Different periodogram normalization techniques

require their own respective probability functions (Table 2.1). The GLS periodogram

is normalized to unity, so the probability that at least one other power, p (where

p ∈ [0, 1]), will be at or greater than a given value, po, is

Prob(p > po) = (1− po)
N−3

2 . (2.19)

The significance of a peak with power, po, compared to peaks at all other sampled

frequencies (Zechmeister and Kürster, 2009) is

FAP = 1− [1− Prob(p > po)]
M . (2.20)

For a frequency grid with width Δf = f2− f1 sampled at a resolution δf ≈ 1
T
(where
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T is the time duration of sampled frequencies), M = Δf
δf
. If f1 � f2, then M ≈ Tf2

(Cumming, 2004). For low FAP values (FAP � 1) Zechmeister and Kürster (2009)

give the approximation,

FAP ≈ M Prob(p > po). (2.21)

Table 2.1: Probability functions for the likelihood that a periodogram power, p, will
be greater than or equal a specified value, po (Cumming et al., 1999).

Reference Level Range Probability

Population Variance p ∈ [0,∞) Prob(p > po) = exp(−po)

Sample Variance p ∈ [0, 1] Prob(p > po) = (1− po)
N−3

2

Residual Variance p ∈ [0,∞) Prob(p > po) = (1 + 2po
N−3

)−
N−3

2

Alternatively, the FAP can be determined by using a Monte Carlo or bootstrap

simulation. It must be noted that such numerical techniques require much more time

to complete than the computation of the GLS itself. An example of this and how it

compares to the analytical procedure is discussed in Section 2.2.1.3.

2.2.1.3 Example Usage on Simulated Data

The GLS procedure can be tested on a simulated data set (Section 3.1.2), mod-

eling the time-series photometric signature of a single star. The rotation period is

already known and can be used to test the accuracy of the resulting GLS periodogram.

Additionally the reliability of each of the FAP methods can be tested.

The GLS was tested on a model rotation signature with a rotation period of 10

d with an inclination of 90o and injected gaussian noise. The sampling rate of the

“observations” was dictated to be on a nightly basis with intermittent and randomly

distributed “weather”, that would have inhibited observations of the target. The

results of the GLS periodogram analysis successfully picked out a dominant periodic

signature of 10 d. The peak corresponding to the period at 10 d returned 0.00%

15



likelihood that this signal is a false alarm.

2.2.2 Determining Relative Inclination

Using the resulting stellar rotation periods acquired from the time-series pho-

tometry (Section 2.1.1) and the v sin i values extracted from the component resolved

spectra (Section 2.1.2), we can disentangle the rotational velocity and inclination from

the component v sin i values using the following relation:

2πR�

Prot

sin i = v sin i (2.22)

where Prot is the equatorial rotation period of the star, R� is the radius of the star, and

i is the inclination of the star relative to our line of sight. Solving for the inclination,

we have:

i = sin−1

[
v sin i

(
Prot

2πR�

)]
(2.23)
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Chapter 3

Modeling Observational Signatures

3.1 Simulating Time-Series Photometry of Unre-

solved Binary Stars

The purpose of the simulation is to model the time-series photometric signature

that would be observed from the presence of star spots on the photospheres of two

rotating stars in an unresolved binary system. The code generates the total flux from

each star individually and applies scale factors to account for each star’s contribution

to the total observed flux. Once the individual fluxes are scaled, they are simply

added together and injected with Gaussian noise to produce the final “observed”

signal. The result generated by the simulation is represented as a normalized flux

because the simulation quantifies the change in flux as the ratio of (1) the brightness

of the system while it is affected by dimming or brightening to (2) the brightness of

the system in the absence of dimming or brightening. The code defines the latter

component of this ratio to be 1.0 (effectively normalizing the signal) such that any

instances of dimming or brightening can be represented as a contrast ratio, preserving

the normalization of the overall signal, and generalizing its usage so that it may be

utilized for various physical applications involving flux changes.
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3.1.1 User Input

Each star has a set of parameters given as user-definable values:

• minimum and a maximum latitude limits (in degrees) where spots can occur

• minimum and maximum contrast ratios star spots may have

• the star’s rotational inclination

• the rotation period in days

The values for spot latitudes and longitudes are generated using a uniform random

number generator (latitudes are generated between the specified limits described

above and longitudes are between 0 and 360 degrees).

