CBA + NAU A Design Tool for Novice

College of Business

A ation Programmers

Northern Arizona University

Box 15066

Flagstaff AZ 86011 Working Paper Series 00-01 — April 2000

Jo-Mae Maris
College of Business Administration
Northern Arizona University
Flagstaff, AZ 86011
(520) 523-7403; Fax (520) 523-7331
Jo-Mae.Maris@nau.edu

Craig VanLengen
College of Business Administration
Northern Arizona University
Fagstaff, AZ 86011
(520) 523-7392; Fax (520) 523-7331
Craig.VanL engen@nau.edu

Rick Lucy
College of Business Administration
Northern Arizona University
Flagstaff, AZ 86011
(520) 523-9185; Fax (520) 523-7331
Rick.L ucy@nau.edu

CBA - NAU A Design Tool for Novice
Admiraon Programmers

Northern Arizona University

Box 15066
Flagstaff AZ 86011 Jo-Mae B. Maris, Craig VanLengen and Rick Lucy

PROBLEM

Novice programming students frequently ask, “Where do | start?” How many times has the question been
asked after the teacher has presented structured-design, object-oriented design, or the universal modeling language?
Doesthe problem lie with the teacher or with the methods?

At least one method did not specify astarting placeinitsinitial presentation. The method was stepwise
design:

“In each step, one or several instructions of the given program are decomposed into more detailed
instructions. This successive decomposition or refinement of specifications terminates when all instructions are
expressed in terms of an underlying computer or programming language, ... “ [Wirth].

Wirth did provide more guidance in hisPascal User Manual and Report: “In the early stages, attention is
best concentrated on the global problems, and the first draft of the solution may pay little attention to the
details’[Jensen].

Most of the methods give starting points:

“Thefirst step in actual class design isto find the primary objects’[Arnow].
“... make amodel that defines the key domain classes in the system” [Erikkson].
“ldentify the classes and objects at agiven level of abstraction”[Booch].

“Investigate the problem domain: observe first-hand; listen actively; check previous OOA results;
check other systems; read, read, read; and prototype”[Coad].

“Rulesfor developing a proof or program:
1. Dothesingle option availablein the simple case of only one option;
2. Choose the complex option;
3. Start on the most complicated side.
That is start with the hard job first”[Dijkstral.

“Thefirst business of design istherefore to translate the specifications into the fixed formats of a set of
working documents (Data Flow Diagrams, Data Dictionary, Transform Descriptions, and Data
Structures Charts...)” [DeMarco]

The student programmer may be able to recite the definition of terms used in the preceding guidelines, but
to make useof the concepts may be beyond the level of learning programming for the student. A programmer
needs experience to grasp the hard job, level of abstraction, problem domain, and domain classes. For the novice,
all of thejobsare hard. Level of abstraction, problem domain, and domain classes are terms the novice has
memorized. Two sets of authors discussing object-oriented design recognized this problem. Rumbaugh, Blaha,
Premerlani, Eddy, and L orensen acknowledge the problem directly:

“The content of an object model isamatter of judgment ...” [Rumbaugh].

Judging isin the problem-solving level of the cognitive domain of learning [TIPS]. “The knowledge level
forms the base upon which the application level is built, and the application level formsthe base for the problem-
solving level”[TIPS, p.34]. Hence, beginning students, who are still memorizing terms, arein the knowledge level
that includes “define, recite, repeat, and restate” among its activities[TIPS, p.46].

CBA Working Paper 00-01 April 2000 2

Coad and Y ourdon recognized the problem indirectly by pointing out that through experience objects
become readily apparent:

“Asanalysts experienced in applying OOA across widely divergent problem
domains, we recognize certain patterns across systems. And so at timesit might seem
that the Class-&-Objects are ‘just there for the picking’” [Coad and Y ourdon, p.52].

However, student programmers would not have the experience of Coad and Y ourdon.
Another recognition of the need for experience to design programs using existing methods comes from
DeMarco in the chapter titled “ Transition into the Design Phase”:

“When you'’ re done with this chapter you won’t know how to do a Structured
Design, unless you knew that already” [DeMarco, p.297].

Y et, more evidence of the need for experience in the use of some program-design methods comes from
Erikkson and Penker:

“... thereisno “right” solution for all circumstances. Of course, some solutionswill
prove better than others, but only experience and hard work will result in that
knowledge” [Erikkson and Penker, p.1].

We believe the problem is with the methods. Dijkstra articulates a problem that this and no other method
can overcome: “Not all teachable topics are learned by all students (enrollees)” [Dijkstra, Notes, p.1].

PROPOSAL

We believe that a novice programmer needs asimplified approach to program design. We propose using a
find, list, and order approach. The approach gives the student a place to start that he understands. The starting place
may be different for each student. This approach does not propose a new method. Rather the proposal isto provide
atool that will guide identification of data needed by existing methods and to classify and organize that data so it
becomes information the student can use with existing methods. The student should switch to an existing method
when he or she comprehends the information the existing method uses.

DESGN APPROACH

Thedriving force behind our approach is the old dictum, “Keep It Simple, Stupid,” also know as Ockham's
razor.> Given the complexity of developing programs for an event-driven environment using an object-oriented
language, keeping it ssimpleisessential. The simplicity of the approach also answers the novice programmer’s
question, “Wheredo | start?’ Collecting data and listing data does not require experience. Sorting datarequires
classifications and comparison. Classification isan application level skill. Comparison isa problem-solving level
skill. Using the progression from knowledge level skillsto application level and then to problem-solving level
enables the student to progressin understanding so the data manipulated will become information.

This design approach has few strictly defined components or rules. The components are objects, events,
tasks, and data. The ruleiswork with the summary table and relationship sketches until you have identified the
information needed to use an existing method, such as pseudocode to specify the low-level functionality. The
simplicity in the approach is an intentional choice to minimize a student’ s feeling of inadequacy and ignorance.

