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Abstract

Prioritizing areas for management of non-native invasive plants is critical, as invasive plants can negatively impact plant
community structure. Extensive and multi-jurisdictional inventories are essential to prioritize actions aimed at mitigating the
impact of invasions and changes in disturbance regimes. However, previous work devoted little effort to devising sampling
methods sufficient to assess the scope of multi-jurisdictional invasion over extensive areas. Here we describe a large-scale
sampling design that used species occurrence data, habitat suitability models, and iterative and targeted sampling efforts to
sample five species and satisfy two key management objectives: 1) detecting non-native invasive plants across previously
unsampled gradients, and 2) characterizing the distribution of non-native invasive plants at landscape to regional scales.
Habitat suitability models of five species were based on occurrence records and predictor variables derived from
topography, precipitation, and remotely sensed data. We stratified and established field sampling locations according to
predicted habitat suitability and phenological, substrate, and logistical constraints. Across previously unvisited areas, we
detected at least one of our focal species on 77% of plots. In turn, we used detections from 2011 to improve habitat
suitability models and sampling efforts in 2012, as well as additional spatial constraints to increase detections. These
modifications resulted in a 96% detection rate at plots. The range of habitat suitability values that identified highly and less
suitable habitats and their environmental conditions corresponded to field detections with mixed levels of agreement. Our
study demonstrated that an iterative and targeted sampling framework can address sampling bias, reduce time costs, and
increase detections. Other studies can extend the sampling framework to develop methods in other ecosystems to provide
detection data. The sampling methods implemented here provide a meaningful tool when understanding the potential
distribution and habitat of species over multi-jurisdictional and extensive areas is needed for achieving management
objectives.
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Introduction

As a leading threat to global biodiversity, non-native plant
invasions can reduce species richness and facilitate changes in
ecosystem structure and functioning [1–3]. In arid and semi-arid
ecosystems, the positive interaction between annual and perennial
invasive grass cover, increased loading of fine-fuels, burning
frequency, and fire severity illustrates the potential for plant
invasion to substantially alter disturbance patterns, especially
regional fire regimes [4,5]. Increases in fire frequency, size, and
intensity facilitated by invasive species can promote ongoing
invasion while populations of non-fire adapted native plants are
slow to recover or show a decline [5,6]. Because disturbances in
arid ecosystems involve slow vegetation recovery and a loss of
native biodiversity [7,8], targeted and adaptive management
activities are critical in order to mitigate the negative impacts of
non-native invasive plants.

Ideally, adaptive management entails determining invasion risk
as well as prioritizing management actions to prevent new
introductions to suitable but uncolonized habitats. Precisely
determining the occurrence of non-native invasive plants is
essential for robust prioritization and mitigation efforts [9]. These
data can, in turn, be used to develop and refine probability of
occurrence (i.e. ‘‘early-warning’’) maps that help to target control
and prevention activities. Most land management agencies,
however, do not have the capacity to survey more than 1–2% of
land within their ownerships [10]. Therefore, a multi-jurisdictional
sampling approach can play a critical role in integrating resources
and evaluating the extent of plant invasions. This type of sampling
can accommodate management needs and accomplish multiple
survey objectives, such as detecting invasions in early stages,
locating populations of multiple invasive species, or detecting large
and problematic populations from a fire and fuels management
perspective [9,10].
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Invasive plant sampling frequently takes place opportunistically
based on expert knowledge, where investigators explore areas
known to have infestations, or along roadsides and in residential
areas in semi-regular increments of distance along transportation
corridors [11–13]. Although rapid and opportunistic sampling can
inform coarse-level species distribution, this approach will typically
incorporate non-detection sampling bias (i.e. species may be
present but undetected) [14,15], especially for species that can
occur away from transportation routes. Additionally, because
sampling in areas known to be invaded may not reflect the species’
true realized niche [16], a more suitable design should sample
across environmental gradients to capture conditions that influ-
ence species distributions by leveraging existing plant occurrence
records and knowledge regarding potential habitat characteristics
and plant phenology [17,18].

Statistically based habitat suitability models (HSMs) use
empirical relationships between species occurrence and environ-
mental factors to predict habitat suitability across the landscape
[19–21]. Sampling across wide ranges of predicted habitat
suitability can facilitate characterization of the environmental
attributes of locations where a species can potentially establish
[22]. A HSM-informed sampling approach is also feasible for
increasing species detectability by identifying locations of relatively
high habitat suitability [23,24]. It can help focus search efforts to
locations of suitable but previously undetected habitats to refine
understanding of the current extent of invasions and reduce time
and transportation costs by avoiding areas of extremely low
habitat suitability. Furthermore, iterative HSM-informed sampling
efforts can improve existing HSMs with new field data to better
characterize the distribution of invasive species [25]. A study that
employed this approach with targeted sampling efforts showed
better model performance and greater species detection than non-
targeted sampling [26]. Drawing from previous work, we explored
a generalizable iterative process of using HSMs (fit using ancillary
geospatial data) to guide initial targeted sampling efforts,
integrating new data to improve HSMs, and compiling refined
models to help direct more rigorous future sampling efforts, as well
as improve sampling efficiency and detection rates.

Here we present a HSM-informed and targeted sampling design
to gain efficiencies in sampling and improve detection rates over
extensive areas and multiple land management jurisdictions. For
five non-native invasive plant species in the Sonoran Desert region
of the southwestern U.S., our specific objectives were to: 1) use
existing non-native invasive plant data to model relationships
between environmental characteristics and the occurrence of each
species; 2) identify highly suitable habitats and areas of previously
undetected but with potential for invasion by each species using
HSMs; 3) improve knowledge of the range of environmental
conditions occupied by each species by simultaneously sampling in
low-medium suitability areas; and 4) develop an iterative and
targeted sampling framework by coupling existing and newly
collected data to improve HSMs and detections of invasive species
in the field. Our design aimed to satisfy the pressing need of land
managers to detect previously unknown non-native invasive plant
populations and characterize their distribution over extensive and
less accessible areas.

