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[1] Declining forest health, climate change, and development threaten the sustainability of
water supplies in the western United States. While forest restoration may buffer threats to
watershed services, funding shortfalls for landscape-scale restoration efforts limit
management action. The hydrologic response and reduction in risk to watersheds following
forest restoration treatments could create significant nonmarket benefits for downstream
water users. Historic experimental watershed studies indicate a significant and positive
response from forest thinning by a reallocation of water from evapotranspiration to surface-
water yield. In this study, we estimate the willingness to pay (WTP) for improved watershed
services for one group of downstream users, irrigators, following forest restoration
activities. We find a positive and statistically significant WTP within our sample of $183.50
per household, at an aggregated benefit of more than $400,000 annually for 2181 irrigators.
Our benefit estimate provides evidence that downstream irrigators may be willing to invest
in landscape-scale forest restoration to maintain watershed services.
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1. Introduction

[2] Declining forest health, climate change, and develop-
ment threaten the sustainability of water supplies in the
western United States. While forest restoration may buffer
threats to watershed services, funding shortfalls for land-
scape-scale restoration efforts limit management action.
The hydrologic response and reduction in risk to water-
sheds following forest restoration treatments could create
significant nonmarket benefits for downstream water users.
Historic experimental watershed studies indicate a signifi-
cant and positive response from forest thinning by a reallo-
cation of water from evapotranspiration to surface-water
yield. In this study, we estimate the willingness to pay
(WTP) for improved watershed services for one group of
downstream users, irrigators, following forest restoration
activities.

[3] In his early observations of ‘‘the Arid Lands’’ of the
western United States, Powell [1879] observed that sustain-
able human development would require careful manage-
ment of scarce water resources. Water management in the
arid western United States, which generally receives less
than 50.8 cm of precipitation annually, would require a
recognition of the importance of forested headwaters for

effective water resource management. As increasing popu-
lation demands and climate change threaten the sustainabil-
ity of water supplies in the arid West, forest restoration
plays an important role in buffering the mounting threats to
water resources. Despite the need for forest restoration,
funding shortfalls remain a significant barrier to implemen-
tation of restoration plans.

[4] Across the United States, National Forest lands cover
an area in excess of 78,104,329 ha and play a critical role
in capturing precipitation, enhancing groundwater recharge
and supplying high-quality water for downstream uses
[Kimbell and Brown, 2003]. National Forests contribute the
largest source of drinking water for the contiguous United
States [Furniss et al., 2010], totaling over 329 billion cubic
meters annually [Brown and Froemke, 2009]. National For-
est lands are particularly important in the arid western
United States, providing 51% of water supplies in the 11
contiguous Western states [Brown et al., 2005].

[5] The quantity and quality of water resources from
National Forests is highly dependent on forest conditions
and land management. Previous land management prac-
tices, particularly fire suppression and exclusion, have
altered the composition and structure of western forests,
contributing to declines in forest health [Kauffman, 2004].
Consequently, an estimated 4,875,519 ha is classified as
unnaturally dense conditions with excessive woody fuels
[Snider et al., 2003]. Unnaturally, dense forest conditions
restrict water availability by increasing rates of evapotrans-
piration [Baker, 2003]. Water resources are further threat-
ened by the environmental phenomena associated with
impaired forest health, such as wildfire and insect outbreak.
Additionally, seasonal drought and climate change have
significant impacts on the quality and quantity of water
from National Forests [Berry, 2010].
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[6] Global climate change will have a profound impact
on southwestern water resources, including reduced stream
flow due to higher evapotranspiration rates and increases in
the frequency and severity of drought conditions. Climate
projections for western North America indicate temperature
increases of 2�C–5�C by 2040 [Intergovernmental Panel
on Climate Change (IPCC), 2007] and precipitation
decreases of up to 15% for the same period [Routseenoja
et al., 2003]. Leung et al. [2004] suggest that climate
change will significantly affect water resources in the west-
ern United States by the mid 21st century, with a 1�C tem-
perature increase expected to decrease stream flows in the
southwestern United States by approximately 14% [Chris-
tensen et al., 2004]. Climate projections also forecast an
increase in the variability of extreme weather events,
including drought. Not surprisingly, Arizona has experi-
enced varying levels of drought since 1996, with some of
the worst since the late 19th century [Sheppard et al.,
2002].