An object isan integrated package or bundle of properties and behaviors. Objects respond to events.
Properties describe the characteristics, qualities, appearance, values, or data built-in an object. Behaviorsrefer to the
actions, methods, processes, operations, or code built-in an object. The programmer can generate an object ina

1 “They followed the emperor to Munich (Germany) in 1330, where Ockham wrote fervently against the papacy in a
series of treatises on papal power and civil sovereignty. The medieval rule of parsimony, or principle of economy,
frequently used by Ockham came to be known as Ockham's razor. The rule, which said that plurality should not be
assumed without necessity (or, in modern English, keep it simple, stupid), was used to eliminate many pseudo-
explanatory entities.” [Bechett, Dave. http://wotug.ukc.ac.uk/parallel/www/occam/occam-bio.html University of
Kent at Canterbury, UK, 1994.]

CBA Working Paper 00-01 April 2000 3

visual development environment or declare an object. The object created has the properties and methods intrinsic to
that object available without declaring them or coding them separate from the object.

Events are interactions between the user and objects, objects and objects, or code and objects. The objects
are usually in the user’ sinterface, but the objects may be system objects, such as printers. Events send messages to
the controlling module. The controlling module uses the event’ s message (or signal) to determine which default
behaviors and event procedure to execute. The behaviors and event procedures are blocks of code that define tasks.

Tasks are work that needs to be done. The tasks may be performed by objects’ methods or by user-defined
code. When atask is an identifiable block of code, the task may be called amodule, such as methods, event
procedures, or user-defined procedures. In this sense, amodule is a coherent block of code, not just a convenient
container for holding coherent blocks of code, as are the modulesin Visual Basic. In our approach, the term module
has more the meaning of the modulesin ahierarchy diagram or amethod of an object. When atask issmall, it may
be a program statement or a portion of the codein amodule. Whether atask islarge or small, eventualy its
performance must be prescribed as ordered program statements or code.

A module can be achild (or called module) or it can be a parent module. There are two types of parent
modules: a controlling module and a calling module. A controlling module could be referred to as a controller,
kernel, core unit, primary logic, main module, or any similar term that conveys a software entity that isin control of
when subordinate modules are called. Frequently, the controlling module is predefined, such asthe controlling logic
built into Visual Basic, the script interpretation features of an Internet browser, or services of an Internet server that
interprets A SP pages or invokes CGI programs. However, the controlling module could be user-defined, such asthe
primary logic module in a procedural language program. A calling module launches or invokes another module. A
calling module may be a controlling module or a user-defined module.

Data are the numbers, details, specifics, or representations of facts manipulated in the performance of the
work.

Now that the terms have been defined, we present our approach in the stages of the system devel opment
lifecycle. Hoffer, George, and Valacich list the stages of the SDLC, as “Project Identification and Selection, Project
Initiation and Planning, Analysis, Logical Design, Physical Design, Implementation, and Maintenance” [Hoffer].

Our approach concentrates on sel ected portions of the SDLC:

Problem definition from the Project Identification and Selection stage,
Initial program and GUI design from the Logical Design stage,
Program and GUI design refinement from the Physical Design stage,
Program and GUI construction from the Implementation stage, and
Testing and debugging from the Implementation stage.

The approach we propose is for learning to design programs and their interactions with their interfaces. It
is not intended to cover the entire SDLC. The programs students devel op tend to be small and rarely if ever used or
evaluated in the context of achanging business environment, so Project Initiation and Planning, Analysis?, and
Maintenance would not be relevant to the programming projects of novice programmers.

Problem Definition

In our approach, the problem definition is primarily a scaled down combination of Project Identification
and Selection, Project Initiation and Planning, Analysis stages performed by the teacher. The teacher providesthe
requirements for the program. A simplified requirements document is the central tool for this stage. The emphasis
ison providing the students with the information necessary for developing aprogram. Using simplified
requirements documents for assignments allows the students to experience working from requirements documents.
The document used in our approach is called aformal problem definition [Computer Science Department,
University of Wisconsin—La Crosse, class notes during the early 1980’ g].

A formal problem definition consists of five parts: Overview, Input Expected, Output Required, Normal
Example, and Unusual and Error Conditions. The“Overview” describes the general task the programisto

2« Analysis’ in the sense of devel oping the system requirements is not relevant to the design of novices' programs.
In our approach, the instructor would supply the system requirements, so the students would begin working in the
Logical Design stage.

CBA Working Paper 00-01 April 2000 4

accomplish. The“Overview” should include any special aspects of the program and give formulasto be used in
computations.

The “Input Expected” section describes the data the program will receive. Since users do not always
supply the data that a program anticipates, the section is called “Input Expected,” rather than “Input Specifications.

The “Output Required” section describes the reports, screens, or other output that the program is required
to produce.

The“Norma Example” may be the most important part of aformal problem definition. Inthe“Normal
Example,” the programmer can see the behavior the user expects from the program. The “Normal Example” should
detail atypical, simple session with the program. Inthe “Normal Example,” the user should include one sample of
each screen and report, atypical sequence of use, and at |east one complete set of input data and correct output
solutions.

The last section of aformal problem definitionisalist of conditions that are not covered by the “Normal
Example” and how the program should respond to each of the conditions. Evenif the responseto an error or
unusual condition isto do nothing and let the default behavior of the computer system occur, the condition should
still beincluded in the list of unusual and error conditions. The formal problem definition should provide an
adeguate specification of the program to be produced.

Initial Design

The purpose of theinitial program design isto give the student programmer a place to start. During this
stage of the design, the student studies the formal problem definition to recognize and record the tasks (high-level
functionality) and objects described in the formal problem definition. The tasks and objects are recorded in a
Summary Table. This stage could begin with listing the output required, and then identifying the data necessary to
produce the output. The Summary Table includes columnsfor listing the major tasks the program isto perform, the
data manipulated by the tasks, and the major objects. One layout of the Summary Tableis shown in Figure 1.

FIGURE 1
Summary Table
, . Trigger
Program’sMajor Tasks Input Data Get Output Data Put Obj/Event
{ Cryptic description of task} ltem A GUI ltemA GUI & New record
Fle command
button /click
ltemB [Askuser | ItenC || Pint |
{ Another cryptic description} ltemD GUI or Form/load
Fle
{ Last cryptic description} ltemD Fle Called by
Form/unload
and new record
command
button/click
SUMMARY TABLE

The summary table is composed of three areas: tasks, data, and triggers. Thetasks' columnislabeled
“Program’sMajor Tasks” in Figure 1. The tasks column gives students a place to list the tasks, behaviors, or
operations described in the formal problem definition. Thelabel for thisand any column in the table could be
changed, if adifferent label would be more useful to the student using the table. For example, if astudent findsthe
label “Model’ s Behaviors” more descriptive than “ Program’s Major Tasks,” then the student should be encouraged
to usetherevised label.