Materials and Methods

Study area and focal species
Our study area in the Sonoran Desert of Arizona encompassed

multiple land ownerships, including lands administered by the
U.S. Army Yuma Proving Ground (YPG; authorized by L.
Merrill), Barry M. Goldwater Air Force Range (BMGR) East

(authorized by R. Whittle and T. Walker), BMGR West
(authorized by A. Rosenberg), Bureau of Land Management
(BLM; authorized by E. Faulkner), Kofa National Wildlife Refuge
(KNWR; authorized by S. Henry), Cabeza Prieta National
Wildlife Refuge (CPNWR; authorized by S. Barclay), Organ Pipe
Cactus National Monument (OPCNM; authorized by S. Rutman),
Tohono O’odham Nation (TON; authorized by K. Howe),
Saguaro National Park (authorized by D. Backer), Sonoran Desert
National Monument (authorized by R. Hansen), and Ironwood
National Monument (authorized by D. Tersey) (Figure 1). The
total area available for field sampling was 66,541 km2 after
excluding inaccessible areas in private properties, state trust lands,
and a small number of Native American lands. The study area
included Arizona Upland and Lower Colorado River Valley
subdivisions of the Sonoran Desert vegetation [27], as well as
extensive areas dominated by native and non-native invasive plant
species recently impacted by large-scale fire events. Most of the
low-lying desert ecosystems in this region had received extremely
low annual rainfall. Notably, long-term (1952–2007) average
annual precipitation at the YPG and KNWR was 93 mm and
175 mm, respectively (i.e. the military and the U.S. Fish and
Wildlife Service lands between Yuma and Quartzsite shown in
Figure 1) (http://www.prism.oregonstate.edu/). The study area
also encompassed considerable topographic relief resulting from
mountain ranges separated by expansive desert valleys, plains, and
broad alluvial aprons (bajadas), with an elevation range from 25 m
in the western lowlands to approximately 1,500 m in the KNWR.

We focused on five non-native invasive plants identified as
important or of current and future management concern by
scientists and regional land managers within our study area,
including two annual C3 grasses: red brome (Bromus madritensis var.
rubens; hereafter referred to as Bromus) [28,29] and Mediterranean
grass (including Schismus arabicus and S. barbatus that are
indistinguishable in the field and have been assessed as one plant
group by desert botanists [30]; hereafter referred to as Schismus)
[31,32]; two annual cruciferous forbs: Sahara mustard (Brassica
tournefortii; hereafter referred to as Brassica) [33,34] and arugula
(Eruca vesicaria ssp. sativa; hereafter referred to as Eruca); and one
perennial C4 grass: buffelgrass (Pennisetum ciliare; hereafter referred
to as Pennisetum) [35,36]. Spring wildfires in the Sonoran Desert
occurring in the last several decades have shown association with
positive El Niño Southern Oscillation events [37,38]. In particular,
Pennisetum is reliant on summer monsoonal precipitation and is
recognized as a potential threat in this ecosystem because of its
drought hardiness and tendency to accumulate hazardous levels of
flammable biomass throughout the dry season [39,40]. Bromus,
Schismus, and Brassica can potentially create a continuous fine fuel
loads in areas where fuels are spatially scarce and increase fire
return intervals [28,31,34].

Development of habitat suitability models
We compiled known locations of non-native invasive plants

from published and unpublished databases, including the South-
west Environmental Information Network (SEINET; http://
swbiodiversity.org/seinet/index.php), the Southwest Exotic Map-
ping Program (SWEMP; http://sbsc.wr.usgs.gov/research/
projects/swepic/swemp/swempA.asp), multi-year invasive survey
data from managers of the BLM and National Park Service, and
unpublished research data from local and regional biologists.
Using these data, we retained only geographic locations (n = 9,713;
2,783 for Bromus, 615 for Schismus, 1,476 for Brassica, 95 for Eruca,
and 4,744 for Pennisetum) at which plant density of .2 individuals
per hectare was documented to address potential errors introduced
by the uncertainty of species occurrence information.

Habitat Suitability-Informed Plant Sampling Design
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We used environmental variables that reflected principal
biophysical characteristics of the study area that were previously
defined as important for habitat suitability modeling of non-native
invasive plants, including topographic [39], precipitation [41],
spectral [42], and road variables [43]. We obtained the
environmental data from the National Elevation Dataset (NED;
http://ned.usgs.gov/), terrain and radiometrically calibrated
Landsat Thematic Mapper (TM) imagery from August 2009
(U.S. Geological Survey EROS Data Center; http://edc.usgs.gov),
precipitation from the Parameter-elevation Regressions on Inde-
pendent Slopes Model (PRISM; http://www.prism.oregonstate.
edu/), and rasterized road data derived from the 2003 TeleAtlas
Dynamap Transportation version 5.2 product (Spatial Insights,
Inc.) (Table 1). For topographic variables, we smoothed the digital
elevation model to reduce visually discernible contour and point
artifacts and derived slope and aspect variables (sine- and cosine-
transformed to represent slope eastness and northness, respective-
ly). To capture precipitation patterns, we summarized winter
(December-March) and summer (June-September) months and
derived mean annual, winter, and summer precipitation layers
from 2000–2009 using the PRISM data. To characterize soil
substrate types, we used the continuous spectral information
obtained from six TM bands (bands 1–5 and 7) of eight Landsat
image scenes (path/row p36/r37, p36/r38, p37/r36, p37/r37,

p37/r38, p38/r36, p38/r37, and p38/r38) from August 2009. The
rationale was that spectral characteristics of soil substrates of high
sand content or loose texture soils appeared to be highly related to
the presence of three focal species (Brassica, Schismus, and Eruca).
We converted the digital numbers of these radiometrically
corrected TM images into spectral reflectance values and then
mosaicked images by using ENVI version 4.7.1 (ITT Visual
Information Solutions, Inc.). We also generated the summer
Normalized Difference Vegetation Index (NDVI) using reflectance
information of TM red and near-infrared (NIR) bands (NIR-Red/
NIR+Red) to represent patterns of vegetation greenness. To
quantify road proximity, we calculated the Euclidian distance from
a raster cell to the nearest road. We obtained or derived all
variables at a 30-m pixel resolution using ArcGIS version 10 (Esri,
Inc.).