[7] Increased incidences of drought and consequent
declines in water availability will have significant impacts
on high water-use sectors. Irrigation accounts for the larg-
est use of surface water nationally and claims more than
70% of total water use in Arizona [Colby, 2007]. Climate
change could cause a reduction of the number of farmed
acres in Arizona by 4%–20% [Owen, 2009]. Improving the
condition of the forested watersheds that supply surface
water for irrigated agriculture may enhance water supplies
and buffer the projected losses caused by climate change.

[8] Previous forest management practices have caused
widespread declines in forest health, predisposing them to
uncharacteristically severe wildfires [Kauffman, 2004].
Severe wildfire can negatively impact water resources by
burning vegetation, and exacerbating erosion and sedimen-
tation. Erosion and sedimentation result in decreased water
quality and significant potential damage to water-delivery
infrastructure. For example, sediment and silt removal costs
following wildfire in one of Denver, Colorado’s municipal
watersheds, amounted to $40 million [Stanton and Zwick,
2010]. Trends indicate an increase in the severity and fre-
quency of large wildfires in the western United States since
the 1980s [Westerling et al., 2006], particularly in south-
western Ponderosa pine (Pinus ponderosa) forests. An av-
erage of 179,397 ha burned annually between the years of
1993 and 2001 in Arizona and New Mexico [Snider et al.,
2003].

[9] Ecological restoration can play a pivotal role in
restoring ecosystem health and mitigating catastrophic
wildfire potential [Allen et al., 2002]. The Four Forest Res-
toration Initiative (4FRI) seeks to restore more than
970,000 ha of Ponderosa pine (P. ponderosa) forests across
four National Forests in Arizona. Ecological restoration
generally involves a combination of mechanical thinning
and prescribed burning to restore forests to within their
‘‘historic range of variability’’ [Mast, 2003; Wu et al.,
2011]. Restored forests maintain a more resilient structure
that encourages natural surface fire regimes, discourages
tree seedling recruitment, overstocking, and the consequent
threat of stand-replacing wildfire [Mast, 2003]. After treat-
ment areas are initially thinned, maintaining this forest con-
dition requires follow-up management, such as frequent
burning, as well as restoration monitoring.

[10] Without large-scale intervention, fire suppression
and rehabilitation costs will continue to grow, impeding the
ability to maintain and restore forest conditions into the
future [Covington, 2000; Snider et al., 2006]. Costs, how-
ever, remain a significant barrier to restoration. Including
overhead, average restoration costs are $2000/ha, totaling
billions of dollars at the landscape scale [Holl and
Howarth, 2000; Wu et al. 2011]. Although commercial uti-
lization of restoration by-products may offset initial costs,
funding remains uncertain for maintenance restoration
activities and restoration monitoring. Despite high restora-
tion costs and the scale of the challenge, numerous eco-
nomic analyses confirm that it is more cost-effective to
restore forests than to pay the costs associated with severe
wildfire [Wu et al., 2011; Daugherty and Snider, 2003;
Berry, 2010]. In this study, we investigate potential eco-
nomic benefits that may assist policy makers in offsetting
cost barriers. We hypothesize that irrigators will be willing
to pay (WTP) a positive dollar amount to contribute to
watershed restoration. Furthermore, we hypothesize WTP
to be a function of the respondent’s attitudes about the im-
portance of current water issues, understanding of the
impacts of forest restoration on watershed services, current
costs for irrigation, and ability to pay for restoration.

2. Benefits

[11] Forest restoration through the 4FRI will include
treatments in three major watersheds: the Salt, Verde, and
Little Colorado River watersheds (see Figure 1). Hydro-
logic responses including enhanced water yield, enhanced
snowpack retention, and reduced risk of catastrophic

Figure 1. Forest restoration in the Verde River watershed
in Arizona.
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wildfire and associated flooding are expected within the
4FRI watersheds following restoration treatments. Exten-
sive research has shown that alterations in forest vegetation
can have demonstrable changes in stream flow quantity and
quality [Baker, 1986, 2003]. In a recent systematic review,
it was determined from historic experimental watershed
studies that when 20%–100% of a conifer-dominated
watershed was treated, there was a 10%–40% increase in
water yield. Results are highly variable, and diminish
within 5–10 years for surface-water yield increases without
continued fire or mechanical vegetation management.
Increased water yields are primarily attributed to decreased
canopy interception and evapotranspiration, up to a 17%
decrease for a ponderosa pine stand [Dore et al., 2012].
The decreases in water loss to interception and transpira-
tion occur as increased overland flow and ultimately
streamflow [Baker, 2003].