CBA Working Paper 00-01 April 2000 5

Thetriggers area of the summary tableislabeled “ Triggers, Obj/Event” in Figure 1. Thetriggers column
provides an area for accumul ating the object and event combinations that trigger behaviors or event procedures that
perform the tasks listed in the “ Program’s Magjor Tasks” column. That is< the triggers represent the messages or
signals used by the controlling module to select what behaviors and event procedure to execute. If astudent finds
identifying objects easier than identifying tasks or events, this column could be split into two columns: (1) Objects
and (2) Events. The new objects' column could be the first column filled. The student would then need to identify
the behaviors (tasks) and events associated with the objects.

The data area contains four columnsin Figure 1. The columnsare “Input Data,” “Get,” “ Output Data,” and
“Put.” The“Input Data’ column provides alocation for noting the data required to perform atask. The“Get”
column gives the source of the data used to perform atask, “Input Data.” The “Output Data” column providesa
location for noting the data produced by atask. The“Put” column specifies destination of the data produced by a
task, “Output Data.” The labels“Get” and “ Put” were chosen because the labels are short. If astudent prefersthe
labels“Source” and “ Destination,” then use “ Source” and “ Destination.” Some students may find the data areathe
easiest to completefirst since the formal problem definition contains sections for input and output. Again, the
student should start with the easiest column.

PROCESSUSEDWITH SUMMARY TABLE

The process described in this section is not rigidly structured. At any time during this process, the student
may switch to an existing design method. The purpose of the tool isto provide the student a means for collecting
data and converting the datato information that is useful in using existing methods. Thus, once the student has
obtained sufficient information to use an existing design method, the student should switch to developing the
program’s design with that method’ stools.

Thefirst step in completing the table isto fill-in one column. The column would be the one the student
finds the easiest to identify its contentsin the formal problem definition. For example, the students might find
identifying tasks the easiest column to complete. Figure 2 shows an example of a student starting with the
“Program’ s Mgjor Tasks” column.

Once the one column is compl eted, then the students would identify the content of another column. The
data entered in the second column should relate to the datain the completed column by row. For example, the
student might identify the output of each task. The data about the output would also be availablein the formal
problem definition. For example, the user may want to be able to either enter aclient’ s address or have it retrieved
from afile.

Thetrigger column may be the most difficult for the students to compl ete because it may not beincluded in
the formal problem definition. The possible objectsin some interfaces are limited, such asloading of aWeb page
for some JavaScripts, or extensive, such as the wide array of controls and events that can trigger event proceduresin
Visud Basic.

After completing the table, the user’sinterface can be designed. Once the table is completed, the student
has identified the major objects to appear in the program and on the user’ sinterface. Then the user’sinterface
design becomes a matter of arranging the objectsin a productive and attractive manner.

Design Refinement

Oncethe user’ sinterface is designed, the student is ready to concentrate on the details of performing the
tasks. During the design refinement stage, the student moves from modeling the system as an abstraction to
modeling the details of the system. The tools used to develop this detail model may be pseudocode and a graphical
representation of the modules similar to a hierarchy chart, but modules may occur in the chart more than once and at
different levelsin thetree. Figure 4 shows an example of arelation sketch that resembles a hierarchy chart, but is
not a hierarchy chart. Recall thisgraphicisa sketch to help a student visualize the calling relations among the
modules or behaviors. Some students may want to color amodule that repeats, so the repeated module becomes
more obvious. Granted, repeating modulesin ahierarchy chart isnot allowed. However, thisis not ahierarchy
chart.

The sketch isto help the student. 1f agraphic similar to an object diagram, a systems diagram, or adata
flow diagram does a better job of enlightening the student, then useit. However, do not let rules of atool hinder the
student’ s understanding. At this point the student is still trying to understand the rel ationships, so those

CBA Working Paper 00-01 April 2000 6

relationships can be represented in amore rigorous manner. It isimportant not to impose rigor before the student
understands the relationship.

The activitiesin this stage begin with identifying each module and its rel ationships with other modul es.
This procedure was begun in theinitial design stage by identifying the tasks and their triggers. Now the tasks and
thetriggers need names. The names will become module, method, or subroutine names. The names can be written
on the Magjor Tasks' Information form.

To clarify each modul €’ srelationship with other modules, a chart or map of the modules can be drawn. For
aWeb-based program, the drawing might resemble a site map that included code modules. For asingle-form Visual
Basic program, the drawing would resemble a hierarchy chart. However, the graphic should emphasize the
relationshi ps among task modules and controlling modules. Therefore, the graphic should include representations of
controlling modules, event procedures, and user-defined code. If the relationships are most easily represented and
understood by including a module more than once and at different levels of thetree, then doit. Seethe“Example”
section for an illustration of one possible graphic representation of the relationships among modules. The precise
appearance and presentation is not the imp ortant part of this step. The importance of this step isto solidify the
relationships among the task modules and controlling modules.

After establishing the relationships among modules, each module should be refined using pseudocode and
stepwise refinement. As new subroutines are identified, they should be added to the graphic. The utility subroutines
could be put in the relationships sketch a number of times or be represented as modules at the bottom of the sketch
with lines from calling modules leading to the utilities. These utility constructs are sometimes called octopuses
because the lines leading to a utility resemble tentacles reaching into the orderly structure of ahierarchy chart. Once
all of the modules are fully specified in pseudocode, the student is ready to proceed to the next stage, program
construction.

Program Construction

Constructing the program refers to creating the user’ sinterface and writing the code. The primary concern
of this method in this stage is the translation of design into language-specific and presentation-specific constructs.
For example, in Visual Basic a scrollable output areawould be constructed using atext box control tool and setting
the text box properties so that Multilineis True, Scrollbars equals 2, and Locked is True. Another example of the
conversion would be to select the correct instruction syntax to construct aloop planned in the pseudocode while
keeping the code structured.

Testing and Debugging
This modeling approach does not have specific recommendations for testing and debugging.