We developed five separate HSMs for each species (total = 25
models) using a maximum entropy algorithm and the Maxent
software package version 3.3.3e (http://www.cs.princeton.edu/
,schapire/maxent/) [44,45]. For HSMs that rely solely on
presence-only data, environmental conditions are typically repre-
sented by occurrence records and background data randomly
drawn from the entire region, whereas species occurrence data
tend to be spatially biased toward locations with easy access. To
account for such bias, Phillips et al. proposed to select background

Figure 1. Boundary and land jurisdictions of our study area in the Sonoran Desert of Arizona. Specific land ownerships highlighted by
abbreviations and include: the U.S. Army Yuma Proving Ground (YPG), Barry M. Goldwater Air Force Range (BMGR), Kofa National Wildlife Refuge
(KNWR), Cabeza Prieta National Wildlife Refuge (CPNWR), Organ Pipe Cactus National Monument (OPCNM), and the Tohono O’odham Nation (TON).
doi:10.1371/journal.pone.0101196.g001

Habitat Suitability-Informed Plant Sampling Design
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sample locations with the same sampling bias as species presence
records [46]. We employed a ‘‘bias prior’’ approach in our
background data based on the density of sampled locations of all
focal species across our study area and an estimate of relative
sampling effort as recommended by Merow et al. [47]. We
assigned raster cell value = 1 for cells with presence records of all
focal species to represent sampling intensity and a ‘‘no data’’ value
for the remaining cells [48]. For each focal species we constructed
five separate HSMs that each combined environmental variables
as follows: Model 1) topography, spectral bands, NDVI, and
precipitation data; Model 2) topography, spectral bands, NDVI,
precipitation layers, and road distance; Model 3) topography,
spectral bands, NDVI, and road distance; Model 4) topography,
spectral bands, NDVI, and winter or summer (for Pennisetum)
precipitation; and Model 5) topography, spectral bands, NDVI,
winter or summer (for Pennisetum) precipitation, and road distance
(Table 1).

Each model included a bias estimate and employed the hinge
algorithm (i.e. piece-wise linear regression) to develop HSMs with
ten replicates at the convergence threshold of 1025 (i.e. where
model training terminated in terms of log loss per iteration). We
used 60% of the occurrence data for model training and the
remaining 40% for testing [44,49]. We evaluated the contribution
for each variable by randomly permuting the values of that
variable among the presence and background training points and
measuring the resulting decrease in training area under the
receiver operating characteristic curve (AUC) [50]. A large
decrease indicated a strong dependence on that particular
variable. We also evaluated variable importance by omitting each
variable in turn and then using it in isolation [50]. The results
based on training and test gain informed how the variable, when
omitted or used alone, affected model gain. The result based on
AUC informed how the variable influenced the model in
predicting presences in the data.

Model performance evaluation took place using three threshold
independent assessment measures to avoid using arbitrary binary
threshold presence/absence when the assumption for the thresh-

old could not be validated. We first constructed null models using
randomly created sampling points to confirm that all our HSMs
for each species had significantly higher values of training AUC
than random models (a= 0.05) [51]. We then used the AUC
values of .0.70 to determine acceptable model performance
[52,53]. We also calculated the point biserial correlation (COR) as
Pearson’s correlation coefficient r between predicted suitability
and presence/pseudo-absence of the test data to examine how well
calibrated the predicted suitability was in correspondence to the
probability of presence of each focal species. (a= 0.05) [49].

Sampling location stratification and selection in 2011
Stratified random and targeted sampling has been a well-

recognized approach for estimating landscape-level infestation and
characterizing invasion [10,26,54] Previous stratification studies
applied ensemble forecasting to combine multiple model outputs
into a single projection for reducing individual model errors
[24,55,56]. However in our study, locations with the highest
habitat suitability (i.e. 90th percentile) that were completely
overlapped by all five HSMs for each species only covered ,5%
of the study area, making these areas less representative of habitat
conditions across the region. Therefore, we combined multiple
models described above and stratified the highly suitable habitats
suggested by at least one of the five HSMs for each species to
identify potential sampling locations. We randomly selected field
sampling locations within areas of the 90th percentile of separate
HSMs for each focal species but confined them within areas of low
slopes and proximity to improved paved and unimproved dirt
roads in more remote locations. The rationale for selecting areas
based on slope (#20 degrees) and proximity to roads (250 m-
2 km) was to reduce the amount of effort required to access field
locations and increase sample size. Additionally, most of our focal
species prefer soil conditions on low slopes to area of steep rocky
terrain. The road proximity threshold was based on the influence
of roads (e.g. enhanced moisture, fertilization, and dispersal of
invasives) which could extend from an unimproved road or major
highway in the Sonoran Desert [32]. We included all access roads

Table 1. List of environmental variables used in habitat suitability models at cell size = 30 m for stratifying our sampling locations
in the Sonoran Desert of Arizona in the 2011 field season.

Variable type Variable

Topography Elevation

Slope

Aspect (eastness)

Aspect (northness)

Spectral (August 2009) TM band 1

TM band 2

TM band 3

TM band 4

TM band 5

TM band 7

NDVI

Precipitation (2000–2009) Mean annual

Mean summer (7–81 mm)

Mean winter (10–103 mm)

Road proximity Euclidean distance to the nearest road

TM = Landsat Thematic Mapper imagery; NDVI = Normalized Difference Vegetation Index.
doi:10.1371/journal.pone.0101196.t001
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visible in acquired data layers for sampling, such as rugged four-
wheel drive and off-highway vehicle roads with access to
backcountry locations. Next, we implemented a spatially balanced
approach to identify potential locations with a weighted repre-
sentation of suitable habitats based on each HSM for each species
across available sampling areas. The potential sample locations
were well distributed across remote portions of the study area. The
approach was based on using specific raster cells values (i.e.
weights of habitat suitability) to determine the inclusion probability
of a location to be sampled [57,58].

Our focal species Brassica, Schismus, and Eruca favor disturbed or
loose sandy soils in the study area [32,43]. To further prioritize
sample locations suited for these species, we discriminated sandy
soils from other soil substrates such as basalt and desert pavement
using TM imagery. We employed linear spectral unmixing (e.g.
[59]) to estimate the proportion of sand substrate within a pixel
and then applied a pixel growing technique (e.g. [60]) to extract
adjacent pixels within two standard deviations of the mean value
of seed pixels of pure sand. We then used pixel values from the
unmixing step to represent the proportion of a pixel dominated by
sand (where 0 = no sand and 1 = 100% sand) for assigning five
very low to high sandiness categories. We overlaid the sandiness
category layer with a buffer range placed around the center pixel
of a potential location to assign the sandiness based on a majority
count of pixels. We directed our crews to allocate a greater
sampling effort, when logistically feasible, to reach accessible plot
locations that occurred on sites of high to medium sandiness.