Additional user inputs pertain to the sampling rate of the simulation:

• the total time the model should simulate (in days)

• the sampling time difference (also in days)

And finally, the ratio of the fluxes from each star (flux ratio) is also defined by the

user.

3.1.2 Computing the Photometric Signature of Spots on a

Single Star

The simulation computes the observed flux of a single star as prescribed by Aigrain

et al. (2012), which treats star spots as though they are point-like. Realistically, star

spots do have surface area; however, treating the spots as small points is beneficial

because it eliminates unnecessary area-dependent calculations while still accomplish-

ing the goal of modeling a spotted star’s observational signal. For example, point-like

spots obey the assumption that spots never overlap. Additionally, no specific shape
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must to be generated for each spot. With no specific shape, spatial projection effects

within spots can be ignored. Also, stellar limb-darkening is not taken into account be-

cause even though the star’s unspotted photospheric brightness decreases toward the

limb, so does the brightness of the spot, minimally affecting the spot’s photometric

signature.

The observed change in flux caused by the kth spot changing its position on the

Earthward-facing surface of a single star is

Fk(t) = fkMAX{cos βk(t); 0}1, (3.1)

where t is time, βk(t) is the angle between the spot normal and the line of sight, and

fk represents the difference in flux output the spot would cause if it were located at

the center of the stellar disk. fk is commonly interpreted as a combination of the

dimming effects caused by the spot’s area and its contrast and can be theoretically

determined as follows:

fk = 2(1− ck)(1− cosαk), (3.2)

where c is the contrast ratio between the spot and the photosphere in the absence

of spots, and αk is the spot’s angular radius on the surface of the star. Note there

exists a degeneracy between the effects c and αk have on fk. To account for the fact

we cannot disentangle each parameter’s contribution to the observed change in flux,

both can effectively be combined into a single term. Thus, we amend Equation 3.2

by dropping the αk term (because the spots are already mathematically defined to

have no area), and fk becomes

fk = 2(1− ck). (3.3)

1MAX indicates a condition which selects the maximum value of the quantities within the
brackets, which is either cosβk(t) or 0.
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The βk(t)-dependent conditional term in Equation 3.1 applies the projection effect the

spot’s relative geometric location on the star’s surface has on fk. βk(t) is determined

by

cos βk(t) = cosφk(t) cos δk sin i+ sin δk cos i, (3.4)

where δk is the latitude of the spot relative to the star’s rotational equator, i is the

stellar rotational inclination. φk(t) is the phase of the spot relative to the observer’s

line of sight (the stellar meridian) and is given as

φk(t) =
2πt

Prot

+ φk,o. (3.5)

Prot is the star’s equatorial rotation period and φk,o is the longitude of the spot at t

= 0. If multiple spots are present on the stellar disk, the total change in observed

flux is

Ψ(t) = Ψo

[
1−

N∑
k

Fk(t)

]
, (3.6)

where Ψo is the observed flux without the presence of spots (Ψo = 1), and N is the

total number of spots.

3.1.3 Application to an Unresolved Binary System

The method described above can be used to simulate the total observed flux

from two stars in an unresolved binary system. First, the each flux is calculated

individually for both components. At this stage in the simulation the normalized flux

outputs are not yet combined, so the fluxes of the primary and secondary (Fp and Fs,

respectively) both equal 1 in the absence of spots, representing the system as though it

is component-resolved. However, the normalized flux from the system must represent

unresolved observations, requiring that sum of each components’ contributing flux

equals 1. Thus, each star’s flux output must be scaled such that for a spotless
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photosphere,

spFp + ssFs = 1 (3.7)

where sp and ss are the scale factors for the primary and secondary components,

respectively. Because Fp and Fs equal 1, Equation 3.8 reduces to

sp + ss = 1. (3.8)