EXAMPLE USING THE DESIGN APPROACH

This example shows the specification, design, and construction of asimple, two-form, Visual Basic
program. A simple exampleis appropriate because most beginning programs are simple. This program could be
implemented in one form if the file information were included on the main form or if acommon dialog control were
used. However, some student computer labs prohibit common dialog controls and including the file objects on the
main form can cause confusion for the user, so the requirements will specify that a second form isrequired for
obtaining the file specifications. The exampleis presented in stages using the tools recommended for each stage.
This program would be afinal project for an introductory programming course.

Formal Problem Definition

For this example, theinstructor provides the formal problem definition. When thisisdone, al of the
students are devel oping the same program. Creating aformal problem definitionisaproject initself. Theformal
problem definition is shown in Appendix A.

Program Design

To begin this project, the student chooses to identify the tasks from the formal problem definition. The
student’ slist of tasks has no particular order, as shown in Figure 2.

CBA Working Paper 00-01 April 2000 7

FIGURE 2

Initial List of Tasks

Trigger
Obj/Event

Input

Data Get Output Data Put

Program’sMajor Tasks
Rent snorkel eguipment {p-21]

Initialize inventory from file [p.22]

Print preview equipment rental [p.23]
Print tickets [p.26]
Record rental in file [p.26]

Update inventory [p.26]

Return equipment [p.27]

Put ending inventory in file [p.27]

Make sure rental file exists [p.28] and
read file to determine starting ticket
number [p.33]

Next, the student wants to reorder the tasks into some logical order. However, we will assume this student
does not see any logical order. Therefore, the instructor could suggest that the student fill-in the trigger column to
help identify the tasks that can be grouped by the triggers that initiate the tasks. Thetriggers may in part be obtained
from the formal problem definition. An example of the task list with triggers used to rearrange the tasksis shown in
Figure 3.

FIGURE 3

Ordered Taskswith Triggers

Program’sMajor Tasks Input Data Get Output Data Put CIerI/gE?/eerru
Initialize inventory from file [p.22] Form/load
Make sure rental file exists [p.28] and Form/load
read file to determine starting ticket
number [p.33]
Rent snorkel equipment [p.21]
Print preview equipment rental [p.23] Rent/click
Print tickets [p.26] Rent/click
Record rental in file [p.26] Rent/click
Rental inventory update [p.26] Rent/click
Return equipment [p.27] Return/click
Put ending inventory in file [p.27] Form/unload

Since the user’sinterfaceis already given in the formal problem definition, the student does not see the
importance of looking at the datanow. Instead, the student decides to skip to the relationship sketch. For the
relationship sketch, the trigger column helps, but the student must first identify the controlling module for the
program. Sincethisisgoing to beaVisual Basic program, the controlling module would be VB’ s built-in logic.
This concept would have been presented in class. The student decidesto call VB’sbuilt-inlogic, “VB Module.”
Theinitial relationship sketch drawn by the student is shown in Figure 4.

CBA Working Paper 00-01 April 2000 8

FIGURE 4

Initial Modules Relationships

| Form Load | | cmdReturn Click | cmdRent Click | Form Unload

|
[| | | |

ReadlInv ReadRent PrtPreview PrtTickets PutRental Updatelnv

cmdOpen Click

This student’ s relationship sketch resembles a hierarchy chart. Figure 4 gives the student’ s understanding
of therelationships. In Figure 4, the“VB Modul€” appearstwicein the diagram and at different levels. The student
chose to make the box around the “VB Module” dashed because the codeis built-in Visual Basic, so the student
doesn’t have to writeit or call the module directly. In an orthodox hierarchy diagram, the“VB Module” would only
appear once at theroot. All of the event procedures including those from the second form (frmFile) would be
children of theroot. Thismay be how Visual Basic works, but it does not show the subordination of the second
form to the ReadRent module. The student chose not to identify the forms, although another student might find the
identification of forms helpful.

Once the relationships among the modules are established, the student is more interested in developing
pseudocode than deciding what data are used in which tasks. So once again, the student ignores the data columnsin
the Summary Tableto pursue hisimmediate interest. The student triesto devel op the pseudocode for the
“Form_Unload” module and soon discovers he does not know where the inventory data are stored.

After grasping the need for understanding the data, the student’ sinterest is focused on the data. The student
completes the data columns in the Summary Table. The student must analyze where the data are stored, how the
data are obtained, and where the data are destined. Asshown in Figure 5, the student identified scope and visibility
of each dataitem with the labels“global,” “form level,” and “local.” Global variableswould be visible to the all
modulesin the program. “Form level” variableswould only be visible to modules on the form containing the
variable. “Loca” variableswould only be visible to the module containing the variable. The student could have
inserted a separate column for the data scope, but the student preferred not to add a column. The notation may not
be consistent, but that is not important. The organization of the dataisimportant at this point.

CBA Working Paper 00-01 April 2000 9

Figure5:

Completed Summary Table
Program’sMajor Tasks Input Data Get Output Data Put C)Tbrjll%\]/;t

Initialize inventory from file a:\inventory.txt literal Form/load
[p-22] titem {local} field

IQty {local} field txtinv (1..4) GUI
Make sure rental file exists tFName {global} modJSS Form/load
[p.28] tName {local} field
and 'read.file to determine tAddress {local} field
starting ticket number [p.33])

tDate {local} field

iTNum {form level} field iTNum frmJSS

afEquip (1..4) {local} field

tCardNum {local} field
Rent snorkel equipment
tp-24}
Print preview equipment Now() VB func tDate local Rent/click
rental [p.23] iTNum {form level} frmJSS tNum local

txtName GUI

txtAddr GUI

chkltem GUI

Card number Ask user | tCardNum local

txtOut GUI

Print tickets [p.26] txtOut GUI Printer Rent/click
Record rental in file [p.26] tFName {global} modJSS Rent/click

txtName GUI

txtAddr GUI

tDate local

tNum local iTNum frmJSS

chkitem (1..4) GUI

tCardNum local
Rental inventory update chkltem (1..4) GUI txtinv (1..4) GUI Rent/click
[p-26] txtinv (1..4) GUI
Return equipment [p.27] chkitem (1..4) GUI Return/click

txtinv (1..4) GUI txtinv (1..4) GUI
Put ending inventory in file a:\inventory.txt literal Form/unload
[p.27] chkltem(1..4).Caption GUI item name field

txtinv (1..4) GUI gty-on-hand field

CBA Working Paper 00-01 April 2000

10

Having organized the data used by each of the major tasks, the student again attempts the pseudocode. As
before the student starts with the “Form_Unload” module. Thistimethe effort is more successful. The pseudocode
for the “Form_Unload” is shown below.