Field data collection
We collected field data from 238 plots between late January and

April of 2011, the principal growing season for most annual and
perennial herbaceous plants in the study landscape. To allow our
field data to match the spatial resolution of two differing remote
sensing platforms used for occurrence modeling (Olsson et al.,
Ecological Modelling, in review), we adopted a nested plot design to
enable the approximate alignment between sampled locations and
satellite image pixels [61]. We spatially geo-registered each plot
with a Moderate Resolution Imaging Spectroradiometer (MODIS)
image pixel (2506250 m) and five nested subplots each with a
Landsat TM image pixel (30630 m; Figure 2A). The rationale was
to precisely match field data with the pixel location and resolution
of both sensor types (i.e. MODIS and TM) used for developing
time-series and phenology-based models of non-native invasive
plant occurrence (Olsson et al., Ecological Modelling, in review).
Geographically co-registered and multi-scaled plots enabled our
capacity to reduce error introduced by mismatches of scale and
location between field and remote sensing data [62]. Crews used
the geographic coordinates of the pixel corner of subplots and then
navigated to the corner using a Magellan MobileMapper 6 Global
Positioning System (GPS) receiver. Within each subplot, crews
established 25 point intercepts where a pin flag intersected a
transect line, along five transects at every five meters (Figure 2B).
We recorded species name and substrate at each point intercept
for both native and non-native invasive plants, as well as presence/
absence of our focal species and disturbance types within each
subplot.

Relating habitat suitability models to field detections in
2011

To assess how well predicted habitat suitability corresponded to
detections of focal species in 2011, we used a generalized linear
model (GLM) to examine the relationship between detection (i.e.
binary presence/absence outcome for each focal species at each
subplot) and habitat suitability predicted by each HSM. We then

modeled the detection of each focal species with a binomial
distribution and a logit link function in the R statistical package
version 3.0.2 (http://www.r-project.org). The intent of this
analysis was to provide an indication of how well the HSM-
informed stratification directed us to sampling locations where
species detections were more likely. To assess model fit, we
calculated the difference in values of Akaike’s Information
Criterion (DAIC; [63]) between a detection model that included
predicted habitat suitability and an intercept-only model. We
considered suitability models with DAIC .10 as good approxi-
mations of the data [63].

Next iteration of targeted sampling in 2012
Based on our sampling efforts from 2011, we developed a more

rigorous and targeted sampling strategy for a 2012 (late February-
April) field season in order to increase detection rates and sample
size. This targeted strategy is extendible to other species and
ecosystems. We collected data from 506 plots by integrating a
more targeted design of: 1) adding the 2011 detection data into
species occurrence records to develop improved HSMs; 2) using a
greater range of habitat suitability (i.e. 70th percentile) to cover
more local habitat variation to stratify potential sampling
locations; 3) also stratifying sampling efforts to areas to where
the ratio of maximum spring NDVI to mean spring NDVI of
MODIS imagery between 2001 and 2010 exceeded the 60th

percentile to highlight locations with annual plant production
higher than average greenness and reflect strong herbaceous
growth during a wet growing season; 4) further allocating locations
to areas with greater than average MODIS NDVI acquired in
early 2012 to focus sampling efforts on areas that had received
sufficient precipitation in winter 2011/spring 2012 for seed
germination and seedling growth; and 5) identifying stratified
random, spatially balanced locations and then constraining these
potential locations to areas containing 4–5 plots within 450–650 m
of one another [20]. Crews aimed to sample an average of five
locations per day in these areas and maintain a minimum travel
distance between daily visits of 10–20 km. Previous work
demonstrated that despite potential bias introduced by sampling
at locations within relatively close distance, certain statistical
estimators could provide unbiased estimates of abundance and
density for species with low abundance in local populations
[64,65]. The nested pixel plot design at each plot and transect-
based point intercept data collection at each subplot remained the
same as field samples collected in 2011.

Results

Environmental attributes of sampled locations in 2011
In 2011, our five 2-person field crews sampled 238 plots and

1,171 subplots (a small number of subplots were inaccessible and
did not equal five per plot). All subplot locations selected for
sampling had an average GPS error of 3.6 m (standard deviation
= 10.3 m) by calculating distance between a GPS-recorded subplot
corner and a location of the corresponding subplot corner assigned
to crews. We sampled 157 locations (66%) on BLM lands, 35
(14.7%) on Native American reservations, 21 (8.8%) on military
lands, and 25 (10.5%) on U.S. Forest Service lands, national
wildlife refuges, and state and national parks.

Eleven vegetation types classified by the Landfire Existing
Vegetation Type 1.1.0 data (http://www.Landfire.gov/
NationalProductDescriptions21.php) appeared among our 2011
sampled locations, including the dominant Sonoran palo-verde-
mixed cacti desert scrub, Sonora-Mojave creosote bush-white
bursage desert scrub, and North American warm desert riparian

Habitat Suitability-Informed Plant Sampling Design
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and sparsely vegetated systems. Many locations were in areas
highly disturbed by animal burrowing and grazing (38% of all),
vehicular and human traffic infrastructure (18%), and fire and
erosion (17%). We detected soil disturbance in 71% of sampled
locations, which appeared to be associated with anthropogenic
factors, since our sampling locations were #2 km of roads and
were exposed to past or ongoing disturbances.

Characteristics of habitat suitability models and model
predictions

We found that Model 4 for the winter annuals and Model 5 for
Pennisetum predicted highly suitable habitats that were also well-
known areas with great focal species abundance. For example, the
environmental attributes of highly suitable habitats (i.e. 90th

percentile) for Pennisetum reflected known habitat conditions in
elevation, slope, aspect, annual precipitation, and vegetation type.
These models reflected the known importance of seasonal
precipitation events for our five focal species to green up (e.g.
initiating germination and seedling growth), as well as the known
influence of road proximity on the dispersal and colonization of
Pennisetum. Overall, elevation, winter or summer precipitation, and
slope appeared to be the most important variables for our focal
species HSMs. The most important variable was elevation for
Brassica, Schismus, and Eruca, winter precipitation for Bromus, and
summer precipitation for Pennisetum. The second most important
variable was slope for Eruca and winter precipitation for Schismus.
Elevation accounted for 65%, 51%, and 38% of model
contribution for Model 4 for Brassica, Schismus, and Eruca,
respectively. Winter precipitation showed 34% and 21%, respec-
tively, of model contribution to Model 4 for Bromus and Schismus.
Slope accounted for 31% of model contribution to Model 4 for
Eruca. For Model 5 for Pennisetum, 56% of model contribution

came from summer precipitation. Likewise, evaluation of variable
importance showed that the most important variables, when used
in isolation or when omitted, were elevation for Brassica, Schismus,
and Eruca, winter precipitation for Bromus, and summer precipi-
tation for Pennisetum.