Additionally, the ratio of the scale factors is equivalent to the empirical flux ratio of

the primary and secondary components of the binary system being modeled (Fratio),

and can be written as

Fratio =
sp
ss
. (3.9)

Equations (3.8) and (3.9) share properties which can be used in a system of equa-

tions to determine the value of each scale factor. Rearranging (3.9) for ss, then

substituting into (3.8) results in the following calculation to obtain sp:

sp =

[
1 +

1

Fratio

]−1

(3.10)

and subsequently, ss:

ss = 1− sp. (3.11)

The scaling factors are then applied to the flux output of their respective stellar

component at each time step in its rotation (for a spotted photosphere, Fp and Fs ≤
1). The resulting sum of the scaled fluxes is a correctly normalized model of the

photometric signature created by spots on the surface of two unresolved rotating

stars.
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Chapter 4

Case Study: DF Tau

4.1 Overview

DF Tau is a young (∼1.5 Myr) visual binary in the Taurus star-forming region

(Herbig and Bell, 1988) with an angular separation of ∼100 mas, corresponding to

14 AU given the distance to Taurus of ∼140 pc (Kenyon et al., 1994). Interestingly,

only one component shows evidence (Figure 4.1) of having a circumstellar disk even

though both stars are coeval – a situation not dissimilar to the results (Figure 1.4)

presented by Karim et al. (2016), with the exception that DF Tau possesses the

advantages of belonging to a multiple star system. DF Tau is thus a key component

in the investigation of PMS disk evolution because its properties can help inform

disk-dissipation processes that do not assume WTTS are a product of CTTS.

Table 4.1: Component Properties

Property Primary Secondary Ref.

Spectral Type M2 M2 Allen et al. (2017)

V Magnitude 12.43±0.06 13.10±0.1 White and Ghez (2001)

v sin i 13±4 41±4 Allen et al. (2017)

veiling 0.6±0.1 0.0±0.1 Allen et al. (2017)
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et al., 2017), and there has been considerable variation in reported radii (Table 4.2).

Prior to this work, the most up-to-date masses and radii of both DF Tau’s primary

and secondary components are 0.59±0.15 M� and 2.1 R�, and the only component-

resolved determinations of v sin i are 13±4 km s−1 and 41±4 km s−1, respectively

(Allen et al., 2017).

The inclination of DF Tau’s primary stellar component can be found using Equa-

tion 2.23. However, an initial calculation using the input parameters P = 10.5 d, R�

= 2.1 R�, and v sin i = 13±4 km s−1 returns an unreal result (i.e., the inverse sin

of a term greater than 1 does not return a physically possible value). This suggests

the stellar radius is likely underestimated. Closer investigation of R� approximates

a lower limit of 2.7±0.84 R� (when i = 90 degrees), which is consistent with the

radius of a 1.5 Myr old, 0.6 M� star as predicted using model isochrones by Baraffe

et al. (2015). We adopt this radius for both stellar components; thus the rotation

inclination of the primary is determined to be 90 degrees relative to the line of sight

of the observer.

Determining the secondary’s rotation inclination using the input parameters P =

9.3 d, R� = 2.7 R�, and v sin i = 41±4 km s−1 presented a similar issue, producing a

non-real result. This indicates the 9.3 d periodic signal identified by the periodogram

analysis does not correspond to the rotation period of the secondary. An upper

limit can be estimated assuming i = 90 degrees, which gives P ≤ 3.3 d. This is

consistent with the much larger value of v sin i for the secondary star, indicating

more rapid rotation. The large discrepancy in rotation periods is also consistent with

the observation that a disk only exists around the primary because a larger rotation

period signifies its rotation is likely regulated by disk-locking, whereas the smaller

rotation period of the secondary suggests it is not subject to disk-locking.
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Table 4.2: Previously published properties