Module: Form_Unload
Location: frmJSS code module
Parent: VB Module
Children: none
External data: chkltem control array, txtinv control array
Local variables: il As Integer, iQty As Integer
Purpose: Store the ending inventory in the file “a:\inventory.txt”
Begin module
Open the inventory file
For each chkitem write a record. Use the counter il.
Convert txtinv(il). Text to a number and store in iQty
Write to inventory file the fields: chkitem(il).Caption and iQty
End loop
Close the inventory file
End module

The documentation included in the example above may be more than most students are willing to make for
pseudocode, but it does show the possibilities. Each module would be refined in asimilar manner. When all of the
modules were refined into pseudocode, the design would be complete.

Program Construction

The construction would consist of creating the GUI using the names listed in the major tasks' information
table. Then the code would be written. If the student hasincluded the “L ocation” documentation in the pseudocode,
the task of writing the code is simply a matter of going to that |ocation and entering the code that implements the
pseudocode for the module.

For the “Form_Unload” module, the student would open the frmJSS form’s code in Visual Basic's
Integrated Development Environment (VB IDE). From the object combo box the student would select “ Form.”
From the event combo box, the student would select “Unload.” The VB IDE would producethelines: “Private
Sub Form_Unload (Cancel As Integer)” and“End Sub.” In between the subroutine's delimiters
generated by the VB IDE, the student would enter the code. The finished module would be similar to the one shown
below.

Private Sub Form_Unload(Cancel As Integer)
“Store the ending inventory in a:\inventory.txt
“LOCAL VARIABLES
Dim il As Integer
Dim iQty As Integer
“Begin subroutine
“Open the inventory file
Open “a:\inventory.txt” For Output As #2
“For each chkltem write a record. Use the counter il.
For il = 1 To 4
“Convert txtlnv(il).Text to a number and store in iIQty
Let iQty = Val(txtlnv(il).Text)
“‘Write fields: chkltem(il).Caption and iQty
Write #2, chkltem(il).Caption, iQty
Next il
“End loop
“Close the inventory file
Close #2
End Sub

CBA Working Paper 00-01 April 2000 11

Each of the modules would be converted to Visual Basic codein asimilar manner. Once all of the modules

were translated, the code would be complete. The student might test the modules as he wrote them rather than
saving all of the debugging for last.
This compl etes the exampl e of the design method proposed.

CONCLUDING REMARKS

Most program design methods are intended for experienced programmers rather than beginners. The
summary table and graphic relationships tools presented give the instructor additional meansto help novice
programmers collect and organize the data used in exi sting design methods. Since the tools do not assume
programming experience, the instructor can assign students knowledge level tasks before requiring application or
problem-solving level tasks. By making, the tasks commensurate with the students’ level in learning frustration in
learning programming should be reduced. Thus, we posit that the tools presented herein improveinstruction of
programming by facilitating students’ learning processes.

CBA Working Paper 00-01 April 2000 12

APPENDIX A

This appendix contains the formal problem definition for the “ Example Using the Design Approach”
section.

Overview

Joe' s Snorkel Shack rents snorkel equipment for aday at atime. The rental businessislocated on a
popular snorkeling beach. Tourists rent masks, snorkels, and finsfor aday. The equipment isall returned at the end
of the day. Joe has asked you to develop a program for him to keep track of the number of snorkels, masks, and fins
that are availableto rent.

Joe's current system ismanual. He hires high school students during the high season to handout the
equipment after he takes the order and collects the deposit and daily rental fees. Currently he does all of the
computations by hand. Sometimes he forgets to reduce the current number on-hand by the number he has just
rented. Joe cannot see the equipment storage area from the counter, so hiserrorsin inventory count can result in
stock-outs and angry customers.

Joe will bethe only user of the computer. Herecords all of the rentals and returns. For this project, the
inventory has been simplified to include only four items: medium masks, standard snorkels, medium fins, and large
fins.

I nput Expected
Joe wants to be able to enter a customer’ s name, home address, method of payment, and equipment being
rented or returned. Figure 6 shows theinput areas for each of theseitems.

FIGURE 6
Sample Screen Showing Columns
w Joe"s Snarkel Shack
MErme 151456703 1123456759 112345 =]
139456700 |12 2456700 12245
% [

157456789 11234567821 15345 =

H
Depemit Gear
Cash I~ Mediim mask @O
i Credid cad
[Etanderd snorkal o0

il Fi
FRMAPSeE— | Wedium ine B0
& Cach

™~ Credicam [© Lesgafing

1]
Eant Aetum e’ Fam My

The numbersin the input areas show the width in number of columns. Both the name and address input
areas should be at least twenty-five columnswide. The address input area should be scrollable. Joe wantsto be able
tojust click to select the payment method and the equipment being rented or returned. Notice that the deposit and
rental fees do not have to use the same payment method. The large scrollable areaon the right of the form isfor
output.

The beginning inventory should be obtained from afile. Thefileiskept on adiskette. Thefile's
specification is* a:\inventory.txt.” Thefile hasfour records. Each record hastwo fields: item nameand
guantity on-hand. Theinitial file can be created using atext editor. Theinitial records are shown in Figure 7.

CBA Working Paper 00-01 April 2000 13

FIGURE 7

Initial Inventory

Item Name Quantity-on-hand
“Medium mask” 0
“ Standard snorkel” 100
“Medium fins’ 60
“Largefins’ 40

Output Required

This project has several forms of output. Two of the major outputs come from replicating the tickets (or
receipts) that are currently used in the manual system. Inthe manual system Joe usestriplicate receipt formsthat he
callstickets. The preprinted receipts have numbers starting with X, Y, and Z. Joe keeps the original, the X copy, as
arecord of the transaction and givesthe Y and Z copiesto the customer. The customer presents the copies to
receive the rented equipment. Notes are put on the copies about condition of the equipment or refund due for a
stock-out. TheY copy is kept to document the condition and delivery of equipment, and the customer is given the Z
copy. Thetwo major outputs that come from the tickets are a print preview of the tickets and printed hardcopy of
the tickets.