[12] Volumes of increased water yield by forest thinning
in the Verde River watershed were estimated by the U.S.
Bureau of Reclamation as part of the Central Yavapai
Highlands Water Resources Management Study [U.S. Bu-
reau of Reclamation, 2011]. The estimates were based on
the observed responses of the Beaver Creek Experimental
Watershed to historic forest thinning [Baker, 1986]. It is
estimated that between 4.5 � 106 and 6.0 � 106 m3/yr of
water could be generated by reductions in forest basal area
at an annual cost of between $1.05 and $2.20 per m3 of
water.

[13] Snowpack accumulations in high-elevation forested
watersheds provide an important source of water, particu-
larly in the southwestern United States. The distribution
and accumulation of snowpack is largely determined by the
density and spatial arrangement of forest overstory [Ffolliot
et al., 1972]. Forests with a dense overstory canopy inter-
cept a higher percentage of snow, thus exposing snow to
losses from evaporation and sublimation [Baker, 2003].
Forests with lower tree densities, such as restored forests,
have a greater capacity to accumulate and retain winter
snowpack. Increased snowpack accumulation and retention
will prolong spring snowmelt and enhance groundwater
recharge of regional aquifers [Baker and Ffolliot, 2003].
The regional aquifers provide perennial baseflow to the
Verde River and some of its tributaries (see Figure 1).
Enhanced watershed services may serve as an important
buffer to watershed health and water supply under increas-
ing demand and uncertain environmental conditions. Taken
together, enhanced water yield, enhanced snowpack reten-
tion, and decreased risk of catastrophic wildfire will result
in significant benefits or ‘‘watershed services’’ for down-
stream water users.

3. Study Purpose

[14] We estimate the WTP for irrigators in the Verde
River watershed for projected increases in watershed serv-
ices following landscape-scale forest restoration using the
dichotomous-choice contingent valuation (CV) method.
The study was conducted in the Verde River watershed of
northern Arizona (see Figure 1). The study area was chosen
because the 4FRI landscape-scale restoration initiative
plans to restore approximately 121,400 ha in the Verde
River watershed. The Verde River is representative of

watersheds in the western United States in which upstream
forests are vital for capturing and delivering reliable, high-
quality water supplies. Surface water diverted from the
main stem of the Verde River through a ditch system sup-
plies property owners who have irrigable land and water
rights with water for irrigation. Further downstream, water
uses include hydropower, municipal supply to the greater
Phoenix area, and recreation. Downstream users are likely
to have positive values for improved watershed services.
Our study, however, focuses on actual irrigators within the
Verde Valley.

4. Methods

[15] The CV method was applied to estimate the values
of watershed services. The CV method is a stated prefer-
ence method of nonmarket valuation where respondents are
asked to state their preferences for an environmental good
or service that is not bought and sold in traditional markets.
Many CV studies, including the one presented here, apply
the dichotomous-choice elicitation format as recommended
by Carson et al. [2003]. The dichotomous-choice CV
method involves sampling a large number of respondents
and asking if they would vote in favor of a referenda and
pay a particular randomly assigned dollar amount.

[16] Similar studies using CV have estimated values of
nonmarket water-related ecosystem services. See Brouwer
et al. [1999] for a meta-analysis of wetland CV studies.
Loomis [1996] used CV to find a WTP of $73 annually
among Washington residents for dam removal and restora-
tion of ecosystem services and the associated fishery on the
Elwha River. Pattanayak and Kramer [2001] used CV to
estimate drought mitigation services provided by tropical
forested watersheds in Ruteng Park, Indonesia. Loomis
et al. [2000] used CV to estimate the value of five water-
related ecosystem services on the Platte River in Colorado
and found a WTP of $252 annually per household.

[17] Our study contributes to the current body of research
on the benefits of watershed services in several ways. First,
while previous CV studies have estimated the WTP for vari-
ous water-related ecosystem services, no known studies
have estimated the nonmarket value of additional water-
related ecosystem services following a change in vegetation
management, such as forest restoration. In addition, our
study investigates the WTP for a specific group of down-
stream water users-irrigators in the arid Southwest.