M� Prot R� v sin i i Ref.
M� [d] R� [km s−1] [deg]

... ... ... <35 ... Vogel and Kuhi (1981)

... >10 ... ... ... Rydgren et al. (1984)

... ... ... 21.6±9.2 ... Bouvier et al. (1986)

0.8 ... 3.8 ... ... Bertout et al. (1988)

... 8.5 ... ... 65±25 Bouvier and Bertout (1989)

... ... ...
19.7±7.8a

16.1±5.3b
... Hartmann and Stauffer (1989)

... ... ... 20 ... Basri and Batalha (1990)

... 7.9 ... ... ... Richter et al. (1992)

... ... ... 18±4 ... Bertout et al. (1993)

... 8.5 3.0 16.1±5.3 64 Bouvier et al. (1995)

0.17 ... 3.9 ... ... Hartigan et al. (1995)

... 7.3±0.4c ... ... ... Johns and Basri (1995)

... 7.0±0.2d ... 21.7±5.3 ... Johns-Krull and Basri (1997)

0.27 ... 3.37 ... ... Gullbring et al. (1998)

... 7.2±0.3 ... ... ... Chelli et al. (1999)

... ... ... ... 85 Johns-Krull and Valenti (2001)

0.39 7.18 3.55 ... 52 Artemenko et al. (2012)

0.59±0.15 10.55 2.1
13±4p
41±4s

... Allen et al. (2017)

a Kitt Peak National Observatory 4 m Telescope
b Fred L. Whipple Observatory 1.5m
c Variability found in Hα
d Variability found in He I 5876 Å
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4.2.2 Accretion-driven Periodicity?

The 9.3 d periodic signal is likely not generated by the secondary component’s

rotation period, it is also probably not a false signal resulting from the irregular

sampling (Allen et al., 2017). We cannot rule out that the source of the signal has a

physical explanation.

It is possible the source of this signal originates from hot spots resulting from

magnetospheric accretion onto the primary star (Ghosh and Lamb, 1978). Lamb

et al. (1985) suggest that material accretes onto an inclined magnetosphere where

the magnetic field appears stronger The signature is pronounced at specific phases

in relation to ωK(r) and ω�, where ωK(r) is the angular frequency associated with

the Keplarian orbital velocity of the clump of accreting material, and ω� is that of

the magnetospheric rotation (also the rotation period of a disk-locked star). Bouvier

and Bertout (1989) speculate that CTTS can exhibit similar behavior resulting from

an inclined magnetospheric structure that could cause a shift in the period when

interacting with accreting inner-disk material of a non-uniform density. The observed

change in the phase of the brightness signature caused by hot spots relative to the

rotation of the star is

ΔPhase =
2π

ωK(r)− ω�

. (4.1)

In a state of rotational equilibrium, hot spots’ longitude remains mostly stationary,

so no rotational phase offset is likely to be observed (Bouvier et al., 2007). If the rate

of accretion increases as a result of more clumpy inhomogeneities in the inner disk,

then the hot spots’ angular velocity at the base of the stream also increases and

changes its position by a small amount. The stars with misaligned magnetospheres

tend to accrete matter streams and can be known to spiral along the magnetic equator

(Bouvier et al., 2007). The resulting variability of a star with hot spots typically

causes 1-2 peaks in brightness per period, depending on β, the angle between the
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star’s rotation axis and the magnetic dipole moment, and φ, the inclination of the

dipole to the observer.

Figure 4.6: Geometry of an aligned and inclined magnetospheric dipole (Gregory et al.,
2006). Left : An aligned dipole with the dipole moment μ aligned with the stellar rotation
axis, Ω. Right : A misaligned dipole with an inclination of 90 degrees relative the the star’s
rotation axis.

Alternatively, magnetic dynamo and accretion models by von Rekowski and Piskunov

(2006) show that accretion causes the star to spin-up at latitudes where material

meets the star. Analysis of hotspot distribution on T Tauri stars in relation to mag-

netospheric inclination (Figure 4.6) (Gregory et al., 2006) agrees with Bouvier et al.