The different outputs to be produced by the program are the print preview of the tickets, hardcopy of the
tickets, rental recordsin the rental file, and ending inventory in the inventory file. Each of these outputs will be
explained in the subsections: “Print Preview,” “Print Tickets and Record Rental,” “ Return Equipment,” and “Ending
Inventory.”

This prototype does not include a feature for clearing the form. Joe requested that the form not be cleared.?
He may decide to add afeature to clear the formin the future.

PRINT PREVIEW

The print preview shows the three tickets in the scrollable region on the right of the screen. The ticket
number and inventory should not be permanently updated until the tickets are printed. Before printing the tickets,
the program should ask the user to verify that the rental information is correct and give the user the option to cancel
therental. If therental is not cancelled, then the tickets are printed and the ticket number and inventory should be
permanently updated.

The print preview displays the three rental tickets that will be printed, if therental isconfirmed. Thethree
tickets have the same format, asshown in Figure 8 for the “ X" ticket. The format for the ticketsis based on having
twenty-five columns for printing.

3 Why would Joe want the old data to remain on the screen without away to clear it? Why would this be adecision
Joe might want to change?

CBA Working Paper 00-01 April 2000 14

FIGURE 8
Sample Print Preview

w,. Joe's Snorkel Shack

hlame: Dat=: JODOBIE Ma.o EOO1 B
|Jn-hn Do Map=: John Do=

Address:
Arkdrass

121 Sezame= Strest
133 Zmmmme Skcawk = Anpbcem, USh 55955
erytoum, 0AA 55555

Medimn wask §3.00
;I Stamdurd amazkel §Z.00
Marge fins §5.00
Dapost Gaer Tokal £10.00
 Cash tdadum mask L} Zash (410.00)
& Crack cand Depo=it §100.00
W Standamd snoekel a3 card 1100, 06)

1514567890 1234

S REMBIFERE | R Nadum e il
& Cash

" Crack cand F Largaina

k[
Fiatum Shevainme iy Tam Erge

Thefirst line of the tickets contains the date and ticket number. The program isto generate both the date
and the ticket number. The date has the format four-digit year, month letter, and two-digit day. The month letter is
found by starting with “A” for January and ending with “L” for December. The monthsin between are assigned
letters consecutively. For example, June isthe sixth month, soitsletter is“F.” In Figure 8, the month letter is“B,”
so the month is February. The ticket number begins with the copy designation: X, Y, or Z. The number following
the copy designation is athree-digit number unigue to the date of the ticket. Consecutive numbers may be used.
Numbers can be reused when the date changes.

The second line gives the name of the renter. Notice that the“Name:” label and the name are on the same
line. If the nameislonger than the remaining nineteen columns after the label, then the name should be wrapped to
the next line. The wrap does not have to be at a space.

The address follows the name. The“Address:” label ison aline by itself. The addressisjust an echo of
the content of the addressinput. The addressisfollowed by ablank line.

After the addressis alist of the equipment rented. Each linein thelist consists of aleft justified item name
and aright justified cost of rental, as shown in Figure 8.

Following the list of equipment, the ticket has the total, payment, and deposit. Thetotal isthe sum of the
rental fees. Therental feefor eachitemisshownin Figure 9. After thetotal isthe payment of therental fees. The
rental fees can be paid by cash, traveler’s check, or credit card. Currency and traveler’s check are both considered
cash. When acredit card is used, the credit card number is on the line after the payment. The program asks for the
credit card number and requires the user to confirm that the number entered is correct. After the payment
information, the deposit information appears. The deposit can be cash, traveler’s check, or credit card. Again, the
card number should be displayed after the line indicating the deposit isacredit card. If acredit card isused for both
the rental fees and the deposit, the program should only ask for the credit card number once. The card number
should be stored for use in both the rental fee processing and the deposit processing. However, if therental feesare
paid in cash, then the program should ask for card number for the deposit processing. Figure 8 shows an X copy of
the ticket when the rental fees are paid in cash and the deposit is a credit card.

FIGURE 9

Rental Fees

Item Rental Fee
M edium mask $3.00
Standard snorkel $2.00
Medium fins $5.00
Largefins $5.00

CBA Working Paper 00-01 April 2000 15

The only difference between the X, Y, and Z copiesistheletter in front of the ticket number. Copy Y
appears the same as copy X, except that the ticket number will start with Y instead of X. Copy Z has aticket
number that startswith Z instead of X.

PRINT TICKETSAND RECORD RENTAL

After the user confirms the rental shown in the print preview is correct, the information in the print preview
area should be sent to the printer, the rental recorded, and the inventory permanently updated. The printing to the
ticket should merely reproduce the ticketsin the print preview on the register tape of the twenty-five-column printer.
The testing can be done using an ordinary desktop print, but restrict the output to twenty-five columns wide.

When the rental is confirmed the information on the X ticket should be saved to therental file. The name
and path for the rental file should be determined when the program begins. Only ask once for the file name and
path. Seethe“Norma Example” for asample of the file specification screen. For each confirmed rental, the
program should add one record to the rental file. Therecordsin the rental file have the fields shown in Figure 10.
The“yyyyLdd” date format is the same as the date on the tickets.

FIGURE 10
Rental FilesRecord Structure
Private Type RentRec
tName As String ‘Customer’ s name
tAddress As String ‘Custoner’s address
tDate As String ‘Ticket date asyyyyLdd
iNum As Integer ‘Ticket number
afEquip (1to 4) AsBoolean ‘Equipment rented
tCardNum As String ‘If blank, deposit was cash
End Type

Also following confirmation of the rental, permanently update theinventory. That is, decrease the
guantities on-hand by one for each item of equipment that was rented. If the program shows the decrease when the
print preview is displayed, then the decreases can be left. However, if therental is cancelled and the inventory was
already decreased by the equipment shown in the print preview, then the equipment needs to be added back into
inventory. The new inventory does not have to be written to the inventory file. Thiswould be anice feature to
minimize the impact of a system crash, but updating the inventory file after every rental is not required.