[18] Finally, we use less commonly applied Bayesian
estimation to obtain WTP estimates. While dichotomous-
choice CV studies are a significant part of the nonmarket
valuation literature starting in the 1980s, the first estimates
using Bayesian methods do not appear until 2004 [Yoo,
2004; Fern�andez et al., 2004]. We follow the Bayesian
estimation method outlined in Yoo [2004]. For our study,
WTP is obtained through a nonlinear function of parameter
estimates postregression. While a point estimate of WTP is
easily obtained through the estimated coefficients in com-
monly estimated maximum likelihood models, maximum
likelihood methods require additional simulation postesti-
mation to obtain a distribution of WTP. Bayesian methodol-
ogy is particularly useful for WTP because it provides a
distribution of parameter estimates postestimation without
any additional simulation.
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4.1. Sample Selection

[19] A sample was selected from surface-water users
(ditch associations) within Yavapai County, Arizona. All of
the ditches were within the Verde River basin. Thirteen
ditch associations divert water from the Verde River and its
tributaries around the incorporated towns of Camp Verde,
AZ and Cottonwood, AZ. Of the 13 ditches, four were
selected based on the number of users they serve and their
engagement with previous research studies. Most of the
ditches are on the tributaries of the Verde River. The vari-
ability in size of user within ditches is similar. Once the
sample was selected, addresses were obtained from the
Yavapai County Assesor’s office of properties that border
the four sampled ditches.

4.2. Focus Group and Survey Design

[20] A focus group was held with the leaders of the four
sampled ditch associations to test and validate the survey
instrument. A draft of the survey was distributed and com-
pleted by the informants, and their recommendations were
used to guide the survey design and development. After dis-
cussing the survey instrument, support in encouraging their
ditch users to complete and return the survey was requested.

[21] Data were obtained from a dichotomous-choice CV
survey of sampled irrigators. The survey was designed
using the Dillman Tailored Design Method [Dillman,
2007]. Water users were sent a signed cover letter, colored
survey booklet, and a return envelope. A reminder postcard
was sent, and nonrespondents received a second mailing of
the survey booklet. We also sent a reminder postcard to
nonrespondents for the second mailing.

[22] Because obtaining accurate estimates requires
detailed descriptions of the resources being valued and the
contingencies in question [Loomis et al., 2000], the first
section of the survey included a watershed map and dia-
grams of three different watershed condition scenarios (see
Figure 2). Diagrams displayed three watershed conditions:
‘‘current watershed condition,’’ ‘‘restored watershed condi-
tion,’’ and ‘‘watershed condition following wildfire’’ with a
text description of the hydrologic responses associated with
each watershed condition. Respondents were not given
specific changes in water yield in the survey booklet.

However, we were able to approximate changes in water
yields in a meta-analysis following the survey. For the
‘‘current condition,’’ we estimate a continuing gradual
diminishment of surface-water yield, which likely has
diminished as much as 26% since the forest density of pre-
settlement, prior to 1860 [Covington and Moore, 1994].
We estimate between 4.5 � 106 and 6.0 � 106 m3/yr of
increase in water yield for the ‘‘restored condition’’. Under
restored conditions, it is anticipated that high-severity or
‘‘catastrophic’’ fire will be reduced and low-severity fire
behavior will be restored [Ful�e et al., 2012]. The hydro-
logic response to the ‘‘condition following wildfire’’ is an
area requiring extensive further research to quantify
because of the uniqueness and randomness of each fire and
the climatic conditions following fires. However, we quali-
tatively represented this wildfire watershed condition as a
situation where average and peak streamflows will increase
[Debano et al., 1996], water yields are likely to become
more irregular in timing [Baker, 2003], there would be
increased risk of downstream flooding [McCord, 1996],
increased erosion and sedimentation [Debano et al., 1996],
and decreased water quality [Debano et al., 1996].

[23] Following the watershed condition diagrams were
attitudinal questions about forest restoration, water supply,
and the WTP question. The final section of the survey
included demographic questions and solicited respondent’s
comments.

