View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by OpenKnowledge @NAU

The Elasticity of Demand for Gasoline: A
Semi-Parametric Analysis

Pin T. Ng
College of Business Administration
Northern Arizona University

James L. Smith
Cox School of Business
Southern Methodist University

Abstract

We use a semi-parametric conditional median as a robust alterna-
tive to the parametric conditional mean to estimate the gasoline demand
function. Our approach protects against data and specification errors,
and may yield a more reliable basis for public-policy decisions that de-
pend on accurate estimates of gasoline demand. As a comparison, we
also estimated the parametric translog conditional mean model. Our
semi-parametric estimates imply that gasoline demand becomes more
price elastic, but also less income elastic, as incomes rise. In addition,
we find that demand appears to become more price elastic as prices
increase in real terms.

KEY WORDS: Gasoline demand; Robust estimation; Quantiles; Splines;
Semi-parametric model.

1 Introduction

Projections of future gasoline consumption are conditioned by the elasticity of
demand. Thus, the design and success of various energy and environmental
policy initiatives that pertain to gasoline necessarily involve judgments re-
garding this important aspect of consumer behavior. The magnitude of price
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elasticity, for example, largely determines the potency of excise taxes as a tool
for raising government revenues, discouraging consumption and emissions, en-
couraging conservation and fuel switching, and attaining certain national secu-
rity goals regarding energy independence. Moreover, the magnitude of income
elasticity may influence the way in which economic growth and development
affect progress towards achieving specific policy goals over time.

Numerous empirical studies have contributed to our understanding of the
elasticity of demand for gasoline. Dahl and Sterner’s (1991) very useful survey
of previous research encompasses an almost bewildering variety of models,
but finds a certain general consistency of results. They show, for example,
that when appropriate allowances are made for differences in the treatment
of dynamic adjustment processes and the effect of intervening variables, the
preponderance of evidence suggests that gasoline demand is slightly inelastic
with respect to price (the long-run elasticity being in the neighborhood of
—0.9), but elastic with respect to income (approximately 1.2 in the long-run).

Although this body of previous research may suggest plausible consensus
values that reflect the tendencies of representative consumers, the evidence is
less conclusive on the question of whether it is appropriate to regard demand
elasticities as being constant across groups of consumers who face different
price and income levels. A study by McRae (1994), for example, shows that
the demand for gasoline in the developing countries of Southeast Asia is some-
what less price elastic, but more income elastic, than that in the industrialized
countries of the OECD. If this difference is due to variation in income levels
between the two groups, we would then expect the rapid rate of increase in
gasoline consumption that has been observed in the Asian countries to moder-
ate as their incomes continue to rise. A more precise forecast, however, would
require further knowledge of how elasticities vary with respect to price and
income levels.

Most studies of gasoline consumption rely on models of the form:

Q=y9(PY,Z)+e (1)

which specifies the quantity of gasoline demanded () as some unknown para-
metric function g(-) of the price of gasoline P, disposable income Y, and a
vector of other explanatory variables Z, e.g., demographic characteristics, plus
the disturbance term e which captures the unexplained portion of demand.
Economic theory provides information on the signs of partial derivatives of g,
but not its functional form nor the specific nature of €. Almost all analyses of
gasoline demand to date, however, utilize some form of parametric specification
on g (most notably linear, log-linear, or translog) and assume the distribution



of € to be normal with zero mean and fixed variance. The demand function g
is then estimated by the conditional mean of () using least-squares regression.

Although easy to apply, this method is not well suited for studying the
potential variation in the elasticity of demand. The problem, of course, is
that each functional specification “sees” a different pattern of variation in
elasticities and imposes rigid constraints on what can be deduced from a given
set, of data. Reliance on the linear form forces estimated elasticities to vary
hyperbolically, regardless of what the data might look like. Reliance on the
log-linear form, on the other hand, is tantamount to assuming that elasticities
are constant.

In this paper, we utilize a semi-parametric extension of the median regres-
sion technique of Koenker, Ng and Portnoy (1994) to study gasoline demand in
the United States. This approach, which is based on tensor product polynomial
splines, protects against misspecification in the demand functional form and
achieves robustness against departures of the disturbance term from normality.
Because we do not impose any predetermined structure on the demand func-
tion, the resulting estimates of demand elasticities, and their variation across
price and income levels, reflect patterns of consumer choice that are inherent
in the underlying data. We also develop and report confidence intervals that
reflect the degree of uncertainty that is associated with the estimates that
result from this semi-parametric procedure.