All 25 HSMs outperformed null models constructed with
random sampling points, showing AUC values that were
significantly higher and deviated from what would be expected
by random chance (p,0.05). AUC values from training and test
data of all 25 HSMs indicated satisfactory model performance,
with all values .0.70 (0.73–0.97 for training AUC and 0.71–0.93
for test AUC; Table 2). Species presence/pseudo-absence was
significantly correlated with predicted habitat suitability of all 25
HSMs with notable variation among species (0.36–0.8 for COR,
p,0.01 or ,0.0001). Overall, COR values were the highest for
Eruca and Brassica and lowest for Bromus, reflecting different
degrees of dispersion and variability in suitability predicted at
locations where species presence was recorded (Table 2).

Model 4 for the winter annuals and Model 5 for Pennisetum
together showed that 81% of the study area was within high
predicted habitat suitability (i.e. 70th percentile) for at least one of
the five species. In particular, 38%, 29%, and 12% of the study
area corresponded to the 70th percentile of suitable habitats for
one, two, and three focal species, respectively. Only 19.3% of the
study area was not within high suitability for any given species.
Areas with low to medium suitability appeared to be widely
distributed. We found inter-model variability for all five focal
species in areas predicted with high suitability. For example, 44%
and 38% of the study area was respectively within the 70th

percentile predicted by at least one of the five HSMs for Schismus
and Brassica, but all five Schismus and Brassica HSMs only
completely overlapped in 18% and 21% of the study area,
respectively. The variability was the lowest for Eruca, showing 33%

Figure 2. Nested pixel plot design used to sample plants in the Sonoran Desert of Arizona. A) Plot were co-registered with the resolution
and location of a MODIS image pixel, and included five nested subplots, each co-registered with the resolution and location of a Landsat TM image
pixel. Target and alternate (used when the target subplot was inaccessible) subplots are in red and gray, respectively. B) Within each subplot, five
point-intercept transects were established to measure attributes of species composition at 5 m intervals.
doi:10.1371/journal.pone.0101196.g002
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of the study area covered by at least one HSM and 20%
completely overlapped by all five HSMs.

All 25 HSMs, when overlapped together, predicted 39% of the
study area with low (i.e. 30th percentile) to very high habitat
suitability for the five focal species with notable variation among
species. We found that suitable habitats for Schismus, Brassica, and
Bromus were predicted to be widespread, whereas Eruca and
Pennisetum were less common across the study area. All five HSMs
for each species predicted 59%, 64%, and 55% of the study area
with low to very high suitability for Brassica, Schismus, and Bromus,
respectively. In contrast, all five HSMs predicted 42% and 58% of
the study area to have very low suitability (i.e. below 30th

percentile) for Eruca and Pennisetum, respectively.

Sampled locations in 2011 across habitat suitability
ranges

We sampled on locations predicted to harbor very high habitat
suitability for one focal species, but low to medium suitability for
other species to capture the range of environmental conditions
occupied by each species. For instance, 28% and 62% of the
sampled locations were respectively within the 90th and 70th

percentile of Brassica habitat suitability, and were also within areas
of lower suitability for at least one of the other four species.
Likewise, 16% and 39% of the total locations that were within the
90th and 70th percentile suitability for Schismus, respectively, fell
within lower habitat suitability of at least one of the other four
species. Fewer sampled locations were within areas of high habitat
suitability for Bromus and Pennisetum.

By sampling each focal species in habitats that ranged from low
to very high predicted suitability, we retained opportunities of
detecting unknown populations or unknown areas of species
distribution. For example, approximately 37% of the sampled
subplots were within low to medium habitat suitability for Brassica
(0–0.6 in predicted suitability), thus enabling us to characterize
Brassica distributions in areas where detections were previously
unrecorded (Figure 3). Similarly, we sampled at subplots across a
wide range of habitat suitability for Schismus (0–1 in predicted
suitability), allowing us to sample populations located in areas not
known to be occupied by Schismus (Figure 3). We sampled at fewer
subplots predicted with medium to high habitat suitability for
Pennisetum, as a result of prioritizing sampling efforts in hot desert
ecosystems with sandy soils where Pennisetum was less common.

Table 2. Average training and test receiver operating characteristic curve (AUC) and average point biserial correlation (COR)
(695% confidence interval) among the ten replicates for each focal species habitat suitability model used for our 2011 sampling
location stratification in the Sonoran Desert of Arizona.

Species Model (n = 10) Training AUC Test AUC COR (Pearson’s r )

Schismus (615) 1 0.8660.01 0.8160.02 0.5160.09**

2 0.8760.01 0.7960.02 0.4560.05**

3 0.8560.01 0.7860.01 0.6160.08***

4 0.8460.01 0.7860.02 0.5460.05***

5 0.8460.01 0.7960.01 0.5760.06***

Brassica (1,476) 1 0.8460.004 0.860.01 0.6660.06***

2 0.8460.01 0.860.01 0.6660.11***

3 0.8360.01 0.860.01 0.6760.02***

4 0.8460.01 0.860.01 0.660.07***

5 0.8360.004 0.860.01 0.5460.11**

Bromus (2,783) 1 0.7560.01 0.7360.01 0.460.005***

2 0.7660.01 0.7460.01 0.4660.05***

3 0.7360.01 0.7160.01 0.3560.05**

4 0.7560.01 0.7260.01 0.3760.04**

5 0.7560.01 0.7260.01 0.3660.04**

Eruca (95) 1 0.9660.01 0.9160.02 0.860.005***

2 0.9760.01 0.9360.02 0.7560.04***

3 0.9660.01 0.9160.02 0.7460.03***

4 0.9760.01 0.9260.02 0.7760.01***

5 0.9660.01 0.960.01 0.7560.06***

Pennisetum (4,744) 1 0.7860.003 0.7660.004 0.5660.05***

2 0.7860.003 0.7660.004 0.5960.06***

3 0.7560.01 0.7460.01 0.4860.01***

4 0.7760.002 0.7560.01 0.5360.05***

5 0.7660.003 0.7560.004 0.5760.06***

Number in parenthesis after each species = number of occurrence records in the Maxent model input. Model numbers referred to variables that included: 1)
topography, spectral bands, NDVI, and precipitation data; 2) topography, spectral bands, NDVI, precipitation layers, and road distance; 3) topography, spectral bands,
NDVI, and road distance; 4) topography, spectral bands, NDVI, and winter or summer (for Pennisetum) precipitation; and 5) topography, spectral bands, NDVI, winter or
summer (for Pennisetum) precipitation, and road distance. ** = p,0.01, *** = p,0.0001.
doi:10.1371/journal.pone.0101196.t002
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Detections in 2011 and correspondence between
detections and habitat suitability models

We detected presence of at least one of our five focal species at
184 (77%) plots and 686 (59%) subplots. We detected Schismus
more frequently than the other four species, with a 56% detection
rate in 2011 at plots and 43% at subplots. Brassica was less
common, but was still detected in 47% of the plots and 28% of the
subplots (Table 3). Brassica exhibited considerable clustering, with
relatively higher abundance on subplots prioritized for measuring
sandy sites across the study area. It was also locally more abundant
than Schismus even though it was less frequently detected. Bromus,
Eruca, and Pennisetum were relatively uncommon. Locations where
we detected Bromus and Pennisetum appeared to be at the edge of
their predicted suitable habitat, whereas Eruca occurred in few
clustered populations in highly localized areas. Individual plants
were small in stature and cover was sparse, as all five focal species
showed an average percent cover ,1% based on point intercept
counts along transects in each subplot. At some xero-riparian
locations, we observed that plants sampled grew beneath
desiccated focal species from the previous year’s production that
had attained a much greater size (e.g. Brassica) and cover during a
relatively wet year.