[24] The WTP question read as follows:
[25] ‘‘Suppose you were asked to vote on a referenda

suggesting water user contributions for maintaining water-
shed restoration. If the referenda were passed, water users
would be charged an annual fee. By law all fees collected
would be spent on forest restoration activities that would
improve watershed services. If the water user contribution
program were to cost you $ X annually, would you vote in
favor of the referenda’’,

where ‘‘X’’ equals a random bid amount inserted into sur-
veys. Bid amounts ranged from $10 to $1000, weighted
with higher frequencies from $10 to $100 and lesser fre-
quencies from $100 to $1000. Bid amounts were selected
based on average annual irrigation district fees indicated by

Figure 2. Diagram of three different watershed conditions that was included in the survey booklet.
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informants during the focus group session. Table 1 shows
the frequency and distribution of bid amounts for the entire
sample.

4.3. Respondent Certainty

[26] After the WTP question, respondents were asked to
rank their certainty of their response on a scale of 1–10,
where 1 is ‘‘not at all certain’’ and 10 is ‘‘completely cer-
tain.’’ A large body of research exists on reducing hypo-
thetical bias by using certainty responses [Champ and
Bishop, 2000]. Hypothetical bias occurs when responses to
hypothetical CV questions do not elicit true values. That is,
hypothetical bias occurs when respondents answer a hypo-
thetical question in a way that is inconsistent with their
actual behavior. While respondent uncertainty results in hy-
pothetical bias, little theoretical guidance exists in explain-
ing why respondents are uncertain [Akter et al., 2009]. To
investigate hypothetical bias, Champ and Bishop [2000]
performed a split sample experiment where some respond-
ents were asked their WTP to invest in wind energy for
1 year, while others were offered a hypothetical opportu-
nity. Champ and Bishop [2000] found evidence of hypo-
thetical bias—the WTP of the respondents with the
hypothetical opportunity was higher than those with the
actual investment opportunity. However, when respondents
who were less certain of their answer to the hypothetical
WTP question were coded as voting ‘‘no,’’ the hypothetical
bias was eliminated. Therefore, we choose to follow the
approach suggested in Champ and Bishop [2000].

4.4. Method of Estimation

[27] We estimate the WTP function with a standard pro-
bit model using Bayesian techniques. Following Cameron
and James [1987], the standard probit model is based on
the assumption of an underlying WTP function

WTPi ¼ x0i� þ �i; (1)

where xi is a vector of explanatory variables, � is a vector

of estimated coefficients, and �i is a random error term.
The WTP function is not observable to the researcher, yet
latent WTP is represented by the respondents0 ‘‘vote’’ on
the WTP question. Let yi represents the respondent’s vote,
¼1 if ‘‘yes’’ and 0 if ‘‘no.’’ Assume �i are independent and
normally distributed with a mean 0 and standard deviation
�, and Bidi is the randomly assigned bid amount for each
respondent i. The probability of a ‘‘yes’’ vote, given the ex-
planatory variables and random error is equal to the proba-
bility that the individual’s unobserved WTP is greater than
the bid amount. Therefore,

Pr yi ¼ 1jxið Þ ¼ Pr WTP i > Bid i½ �;
¼ Pr x0i� þ �i > Bid i

� �
;

¼ Pr �i > Bid i � x0i�
� �

;

¼ Pr zi > Bid i � x0i�=�
� �

;

(2)

where zi is the standard normal random variable and � is a
variance parameter. The standard probit model with n
observations thus has the likelihood function:

logL ¼
Xn

i¼1
WTP ilog 1� �

Bid i � x0i�

�

� �� ��

þ 1�WTP�ilog �
Bid i � x0i�

�

� �� �� 	
:

(3)

[28] We estimate the probit model using Bayesian esti-
mation and Gibbs sampling [Gelfland et al., 1990]. Let
WTP represent a latent variable on n observations. WTP
for an individual is then a function of the explanatory varia-
bles, xi, and the other parameters of interest � and �. �0 and
s0 are the initial values of the parameters of interest, N
denotes the normal distribution, and IG denotes the inverse
gamma distribution. Thus,

WTPi � N X 0i�;�
2

� �
; (4)

and � and � are independent with

�j�2 � N �0; �
2B�1

0

� �
; (5)

and

�2 � IG
�0

2
;
�0s2

0

2

� �
: (6)

The Gibbs sampler works using Markov chain Monte Carlo
(MCMC) simulation. The Gibbs sampler starts with initial
values (in our case, the initial values are set ¼ 0) and draws
� and � through 20,000 simulations. We drop the initial
19,000 draws. The draws are dropped for ‘‘burn-in,’’ since
we use noninformative priors for the distributions on oures-
timated parameters. Thus, we focus on the later iterations
of the Gibbs sampler for our vector to estimate WTP. We
use the final 1000 draws in our analysis. Unlike traditional
Maximum Likelihood estimation techniques, because we
use MCMC methods to estimate WTP, we don’t have to
use additional simulation procedures to estimate WTP from
the regression coefficients. Therefore, WTP draws are a
product of our estimation.