The only previous study that attempts a non-parametric specification of
the gasoline demand function is by Goel and Morey (1993). They estimate the
conditional mean using a kernel estimator and report considerable variation in
the price elasticity of U.S. demand across the range of gasoline prices observed
before and after the 1973 Arab oil embargo. However, they attribute all fluc-
tuations in demand to variations in gasoline prices and ignore the influence of
income and other variables. Therefore, the price elasticities which they report,
which are sometimes positive, are probably contaminated by the confounding
effects of omitted variables. Hausman and Newey (1992) also discuss a kernel
estimator of the gasoline demand function, but since they do not report on
elasticities, we cannot compare our results to theirs.

2 Theory and Data

Economic theory suggests a negative relationship between prices and quantity
consumed. In addition, there is a positive income effect on consumption, at
least if gasoline is a normal good. For the cross-sectional time-series data



we use in this study, variations in population density across states also play
an important role in determining consumption. For sparsely populated states
like Montana, Nevada, New Mexico and Wyoming, where alternative forms
of public transportation are not readily available, people rely heavily on the
automobile as a means of transportation. The lack of close substitutes for
automobile transportation suggests a relatively inelastic demand function.

The raw data spans 1952 to 1978 for forty-eight states. Alaska and Hawaii
are dropped from the sample due to lack of data on gasoline prices. After 1978,
gasoline was reclassified into regular, leaded, and unleaded grades, as well as
full-service and self-service. Our sample, therefore, ends in 1978 to avoid in-
consistent calibration in the data set. The gasoline prices and consumption
used in this study are essentially those of Goel and Morey (1993). Quantity de-
manded is measured by gasoline consumption subject to taxation, as compiled
by the Federal Highway Administration. Prices are the average service station
gasoline prices within each state, as reported by Platt’s Oil Price Handbook
and Oilmanac. Annual per-capita personal income is taken from the Survey
of Current Business. Population density is computed from state population
divided by geographic areas, using figures from the Statistical Abstract of the
United States. The price deflator is the consumer price index (1967 dollars)
also from the Statistical Abstract of the United States.

Figure 1 presents scatter plots of annual gasoline consumption per capita
in gallons (@), prices per gallon in 1967 dollars (P), annual incomes per capita
in 1967 dollars (Y') and population densities in thousand persons per square
mile (D). To ameliorate the non-linearity of the data, we show a second set of
scatter plots in Figure 2 with all variables measured in logarithmic form. In
both figures, there appears to be a negative relationship between quantity and
prices, a positive income effect, and a negative relationship between quantity
and population density. There also seems to be a strong interaction between
prices and income. The states with extremely sparse population (less than
fifty persons per square mile) and high gasoline consumption (more than 750
gallons per person) are Montana, Nevada, New Mexico and Wyoming. In
these states few means of alternative transportation are readily available. The
scatter plot between () and its one period lag ()_; also suggests a significant
inertia in gasoline consumption adjustment.

To illustrate the effect of per-capita income and population density on the
demand curve, we present a series of conditional scatter plots of consumption
per capita on prices over various intervals of income and density in Figure 3.
The conditional plots allow us to see how quantity depends on prices given
relatively constant values of the other variables (income and density). The



different income ranges are given in the top panel while the given density
levels are in the right panel in the figure. As we move from left to right, across
a single row, income increases. Population densities rise as we move from the
bottom to the top of each column. Also superimposed in the conditional scatter
plots are cubic basis spline (B-spline) fits to the data in each panel [see de Boor
(1978) or Schumaker (1981) for definition and construction of B-spline]. Figure
3 gives us a rough idea of how the demand curve looks over different income and
population density regions. The conditional plots seem to suggest that both
very low and very high income states have relatively price inelastic demand
functions while the middle income and the moderately populated states have
more elastic demand functions. Moving left to right horizontally across each
row shows the positive income effect on consumption. Moving from bottom to
top also reveals the negative population density effect on consumption. The
highly populated states seem to have lower gasoline consumption per capita
holding all else constant. We should, of course, emphasize that the conditional
plots in Figure 3 only provide a very crude and tentative picture of the demand
surface behavior.