We found high correspondence between locations where our
focal species were detected and areas of high habitat suitability.
Most of our detections fell within the 70th percentile of Model 4 for
winter annuals and Model 5 for Pennisetum (Figure 4). Among the
686 subplots with presence of at least one out of five focal species,
652 (95%) fell within the 70th percentile of at least one of these
HSMs (Figure 4). Furthermore, 206 (80%) of the 257 subplots that
had presence of multiple (n$2) focal species were within the 70th

percentile of more than one of these HSMs (Figure 4). More

specifically, for the two most common species at the plot level,
Schismus and/or Brassica was present in 70% of the sampled
locations, and 92% of these plots corresponded to the 70th

percentile of Model 4 for either or both species. Similarly, we
detected Schismus and/or Brassica in 54% of the sampled subplots,
among which 89% fell within the 70th percentile of Model 4 for
either or both species. Greater variation in habitat suitability
occurred in plots/subplots where Schismus was present. At locations
with presence of Schismus, only 54% at plots and 49% at subplots
corresponded to the 70th percentile of Schismus HSM. In contrast,
90% of the plots and 87% of the subplots where Brassica occurred
were within the 70th percentile of Brassica HSM.

Modeled detection rates for each focal species varied over the
range of habitat suitability with mixed relationships. Correspond-
ing to our field detections, Brassica models performed the best,
showing the strongest positive relationship between predicted
detection rates and habitat suitability. All five Brassica models
showed a positive trend of increasing detection with higher
suitability (e.g. predicted detection rate was .0.7 when habitat
suitability was .0.8) (Figure 5). Four of the five Bromus models
showed high predicted detection rate (.0.8) at high habitat
suitability (.0.8) and all five models predicted nearly non-
detections at low to medium habitat suitability, corresponding to
our finding of abundant Bromus populations at few locations
(Figure 5). Corresponding to the widespread field detections of
Schismus across different habitats, all five Schismus models showed
positive but less strong relationships, as predicted detection rates
ranged from low to medium (0.2–0.6) across low to very high
habitat suitability (Figure 5). Predicted detection rates were low
(less or near 0.2) across ranges of habitat suitability for Eruca and
Pennisetum models, reflecting our finding that the populations were

Figure 3. Proportion of sampled subplots in 2011 across habitat suitability ranges for each species. X-axis shows average habitat
suitability predicted by five models for each focal species. Y-axis indicates the proportion of subplots that fell within a given range of predicted
habitat suitability. We sampled all focal species in habitats that ranged from low to very high suitability to increase chances of detecting unknown
populations or unknown areas of species distribution.
doi:10.1371/journal.pone.0101196.g003
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regionally rare and locally abundant at only a few locations in the
study area (Figure 5). All 25 predictive models of detection rates
outperformed models that only included regression intercepts
when predicted habitat suitability was included in the models. The
average DAIC was .10 (i.e. our threshold of model goodness of
fit) for all five models for each focal species (average DAIC = 12.8–
229.2) (Figure 5). Brassica and Bromus models showed the strongest
fit, whereas Eruca and Pennisetum models were the weakest.

Improved sampling efficiency and detections in 2012
Despite a second year of below average rainfall following 2011,

both sample size and detection rates in 2012 increased greatly with
iterative adjustments by integrating additional HSM input data,
stratification of HSMs and other vegetation indices, and more
rigorous sampling location prioritization and targeting. We
sampled 10 and 50 plots and subplots per week in 2011 versus
18 and 92 plots and subplots per week in 2012 (i.e. 506 plots and
2,530 subplots were sampled in 2012). The overall detection of at
least one of our focal species increased from 77% in 2011 to 96%
in 2012 at plots and from 59% in 2011 to 84% in 2012 at subplots.
In particular, the detection of Schismus nearly doubled and reached
93% at plots and 80% at subplots (Table 3). All focal species had
sparse populations, with an average percent cover ,3% at
subplots because of low overall annual plant productivity for the
study area in 2011 and 2012. Among the subplots where we
detected our focal species, 93% fell within the 70th percentile of at
least one of species HSMs. More specifically, 76–78% of the
detections for Schismus and Brassica at plots and subplots occurred
within the 70th percentile of species HSMs. The correspondence
between detections and ratio of 2001–2010 maximum spring
NDVI to mean spring NDVI was slightly lower. We found that
65–68% of overall detection for at least one focal species at plots
and subplots fell within the 60th percentile of this index of
vegetation productivity.

Discussion

The environmental characteristics of invasion
Our Model 4 for winter annuals and Model 5 for Pennisetum

indicated that 81% of the study area was predicted with high (i.e.
70th percentile) habitat suitability for at least one of the focal
species. Furthermore, 42% of the study area had highly suitable
habitats for multiple ($2) species. The wide spatial distribution of
areas considered suitable habitat suggested that the extent to
which potential invasion could occur is larger than the current
species distribution, particularly for years experiencing above
average rainfall. Because we sampled across habitat suitability
gradients for each species, across environmental gradients, and

away from easily accessible roads, we were able to obtain a more
realistic estimate of the extent of invasion across the study area
despite the two relatively dry winter seasons that preceded
sampling.