Table 1. Bid Distribution

Bid Amount Frequency

$10 87
$20 90
$30 90
$50 90
$60 90
$70 90
$90 90
$100 90
$120 70
$150 70
$200 70
$240 50
$300 50
$350 20
$400 20
$450 20
$500 20
$600 20
$1000 10
Total 1137
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5. Results

5.1. Response Rate

[29] Of the mailings sent to 1137 households, 99 surveys
were undeliverable. Three hundred and thirty-five respond-
ents returned their surveys for a response rate of 32%. This
represents a significant response rate given the contentious
nature of water issues in the arid southwest. In Loomis
et al.’s [2000] study, a response rate ranging from 25.7% to
41% was reported, depending on whether or not all
responses were recorded. Loomis’s [1996] study of WTP for
dam removal recorded a higher response rate: 77% for Clal-
lam County residents, 68% for Washington State residents,
and 55% for U.S. residents.

5.2. Respondent Attitudes Toward Forest Restoration

[30] Respondents were asked questions about their aware-
ness of the restoration initiative in the Verde River watershed
and how it may impact their water supply. Seventy-eight per-
cent of respondents indicated that they were not aware of
4FRI before receiving our survey. Approximately 86% of
respondents chose ‘‘yes’’ when asked if they believe that for-
est restoration will have a positive impact on their water sup-
ply. These results indicate that, while most respondents were
not aware of proposed restoration plans, most believed that
restoration would result in additional watershed services.

[31] Respondents were also asked to rank the importance
of water issues considering the full range of issues they
face. On a scale of 1–5 where 1 is ‘‘not important,’’ 2 is
‘‘slightly important,’’ 3 is ‘‘moderately important,’’ 4 is
‘‘very important,’’ and 5 is ‘‘extremely important,’’ the av-
erage was 4.6, indicating that water issues remain a perti-
nent issue to our respondents.

[32] Respondents were asked to rank their concern for the
following threats to their water supply on a scale of 1–5,
where 1 is ‘‘not at all concerned,’’ 2 is ‘‘slightly concerned,’’
3 is ‘‘moderately concerned,’’ 4 is ‘‘very concerned,’’ and
5 is ‘‘extremely concerned’’:

(1) Catastrophic wildfire
(2) Overallocation of water
(3) Drought
(4) Global climate change

Summary statistics are reported in Table 2. Our data show
respondents are less concerned about climate change than
they are about overallocation of water and drought; how-
ever, the mean for climate change is 3.02, indicating that
respondents are, on average, ‘‘slightly concerned’’ about
climate change. While wildfire was expected to be a threat
of particularly high concern, respondents were, on average,
less concerned about wildfire than they were for overallo-
cation of water and drought. However, it is important to
note that our sample consisted of irrigators who have rights
to use the water.

5.3. Respondent Certainty

[33] Following the approach suggested by Champ and
Bishop [2000], we present results with WTP responses
recoded as ‘‘no’’ for those with certainty levels less than 8.
Average respondent certainty was 8.2 (see Figure 3).

5.4. WTP Estimates

[34] WTP is obtained using the parameter estimates from
the probit. Following Hanemann [1984], WTP from a
standard probit is

��
�̂Bid

;

where

� ¼ �̂0 þ �̂1 � X 1


 �
þ �̂2 � X 2


 �
þ :::þ �̂K�1 � X K�1


 �

for all the explanatory variables except for �̂Bid . We pre-
dict WTP as a function of the following explanatory
variables:

[35] (1) Awareness : Is the respondent aware of 4FRI?
[36] (2) Degree of Concern for Water Issues : On a scale

of 1–5 where 1¼ not at all concerned and 5¼ very
concerned.

[37] (3) Overallocation of Water : On a scale of 1–5
where 1¼ not at all concerned and 5¼ very concerned.

[38] (4) Drought : On a scale of 1–5 where 1¼ not at all
concerned and 5¼ very concerned.