3 Models and Estimation Techniques

3.1 The Semi-parametric Model

As we have seen in Figure 2, logarithmic transformations manage to remove a
considerable amount of non-linearity from the data. Using lower case to denote
logarithmically transformed variables, we adopt the following semi-parametric
form of the demand equation:

¢ =0+ g12 (pi, i) + g3 (di) + g1, + € (2)

fort =1,---, N, where g3 is a univariate continuous function, gi, is a bi-variate
smooth function, « is a scalar and ¢ is the intercept term. The fact that g3
and g1o are not confined to any specific parametric family provides flexibil-
ity to the model while the linear lag consumption component facilitates the
traditional adaptive expectation dynamic analysis. The analysis of variance
(ANOVA) decomposition in (2) has the virtue of separating the contributions
of the covariates into main effects captured by the univariate functions and
joint effect represented by the bi-variate function. It also provides a parsimo-
nious representation of a potentially much more complex functional. Stone
(1994) provides a theoretical justification for the use of ANOVA-type decom-
position in multivariate function estimation using polynomial splines and their



tensor products. We do not separate the main effect functions g; and g for p
and y from the joint-effect function g;» because the estimate of g;o, a tensor
product bi-linear B-spline, spans the spaces of the univariate B-spline esti-
mates g; and g,. Including these main effect functions would introduce perfect
multicollinearity and pose an identification problem during estimation. The
population density d does not enter in interaction form because both economic
theory and the data in Figure 1 seem to suggest that no interaction with
other explanatory variables is warranted. Our parametric model chosen by
the Akaike information criterion in Section 3.5 does not suggest any interac-
tion between d and other explanatory variables either. We also estimated a
fully nonparametric version of (2) with ag_;, replaced by a univariate contin-
uous function g4(¢_1;). The result is identical to that of the semi-parametric
specification. This supports our decision to model the lag of logarithmic con-
sumption linearly.

3.2 Quantile Smoothing B-Splines

The demand equation (2) is estimated by solving the following optimization
problem:

min Z’OT 5 912 (pza y’L) — g3 (dz) — aq,lﬂ-)

(6,2) €R27937912€g
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where G is some properly chosen functional space, 7 € [0,1] specifies the
desired conditional quantile, p, (u) = u (7 — I (u < 0)) is the check function
which assigns a weight of 7 to positive u and 7 — 1 otherwise, A € (0,00) is
the smoothing parameter, and V3, Vi» and V5, are measures of roughness to
be defined below. For a given 7 and A, the estimated 7th conditional quantile
consumption function is

Gri = 0r + 12, 01, ¥i) + G5, (d) + Gy,

The special case of 7 = .5 yields the estimated conditional median consump-
tion function. The portion in (3) associated with the check function controls
the fidelity of the solution to the data while the roughness of the solution is
measured by the total variations Vi (g4) = o~ " |gb (dis1) — g5 (ds)|, over the



mesh M, = {di}), with knots 0 =dy < dy < --- < dy < dy4; = o0 , and
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over the tensor product mesh M, ® M, constructed from the tensor products
of the knots in M, = {p;})*, and M, = {y;},. Notice that without loss of
generality, we have assumed that d, p and y are already in ascending order to
simplify notation. A discrete version of Vi, and V5, appeared in a bivariate
graduation paper of Portnoy (1994).

For an appropriately chosen G, Koenker, Ng and Portnoy (1994) showed
that, in the special case where there is only one covariate, the solution, which
they called the 7th quantile smoothing spline, is a linear smoothing spline,
i.e. continuous piecewise linear function with potential breaks in the deriva-
tives occurring at the knots of the mesh. With the linear smoothing spline
characterization, the objective function (3) can be written in the form similar
to that of the linear regression quantile in Koenker and Bassett (1978). This
facilitates computation of the 7th conditional quantile via modified versions
of some familiar linear programs [See Koenker and Ng (1992) for a simplex al-
gorithm and Koenker, Ng and Portnoy (1994) for a more general exposition].
Convergence rates of the quantile smoothing splines are given in He and Shi
(1994), Portnoy (1994), and Shen and Wong (1994).

Even though computation of the quantile smoothing splines is feasible with
an efficient linear program, it is still quite formidable for even a moderately
large data set. In this paper, we suggest a B-spline approximation to the
solution which utilizes a much smaller number of uniform knots in each mesh
than those required in My and M, ® M, hence saving tremendous memory
and computing cycles. Details are given in the Appendix.

The fact that the solution is computed via a linear program leads to a very
useful by-product — the entire family of unique conditional quantile estimates
corresponding to the whole spectrum of 7 can be computed efficiently by para-
metric programming [see Koenker, Ng and Portnoy (1994) for detail]. The
same is true for the whole path of A. This property will be exploited later in
determining the optimal smoothing parameter and constructing the confidence
interval of the conditional median estimate.