Brassica appeared to dominate extremely sandy soils and dunes
[32,43], whereas Schismus was more generally distributed, occur-
ring ubiquitously as a minor component of most plant commu-
nities in the lower Colorado River desert. Given the relatively
recent introduction of Eruca, its true fundamental niche may not be
well characterized by HSMs. Eruca may be in the early stages of
expansion and can likely cover a much more extensive range than
it currently inhabits [66]. On the other hand, Bromus and Pennisetum
appear better suited to Sonoran Desert uplands with higher winter
and summer precipitation than what is typical of the lower
Colorado River subdivision [27]. Our results suggested that Bromus
and Pennisetum are likely to remain rare in the hottest desert areas
of the Sonoran Desert with extremely low summer rainfall
(Table 1). In comparison, during our preliminary sampling in
2010 at locations with great abundance of Pennisetum in south-
central Arizona where the mean annual precipitation is 32.3 cm
[35], we detected much higher presence (47%) and cover (11%)
(Wang et al., unpublished data). Sánchez-Flores found that HSMs
derived from anthropogenic variables showed relatively greater
predictive power than environmental (non-climatic) variables for
Brassica and Schismus [43]. In our study, however, we did not find
evidence that disturbance factors, such as distance to the nearest
road, was a stronger predictor than the environmental variables
(climatic and biophysical) we considered. Our finding suggested
that combining climatic, biophysical, and disturbance factors can
improve prediction performance and better characterize the
spatial extent of plant invasions that are likely to have a broader
distribution than is currently recognized without large-scale multi-
jurisdictional surveys [43,67].

Detection rates across ranges of habitat suitability
Our HSMs and field detection results indicated that a model-

informed, iterative and targeted sampling design not only
characterized important environmental attributes, but also
improved the detectability of some focal species. By sampling
across habitat suitability ranges, the detection rates in 2011 for
Schismus at plot and subplot levels and Brassica at plot level
outperformed all detection rates by another multi-species study
that used simulated field detections and multiple field sampling
methods [10]. Furthermore, by employing a rigorous targeted
approach to devising the sampling framework used in 2012, we
greatly increased the sample size and number of detections for
some focal species, especially Schismus. In addition, this sampling
approach yielded an opportunity to evaluate how well HSM-

Table 3. Number and percentage of detections of five focal species by plot and subplot sampled in the Sonoran Desert of Arizona
during our 2011–2012 field seasons.

2011 Detections 2012 Detections

Species Plot (n = 238) Subplot (n = 1,171) Plot (n = 506) Subplot (n = 2,530)

Schismus 133 (56%) 505 (43%) 473 (93%) 2020 (80%)

Brassica 113 (47%) 329 (28%) 260 (51%) 748 (30%)

Bromus 15 (6%) 54 (5%) 11 (2%) 13 (0.5%)

Eruca 14 (6%) 32 (3%) 26 (5%) 77 (3%)

Pennisetum 21 (9%) 46 (4%) 3 (0.6%) 3 (0.1%)

doi:10.1371/journal.pone.0101196.t003
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informed stratification corresponded to species detections. Overall,
modeled detection rates showed notable variation in correspon-
dence with HSM predictions among the five species studied.
Observations of high correspondence between high habitat
suitability and increasing detection rates for Brassica supported
the use of HSMs to detect populations and the potential spatial
extent of invasion. There are many suitable locations that Brassica
could colonize but has not yet reached, or where it was once
abundant but has decreased during consecutive years of low
rainfall. Eruca is less well distributed, as evidenced by its highly
localized and overall low detections in areas predominated by high
habitat suitability. This species appears to be dispersed along

recently abandoned agricultural fields and washes, but it also has
the potential to occupy relatively undisturbed locations, such as
sandy areas with surrounding rocky terrain. The detection rate for
Schismus was less variable across the range of habitat suitability,
perhaps because this species occupies a broad range of environ-
mental conditions.

Other factors that influenced field detections
Some limitations existed despite a high level of detection for

certain species achieved by our sampling design. First, we
constructed HSMs by leveraging available datasets that represent-
ed variable sampling efforts and might not fully represent the

Figure 4. Number of species (black, gray, and white circles) detected in our study area in 2011. Colored areas show the number of
habitat suitability models (Model 4 for winter annuals and Model 5 for Pennisetum) with predicted high habitat suitability (70th percentile). Darker
colors indicate greater spatial overlap of high suitability across species.
doi:10.1371/journal.pone.0101196.g004
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distribution of a given species in the study area. Both Schismus and
Eruca could be missed from roadside sampling because small
Schismus plants are often quite small in stature and less easily
identified, and Eruca is less widespread. In contrast, Brassica is
better documented because of its large and conspicuous form
especially during wet years [32,43]. We attempted to reduce bias
by sampling reasonable distances away from roadsides and across
large environmental gradients (i.e. habitat suitability ranges) to
capture variation that opportunistic sampling would not have been
able to accomplish. To treat such non-detection sampling bias, the
next iteration of HSMs could incorporate recommendation from
Hefley et al. to elicit experts to provide auxiliary data for
estimating the probability of detection [15]. Second, our HSMs
provided landscape- to regional-scale habitat suitability informa-
tion to stratify potential occurrence locations and identify
uninhabited areas that are suitable for colonization [68].
Therefore, the landscape to regional trend of suitable habitats
predicted by HSMs may not capture the local- or fine-scale
variation of colonized habitats. Third, HSMs based on presence-
only data do not imply species presence or absence because species
could be absent from highly suitable habitats or present in less
suitable habitats due to biotic, historical, or dispersal factors [69–
71]. For example, Eruca currently occupies a very low proportion
of its predicted suitable habitats, but may have great capacity to

expand its distribution during years of increased plant productivity
(e.g. El Niño events).

Fourth, our HSMs did not include process-based models to
couple predictions with dispersal dynamics and empirically
examine the effects of invasion stages on the degree of non-
equilibrium in models (e.g. [72]). We attempted to capture these
types of non-stationary factors by: 1) sampling across large
environmental gradients to capture a wide range of conditions
that could support species dispersal, colonization, and establish-
ment, and 2) sampling during two years and spring growing
periods to capture the dynamic process of dispersal, colonization,
and establishment that might have occurred in one year, but not
the other as limited rainfall in the study area was highly and
spatially heterogeneous among years. Refining future sampling
efforts could implement dispersal constraints into habitat suitabil-
ity models by quantifying the probability of dispersal as a function
of distance from the source population (i.e. location with presence
records) [73,74]. To overcome the challenge of deficiency in
empirical data required for model parameterization (e.g. [75–77]),
we could implement the simplest dispersal characteristics (e.g.
distance to the nearest source population for each pixel) and then
employ a more rigorous targeted strategy that considers the
distribution of locations within the neighborhood of invasion
hotspots identified from HSMs, expert knowledge, and previous

Figure 5. Relationship between predicted habitat suitability and modeled detection rate at subplots for each of the five habitat
suitability models for each focal species. We used a generalized linear model to fit regression line between binary field detections in 2011 and
predicted habitat suitability. Detections were modeled using a binomial distribution and a logit link function. For each focal species, we show the
average delta Akaike Information Criterion (DAIC) 695% confidence interval for models of detection rate that included predicted habitat suitability
versus models that included an intercept term only.
doi:10.1371/journal.pone.0101196.g005
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sampling efforts. For example, we could focus on areas with recent
fires or substrates that would facilitate the dispersal and
establishment of our focal species.