[39] (5) Irrigation Costs : Reported annual irrigation
costs (categorized).

[40] (6) Annual Income : Reported annual pretax house-
hold income (categorized).

[41] The probit results are reported in Table 3. The esti-
mated coefficient on bid amount is negative and shows the
Bayesian equivalent of statistical significance. The esti-
mated coefficient on awareness is negative and not statisti-
cally significant. Although not significant, the estimated
coefficient on awareness weakly indicates that respondents
aware of 4FRI are less likely to vote ‘‘yes.’’ The estimated
coefficient on positive restoration impact is positive and
statistically significant, indicating that respondents who
believe that forest restoration will have a positive impact
on watershed services are more likely to vote ‘‘yes.’’

Table 2. Summary Statistics for Attitudinal Variables

Variable Name Mean Standard Deviation Minimum Maximum

Wildfire risk 4.06 1.0389 1 5
Overallocation of water 4.25 0.9754 1 5
Drought 4.23 1.0348 1 5
Global climate change 3.36 1.4663 1 5

Figure 3. Respondent certainty for WTP question.
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Although not statistically significant, our results indicate
that the more concerned a respondent is about overalloca-
tion of water, the more likely the respondent is to vote
‘‘yes.’’ The more concerned respondents are about drought
risk, the more likely they are to vote ‘‘yes’’ on the WTP
question. The more the respondent currently pays in irriga-
tion costs, the less likely they are to vote ‘‘yes.’’ Respond-
ents who report a higher income are more likely to vote
‘‘yes’’ on the WTP question.

[42] Using Hanemann’s [1984] formula, the mean WTP
from the estimated coefficients is $183.50 annually. We
also calculate the mean WTP and a 95% confidence inter-
val using the draws from the Gibbs sampler. The entire dis-
tribution of the WTP estimates is shown (see Figure 4).
The mean WTP from the draws is $197.69 with a 95% CI
lower bound of $153.97 and upper bound of $241.39. In
other words, we can be 95% confident that the true mean
WTP is between $153.97 and $241.39. Our WTP estimates
are significantly higher, without controlling for respondent
uncertainty. When we estimate the model without certainty
recoding, our mean WTP is $282.85. We thus choose to
focus on our certainty-coded results as a conservative esti-
mate of WTP for policy analysis.

6. Discussion and Policy Implications

[43] Our results have significant implications for demon-
strating the value of improved additional watershed serv-

ices following forest restoration for Verde River irrigators.
Our sample consists of 1137 irrigators, and there are
approximately 2181 irrigators in the Verde River watershed
receiving potential benefits from 4FRI restoration. Using
our average WTP estimate, if there are 2181 irrigators who
would benefit from 4FRI, this represents an annual aggre-
gate benefit of 2181 � $183.50¼ $400,214. Using the
lower bound and upper bounds of our WTP estimate, if
there are 2181 irrigators who would benefit from 4FRI, this
represents a lower bound aggregate benefit of 2181 �
$155.97¼ $355,823 and an upper bound aggregate benefit
of 2181 � 241.39¼ $526,484. The aggregate measures
assume that nonrespondents hold the same WTP values as
the average elicited in the sample. If we assume that the
WTP we estimate only represents the mean WTP for 32%
of our sample (our response rate) and that nonrespondents
have a zero WTP, the aggregate benefit is 32% � 2181 �
$183.50¼ $120,068. The WTP estimated for irrigators
would cover the cost of restoring approximately 161 ha/yr.
Although this may represent a small area within the 4FRI,
the irrigators represent only one potential group of benefi-
ciaries from 4FRI restoration. In addition, 4FRI has a pre-
dicted budget shortfall of $4 million. Thus, potential
contributions from irrigators could reduce the shortfall by
as much as 10%.