RETURN EQUIPMENT

When equipment is returned, the sel ected equipment should be added back into the quantity-on-hand and
the on-screen display updated, as shown in Figure 11. Theleft hand image is before the update. The right hand
image is after the update. Notice that masks have gone from 49 to 50, snorkels from 60 to 61, and large finsfrom 15
to 16. The user deleted the text from the input areas. The program should clear neither theinput areasnor the
ticket preview area.

CBA Working Paper 00-01 April 2000 16

FIGURE 11

Update of Inventory on Return

% Jar's Snorkel Shaok % Jar's Snorkel Shaok
Hames Taksz EDOBIS Mo, 041 | Hames Taksz EDOBIS Mo, 041 |
| Varw: Joha Q. Public | Varw: Joha Q. Public
liddraam: liddraam:
Addrezs 5932 Mmin Stramt Addrezs 5932 Mmin Stramt
= Flmsrant Cibyp, USA 35533 = Flmsrant Cibyp, USA 35533
i din msak §3.00 i din msak §3.00
bsmnclacd anorisl 12.00 bsmnclacd anorisl 12.00
= Piadion rinm i=.00 = Piadion rinm i=.00
Torml $10. 00 Torml $10. 00
DOepceil (=L] Zaah #1330 DOepceil (=L] Zaah #1330
7 Cesh T pa——] bapamit 100, 00 7 Cesh T pa—— 1] bapamit 100, 00
{ Crag card Zaah | 410000, { Crag card Zaah | 410000,
= Shandan ekl e = Shandan ekl El
i S i S
s Feese = Mekaming s s Feese = Mekaming s
Desh SRt lacss IDOOELS Bo. o WOAD # Desh lacss IDOOELS Bo. o WOAD
™ Cradé card 7 Large e 16 Pawa: Joha 0. Publio & ™ Cradé card = Langs o 16 Pawa: Joha 0. Publio &
ﬁ g e : g E e :

ENDING INVENTORY

When the program is closed, the ending inventory should be written to the inventory file. Thisisthe same
file described in the “Input Expected” section.

Normal Example
In this example, snorkel and mask are going to be rented using a credit card. The snorkel and mask will

then be returned.

However, the program starts with the user specifying the rental file. Figure 12 shows an example of thefile
specification screen. Thisformisavailableinthe SimStop program. The form can be reused by adding the form to
the Joe' s Snorkel Shack project. On thisform, the user can select the drive, folder, and file for therental file. If the
file does not exist, the user can type the name desired at the end of the path for the drive and folder desired. Since
the location of the inventory fileis known, the file specification form is not needed to open and read the inventory

file.
FIGURE 12

File Specification Form

w. Open File - o] x]
Select drive: Selectfile:
IEld; d BegBal.dat
CLUB T
Select folder: HOURS T=T
R MEMBERS TXT

File path and name:
Id:\Data\RentaIs.Txt

CBA Working Paper 00-01 April 2000

17

FIGURE 13

Form before Rental

L JI‘!HI.‘l STII'JI hlﬂl '.:j‘tlrll.'k

Merme
|:H:. Bloney Panny
Sedrbeear

100 Pmker Street =
Londar, Begland

Depemit Grar
iash [+ edium mask EE]
o i caid
E-E':"'“"" [¥ Eimnderd snorkal &3
Sl I~ Wedium tn #4
i Cazh
Credi caid [~ Legefing X

Bant

Oncethe rental file exists and the inventory initialized from the inventory file, the rentals and returns can
begin. Thisexample picks up with atypical rental sometime during the day. For thisrental to Ms. Money Penny,
the user enters the customer’ s name and address. Then the user selects type of payment and deposit. Next, the user
sel ects the equipment to rented, such as snorkel and mask. Figure 13 shows what the screen might look like before
the user clicksthe “Rent” button.

rate: Z000D1R Moo X024
Nania: James EBard
liddea=a

007 Deker Strceet

Londan, Baglmnd

Hedium mea=k $3.00
Ztandard snoEkel §I.00
Marge fins §5.00
Tokal 10,00
Caxh [§10.00}
Depo=it §l00.0a
Camh |F100, 30

Iate: Z0O0D1D Mo, w24

—

o ezt iy Py ey

FIGURE 14

Form after Confirmed Rental

L JI‘!HI.‘l STII'JI hlﬂl '.:j‘tlrll.'k

Merme
|:H:. Bloney Panny
Sedrbeear

100 Pmker Street =
Londar, Begland

Depemit Grar
Azl [+ edium mask 2
& Credif caid
[¥ Eimnderd snorkal (=
Sl I~ Wedium tn #4
i Cazh
Credi caid [~ Legefing X

After the user clicksthe “Rent” button, the program asks once for the card number. The card number must be
confirmed beforeit is accepted. After confirming the card number, the program produces the print preview and asks
the user to confirm the rental. The rental to Ms. Money Penny is confirmed. After the rental is confirmed, the
program prints the tickets, recordsthe rental in the rental file, and updates theinventory. Figure 14 illustratesthe
form after the rental is confirmed, the tickets are printed, the rental recorded to the rental file, and the inventory

rate: Z000D1R Mo.; XI25
Naha: Mz Marey Fanay
liddee=a

100 Peker Str=et

Londan, Baglmnd

Hedium mea=k $3.00
Ztandard snoEkel §I.00
Tokal §5.00
cacd 155,00
1214567830123
Depa=it §l00.oa
card 15100, a0}
1571456789013349

o ezt iy Py ey

CBA Working Paper 00-01 April 2000

18

In alittle while Ms. Money Penny returns her mask and snorkel. The user selects the mask and snorkel
equipment in preparation for clicking the “Return” button. The prepared screen could appear as shown in Figure 15.
Notice the screen displays the name, address, and print preview from the last rental.