(2007), showing that along inclined magnetic dipoles (β > 0), accretion typically falls

onto lower latitudes compared to aligned dipolar fields (β = 0) (Figure 4.7). In the

inclined case, where matter accretes onto equatorial regions of the star, there is a

significant positive net torque along a thin strip around the same latitudinal region

of the stellar surface. In addition, dipolar accretion models of DF Tau in particular

(Gregory et al., 2006) show that greater-inclined magnetic fields exhibit increased

accretion rates. This would likely strengthen the effect of positive torque along lower

latitudes, yielding a greater phase offset than seen with aligned dipoles.

Light curve models of the unresolved photometric variability of the system are

used investigate whether the 9.3 day signal corresponds to a phase-offset caused by

accreting material. The model follows the prescription of Aigrain et al. (2012) to

simulate the time-series photometric signature observed as an effect of the presence
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Chapter 5

Conclusions and Future Work

The rotation period of the primary stellar component of the young binary DF

Tau was extracted using a Generalized Lomb-Scargle periodogram analysis from un-

resolved V-band time-series photometry acquired at the Lowell Observatory 31 inch

Telescope. NIR spectra obtained with Keck/NIRSPEC provided v sin i measurements

for both the primary and secondary components of the system (Allen et al., 2017).

The inclination of the primary component’s rotation axis was determined using pho-

tometric the rotation period (10.5 d with FAP = 0.00) and corresponding v sin i (13±4

km s−1), and is vertical with respect to the line of sight of the observer. The Lomb-

Scargle periodogram analysis produced a second strong signal at 9.3 d, however it is

unlikely this is the rotation period of the secondary component because an estimate

of the upper limit (i = 90 degrees, v sin i = 41±4 km s−1) yielded a maximum rotation

period of 3.3 d. This demonstrates the primary is rotating slower than the secondary,

providing further evidence in support of primary having a disk that is regulating its

rotation velocity, whereas the secondary does not. Additionally, the rotation inclina-

tions of both stars are nearly perpendicular to the line of sight, therefore indicating a

misalignment between the stars’ rotation axes and the orbital plane by ∼54 degrees.

This also suggests the plane of the disk is also misaligned with respect to the orbital
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plane.

Ten thousand model light curve simulations were generated for a binary sys-

tem given the same photometric flux ratio, observing cadence, rotation periods, and

component rotation inclinations as acquired with the photometric and spectroscopic

analysis of DF Tau summarized above. All model light curves were subject to a

Lomb-Scargle analysis and all results were averaged to produce a single statistically

representative power spectrum. The model power spectrum was compared against

the original produced from the real photometry. The 10.5 d periodic signal was repro-

duced by the model, however the 3.3 d period did not produce a signal that could be

reliably extracted from the power spectrum. The absence of the secondary rotation

period indicates it is also not recoverable from the observed light curve. The 9.3 d

signal was also absent, suggesting its appearance in the observed power spectrum is

not a result of the time-sampling variation between observations. The strong periodic

signal at 9.3 d may originate from accretion-induced hot spots on the surface of the

primary component. Photospheric hot spots exhibit an apparent shift in rotation

frequency relative to cool spots depending on the distance between the stellar surface

and the inner disk radius. The simulation was amended to account for the presence of

hot spots provided DF Tau’s known corotation radius. The same iterative procedure

produced an averaged power spectrum displaying a 9.3 d signal of similar strength as

seen in the analysis of the observed light curve.

There is no indiction the relative inclination of DF Tau’s primary and secondary

rotation axes is probable cause for neither prolonged nor premature disk lifetimes.

Provided both stars are coeval and possess the same mass and radius, the most likely

explanation is that not all disks form with the same properties. For example, it is

possible young stars may not emerge from the protostellar stage with disks at all, and

may also not be a symptom of binarity. These conclusions imply the necessity of a

statistically-fashioned analysis of the remaining young binaries in our sample.
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