[44] It is important to note that our irrigators were not
provided with any exact estimate of changes in water yields
due to the restoration. Respondents were asked their WTP
to obtain the ‘‘restored watershed condition’’ and avoid the
‘‘watershed condition following catastrophic wildfire’’ as
represented in Figure 2. In essence, their WTP represents
their valuation of a bundle of watershed services, including
the potential for higher yield and reduction of catastrophic
wildfire risk. Given the volatility of climate and policy reg-
ulation in the arid Southwest, we believe it is reasonable
that the irrigators were valuing a bundle of somewhat
unpredictable services. If all of the increases in water yield
from forest restoration were available to only the Verde
River irrigators, the annual volume of water available could
increase as much as 10% after restoration. Because of the
inherent uncertainty involved in our bundled WTP esti-
mates, we believe that our WTP represents a reasonable
lower-bound WTP for this 10% in increased water yield for
several reasons. One, even if additional water becomes
available, there is no guarantee the irrigators would
actually gain access to the water. Second, the availability
of increased water suggests that watershed restoration has

Table 3. Bayesian Probit Model Results

Variable Coefficient Standard Deviation P Level Means

Constanta �2.423036 0.927681 0.0030
Bidb �0.001508 0.000877 0.0380
Awareness �0.249727 0.296411 0.1970 0.2261
Positive restoration impactb 0.771327 0.491482 0.0500 0.9226
Overallocation of Water 0.042740 0.152011 0.3770 4.1400
Droughta 0.439531 0.160951 0.0030 4.1875
Irrigation costsc �0.138822 0.068383 0.0200 5.5620
Annual Incomea 0.132567 0.042268 0.0000 6.0290

Mean WTP $183.50

aindicates significance at the 10% level,
bat the 5% level, and
cat the 1% level.

Figure 4. Distribution of WTP estimates.
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occurred and increased water yield is paired with potential
increases in water quality and reductions in wildfire risk.
Thus, although our WTP estimates are not directly con-
nected with the predicted outcomes of an exact hydrologi-
cal model, we believe they are a robust estimate of
potential net benefits of forested watershed restoration for
irrigators within our population.

[45] Although somewhat geographically distant from
upstream forested watersheds, our results indicate that
downstream irrigators value upstream forests that capture
and deliver water. While the WTP among irrigators may be
significant, irrigation represents only half of total use of
water from the Verde River. Water diverted to the greater
Phoenix area from the Verde River averages approximately
93.1 million cubic meters (Y. Reinink, Salt River Project,
personal communication) while irrigation in the study area
accounts for only 41.8 million cubic meters annually [Pool
et al., 2011]. In the Verde irrigation region, all of the diver-
sions are temporary earthen diversion dams in the channels.
All of the diversions divert more than their necessary allo-
cation to ensure adequate deliveries. Because of this, at the
end of each ditch, as much as 60% of the diverted flow is
returned to the river, thus much of the diverted flows are
returned to the main stem Verde River. Capturing the ag-
gregate value of additional watershed services from forest
restoration among all beneficiaries would require estima-
tion of WTP for other downstream user groups. It is likely
that the value of the improved water services is positive for
downstream user groups, such as municipal water, irriga-
tion, industry, hydropower, and recreation and thus our
benefits estimate represents only a small portion of the total
potential benefits of watershed restoration.

[46] While wildfire was expected to be perceived as a
major threat to water supply, wildfire was not a significantly
greater concern to respondents than overallocation of water
and drought. Although wildfire is considered by experts to
be the greatest threat to watershed health throughout the
region, drought and overallocation of water are prevailing
concerns to irrigators. This may be due to the geographic
distance between upstream forests and downstream water
users.

[47] Estimating WTP of water users for water-related
ecosystem services from forest restoration is important
because the willingness of different water users to invest in
watershed health may determine the future health of west-
ern forests and their ability to provide ample amounts of
high-quality water. It must be noted that the values esti-
mated in this study represent the views of one of several dif-
ferent water user groups. Future studies estimating the WTP
for other water users, such as recreation, municipalities, and
hydropower would contribute to the total demand for water-
shed services for different user types. The aggregate WTP
of these other user groups, together with a robust forest
products industry, may provide more than enough funding
to completely offset landscape-scale restoration costs.

7. Conclusions

[48] In this study, we estimated the WTP of additional
watershed services from landscape scale forest restoration.
From our sample of 1137 irrigators, we found that the aver-
age annual WTP per household was $183.50 for an aggregate

benefit of $400,000. We found that statistically significant
predictors of WTP were respondents’ awareness of forest
restoration, degree of concern of water issues, overallocation,
drought, annual water costs, and annual income. Our study
provides evidence that downstream irrigators are willing to
invest forested restoration of upstream watersheds that pro-
vide important watershed services. Policy makers and other
stakeholders may be able to ensure the long-term financial
sustainability of large-scale forest restoration and healthy
watershed by capturing the nonmarket demand for improved
watershed services.
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