Finally, the low winter precipitation prior to sampling affected
our overall detection rates. Indeed, total precipitation in Yuma
County from December, 2010 to April, 2011 was 37% below the
previous ten year average (2000–2010) and 76% below the wettest
year on record (2005) (Western Regional Climate Center 2011;
http://www.wrcc.dri.edu/). Detection rates and percent cover
were lower than what might be expected during a wetter year,
therefore, focal species were absent or sparse from areas that
would ordinarily have invasive plants present or with greater
cover. We observed that most of our focal species tended to occupy
only shaded areas beneath native shrub canopies, within drainages
or at roadsides which have pseudo-riparian characteristics such as
higher soil moisture and fertilization effects [32].

Recommendations to managers
Our iterative and targeted sampling design allowed us to

improve detections for sparse and patchy populations by stratifying
locations using HSMs and other ancillary data important to focal
species establishment. Our framework is particularly important to
fragile ecosystems where varied rainfall patterns may facilitate
periodic and large increases in non-native invasive plant produc-
tion and fuel loads followed by dry periods of increased fire risk.
We demonstrate how modeling results can be used to guide the
design of management protocols by explicitly linking model-
informed sampling to management strategies [56]. Accordingly,
we identified strategies for improving detections rates that are also
applicable to other species and ecosystems. First, location selection
using strata predicted by HSMs should include a greater range of
habitat suitability that covers more local habitat variation.
Extending the HSM approach and adding other stratified
vegetation indices such as remote sensing-derived phenological
metrics in vegetation greenness can facilitate locating areas of
greater focal species productivity and abundance. Second,
implementing a stratified random and spatially confined approach
using rigorous criteria, can increase sample size and further reduce
transportation and labor costs. Third, plot prioritization for
sampling can be based on the most recent vegetation indices from
remotely sensed imagery. This information helps capture vegeta-
tion greenness by annual plants prior to field work and helps to
avoid sampling in areas with low or no annual plant production.
Finally, for focal species that show strong habitat preferences to
particular substrate types, incorporating soil substrate maps
derived from spectral mixture analysis of high resolution field

spectrometer data and satellite image classification can guide
sampling prioritization. Spectral end members from other
common substrates will also aid avoiding locations that have low
potential to support focal species establishment.

Our iterative and targeted sampling design and HSMs provide
practical use of existing invasive plan distribution data and useful
utility for developing sampling strata and detecting focal species
over large geographic areas to satisfy key management objectives:
1) detecting populations of non-native invasive plants across
previously unsampled gradients, and 2) characterizing the
distribution of non-native invasive plants at landscape to regional
spatial scales. We have rigorously examined the iterative and
targeted sampling design in a landscape where species invasions
pose a threat to native plant composition and structure that are
likely to undergo community shifts in the coming decades as a
result of climate change. Climate change may enhance processes
from introduction to spread of invasion by increasing the transport
of propagules, decreasing the resistance of native species to
invasion, reducing the space suitable for native species, and
creating shifts in ecosystem distributions [78,79]. Thus, our
sampling design framework can play a key role in facilitating
monitoring and mitigation activities by land management
agencies. Moreover, our novel approach to the nested integration
of common and freely available satellite images with field data can
be readily extended to other species and ecosystems. Our results
highlighted where potentially suitable habitats might be vulnerable
to invasion by one or more of our focal species and where
monitoring efforts might be focused. Importantly, our methods
and results provide a framework for establishing an ‘‘early warning
system’’ that is critical to helping managers to recognize the
possible extent of future problematic non-native invasive plants
across multiple land ownerships.
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55. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends
Ecol Evol 22: 42–47.

56. Jones CC, Acker SA, Halpern CB (2010) Combining local-and large-scale
models to predict the distributions of invasive plant species. Ecol Appl 20: 311–
326.

57. Stevens DL Jr, Olsen AR (2004) Spatially balanced sampling of natural
resources. J Am Stat Assoc 99: 262–278.

58. Theobald DM, Stevens DL, White D, Urquhart NS, Olsen AR, et al. (2007)
Using GIS to generate spatially balanced random survey designs for natural
resource applications. Environ Manag 40: 134–146.

59. Wang L, Silván-Cárdenas JL, Yang J, Frazier AE (2013) Invasive saltcedar
(Tamarisk spp.) distribution mapping using multiresolution remote sensing
imagery. Prof Geogr 65: 1–15.

60. Chen D, Stow D (2002) The effect of training strategies on supervised
classification at different spatial resolutions. Photogramm Eng Remote Sensing
68: 1155–1162.

61. Kalkhan MA, Stafford EJ, Stohlgren TJ (2007) Rapid plant diversity assessment
using a pixel nested plot design: a case study in Beaver Meadows, Rocky
Mountain National Park, Colorado, USA. Divers Distrib 13: 379–388.

62. Xu YG, Dickson BG, Hampton HM, Sisk TD, Palumbo JA, et al. (2009) Effects
of mismatches of scale and location between predictor and response variables on
forest structure mapping. Photogramm Eng Remote Sensing 75: 313–322.

63. Burnham K, Anderson D (2002) Model selection and multi-model
inference: a practical information-theoretic approach. New York: Springer-
Verlag. 488 p.

64. Philippi T (2005) Adaptive cluster sampling for estimation of abundances within
local populations of low-abundance plants. Ecology 86: 1091–1100.

65. Sullivan WP, Morrison BJ, Beamish FWH (2008) Adaptive cluster sampling:
estimating density of spatially autocorrelated larvae of the sea lamprey with
improved precision. J Great Lakes Res 34: 86–97.

66. Rorabaugh JC (2010) Conservation of amphibians and reptiles in northwestern
Sonora and southwestern Arizona. In: Halvorson WL, van Riper C, Schwalbe
CR, editors. Southwestern desert resources. Tucson: University of Arizona Press.
pp. 181–204.

67. Manier DJ, Aldridge C, O’Donnell M, Schell S (2014) Human infrastructure
and invasive plant occurrence across rangelands of southwestern Wyoming,
USA. Rangeland Ecol Manage 67: 160–172.
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