FIGURE 15

Form before Return Clicked

w Joe"s Snarkel Shack

Heme Pate: E00001% Bo.: @03
Tobu 0. Puklio Hawa: John . Cfublie
liddeema
Adobeaz 150 Sesmmre Strest
1] Teamme StreEst _&J Aoykown, TSL 55555
ARYEoWn, [HEL 52555
Hedium mask 13,00
j Standard snoekel §I.00
Marge fins §5.00
Depasit Gear Taoksl $10.00
i~ Cash [# Medium mask =] Cmxh [§10.00}
F Credilcand Depasit §100.00
[Eianderd snorkal i3 card |§100, 000
4321053759121
“PREMALPSEE—— | = st e *
& Cach ey e e R N,
 Gredcad | [~ jergafing L Bl

Bant Aetum .ﬂﬂ.ﬁﬁﬁ!ﬂ"ﬁ}"fﬂwﬁbﬁ:}"

After clicking the “Return” button, the inventory would be updated as shown Figure 16. Notice that the
quantity of medium masks on-hand hasincreased from 63 to 64. The number of standard snorkelsin inventory has
increased from 73 to 74. The remainder of the form’s contents has not changed. Ms. Money Penny’ srecord is not
displayed nor is her rental record updated. The name, address, and print preview from the last rental are still
displayed on the screen. Only the quantity on-hand is changed by the return process.

FIGURE 16

Form after Return Clicked

w Joe"s Snarkel Shack

Mg Pate: 2000015 Bo.; @136 B
Tobn Q. Puklic Mukia: Jokn @, Publie
liddeema
Adobeaz 150 Sesmmre Strest
137 Seamme Stre=c = Loybawn, V3L 55555
ARYEoWn, [HEL 52555
Hedium mask 13,00
j Standard snoekel §I.00
. Marge fins §5.00
Depasit Gear Taoksl $10.00
™ Cash [+ Medium maak &4 Cmaxh (§10.0oy
F Credilcand Depasit §100.00
[Eianderd snorkal 7 card |§100, 000
I 4321053759121
pEmALEeRe—— || e e =
& Cach ey e e R N,
I~ Credncam [~ Lexgafing 17 J
Eant e iy T Py

When rentals and returns are completed for the day, the user would exit the program. When the program is
exited the quantities on-hand at that time are recorded in the inventory file.

CBA Working Paper 00-01 April 2000 19

Unusual and Error Conditions

Thefollowing conditions are not covered by the “Normal Example.” Under some of these conditions, the
program is not expected to do anything. The conditions where the program has no required behavior will be
designated as, “Undefined results occur.” These conditions are to show the limits of the programming required.
The unusual conditions are listed in no particular order.

The user confirms arental that iscancelled. The program is not required to backup and take the rental
out of thefile. The user will have to use the “Return” button to return the equipment to inventory. If
the user does not return the equipment to inventory, undefined results occur.

The user confirms arental when the wrong equipment is selected. The program is not required to
backup and take the rental out of thefile. The user will have to use the “Return” button to return the
equipment to inventory. If the user does not return the equipment to inventory, undefined results
occur.

A name islonger than the space available for displaying the name. The nameisto be wrapped around
to continue on the next line.

An addressislonger than the available space. Undefined results occur.

The user triesto rent equipment when the inventory is zero. The program should “BEEP’ and display
the critical message: “Not enough inventory for thisrental.” Thetitle of the message should give the
name of theitem that isout. If morethan oneitem is out, than the first item on the list should be used

in thetitle of the message.
The user does not enter aname or address. Undefined results occur.
The name or addressisin error. Undefined results occur.

No equipment is checked before the “Rent” button isclicked. Therental is processed with zeroes for
the fees and deposit. Thismay not be an error. The user may want to record someone’s name and
address without renting anything. If credit card is selected for either the rental or deposit, the program
will ask for the credit card number. Notice only the deposit amount is affected by the lack of
equipment, so if the user confirms arental without equipment, arecord is still added to the rental file
andthe X, Y, and Z tickets are still printed.

Items rented are not returned. The program is not required to confirm that any items are returned. In
thisversion of the program, all of the return verification is done manually. The program only updates
inventory for the equipment checked when the “ Return” button is clicked.

The user specifies afile that does not exist. The program should create an empty file using the
specified path.

No inventory file exists. Undefined results occur.

The user has no equipment selected when the “Return” buttonis clicked. No quantities on-hand
change.

The program aborts. Undefined results occur and all inventory dataislost.

The user exitsthe program during the day and restartsit again. The program should read the rental file
to determine the starting ticket number. The inventory file should be correct. If the user creates a new
rental file, the ticket numbers for the day may have duplicates but the program should not abort.

CBA Working Paper 00-01 April 2000 20

WORKSCITED

[Wirth]

[Jensen]
[Arnow]

[Erikkson]

[Booch]

[Coad]

[Dijkstra]

[DeMarco]

[Rumbaugh]

[TIPS]

[Hoffer]

Wirth, Niklaus, “ Program Development by Stepwise Refinement,” Communications of the ACM,

Vol. 14, No. 4 (Apr. 1971), pp. 221-227.

Jensen, Kathleen and Niklaus Wirth. Pascal, 2™ ed. New York: Springer-Verlag, 1974, p.52.

Arnow, David M. and Gerald Weiss. Introduction to Programming Usingjava™: An Object-
Oriented Approach. Menlo Park, California: Addison-Wesley, 2000, p.142.

Erikkson, Hans-Erik and Magnus Penker. “Design Java Apps with UML,” JavaPro, June/July
1998, p.2.

Booch, Grady. Object Oriented Design with Applications, Fort Collins, Colorado:
Benjamin/Cummings Publishing Company, Inc., 1991, p.190.

Coad, Peter and Edward Y ourdon. Object-Oriented Analysis, 2" ed. Englewood Cliffs, New
Jersey: YOURDON Press, Prentice Hall Building, 1991, p.58.

Dijkstra, Edsger W. “Formal Derivation of Programs,” Notes from aworkshop in Monroe, LA,
May 16-20, 1988, p.9.

DeMarco, Tom. Structured Analysis and System Specifications. Englewood Cliffs, New Jersey:

Prentice-Hall, 1979, p.24.

Rumbaugh, James, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorensen.
Object-Oriented Modeling and Design. Englewood Cliffs, Jew Jersey: Prentice Hall, 1991, p.47.

Daniell, Elizabeth O. TIPS: Teaching Improvement Project Systemsfor Health Care Educators.
Lexington, Kentucky: Center for Learning Resources, College of Health Professions, University
of Kentucky, 1990, p.46.

Hoffer, Jeffrey A., Joey F. George, and Joseph S. Valacich. Modern Systems Analysis and
Design. Menlo Park, California: Addison-Wesley, 1998, p.25.

CBA Working Paper 00-01 April 2000

21