3.3 Choice of The Smoothing Parameter

The smoothing parameter A in (3) balances the trade off between fidelity and
roughness of the objective function. Its choice dictates the smoothness of
the estimated conditional quantile. As A — oo, the paramount objective is to
minimize the roughness of the fit and the solution becomes the linear regression
quantile of Koenker and Bassett (1978). On the other hand, when A — 0, we
have a linear spline which interpolates every single ¢;. We could, of course,
assign different smoothing parameters to Vs , Vi3 and V5, to produce different
degrees of roughness along the direction of the separate covariates. Doing so,
however, would complicate the choice of the correct smoothing parameters.
In the single covariate problem, Koenker, Ng and Portnoy (1994) suggested
using a modified version of Schwarz’s (1978) information criterion (SIC') for
choosing A. The procedure is computationally feasible due to the univariate
parametric programming nature of the problem in (3). Introducing more than
one A would require higher dimensional parametric programming.

The single smoothing parameter in the conditional median is chosen to
minimize

N
1 . " A
SIC (A) = log (N Z Gi — 07 = Gi2,, (PisYi) = 93,5 (di) — &1 )

=1

k(A
+ B 0g () (4
where k, which is inversely proportional to A, is the effective dimensionality of
the solution defined in Koenker, Ng and Portnoy (1994) !. The fidelity part
of (4) can be interpreted as the log-likelihood function of the Laplace density.
The second portion is the conventional dimension penalty for over-fitting a
model.

The piecewise linear nature of the spline solution is particularly convenient
for elasticity analysis. If the demand function is in fact log-linear, the optimal
choice of A will be very large and the demand function will be that characterized
by the conventional log-linear model. If the demand function is only piecewise
linear, the chosen A will be relatively small and our quantile smoothing spline
will produce a piecewise linear structure.

! The effective dimension of the estimated conditional median function is the number of
interpolated ¢;. Its value varies between N and the number of explanatory variables in (3)
plus one (for the intercept). We can treat k as the equivalent number of independent variables
needed in a fully parametric model to reproduce the semi-parametric estimated conditional
median. When k& = N, there is no degree of freedom and the estimated conditional median
function passes through every response observation.
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3.4 Confidence Set

Zhou and Portnoy (1994) suggested a direct method to construct confidence
sets in the linear regression model

yi = x;0+ € (5)

The 100 (1 — 2ar) % point-wise confidence interval for the 7th conditional quan-
tile at z’ is given by

I, = [xlﬁT—bm xlﬁT—kbn

where b, = zo\/2'Q a7 (1 —7), Q@ = Y7, x;a}, 2, is the (1 — a) quantile
of the standard normal distribution, and BT_bn and BTern are the (7 — b,)th
and (7 + b, )th regression quantiles of the linear regression model respectively.
Utilizing the compact formulation in (9) in the appendix, we can adapt the
direct method to compute the confidence sets of our estimated quantiles by
treating the upper N x (K, + K, K, + 2) partitioned matrix in (8) as the design
matrix of (5). The lower K x (K4 + K, K, + 2) partition in (8) determines only
the smoothness of the fitted quantile function and is irrelevant once an optimal
A has been chosen.

3.5 A Parametric Conditional Mean Model

To see how much our semi-parametric conditional median estimate differs from
the conventional parametric conditional mean estimation, we fit the following
translog model to the same data set:

git = 0 + Bipir + BoYir + Biapiyir + Badir + 546@ + Qi1 + € (6)

The model is chosen by minimizing the Akaike information criterion (AIC) in
a stepwise model selection procedure.

4 Estimation Results

The SIC function of (4) for the whole spectrum of \ is plotted in Figure 4.
The minimizing A is .418 which occurs at an SIC of .021. The corresponding
effective dimension k of the semi-parametric quantile smoothing B-splines fit
is 17.

The quantile smoothing B-splines estimated « is .959 and hence the long-
run elasticity multiplier is 24.4. As we have observed from the scatter plots in
both Figure 1 and Figure 2, the inertia of short-run adjustment is quite high.
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The dimension of the translog model (6) is 7, which is about 2/5 of the
dimension (k = 17) of the semi-parametric model. This suggests that the semi-
parametric model prefers a more complex structure than the translog model
can offer. The least squares estimate of « is .95 and the long-run elasticity
multiplier is 20 which is only slightly smaller than the semi-parametric estimate
of 24.4.

We present the perspective plot of the estimated semi-parametric and
translog demand surfaces conditioned at the median population density and lag
consumption in Figures 5 and 18 respectively. There are altogether twenty-five
grid points along both the price and income axes. The slightly positively sloped
demand curves over the very low income region are the result of a boundary
effect. There is just not enough data to make an accurate estimation near
the boundary. As a result, in Figures 7 and 9, we discarded the first and last
five grid points (the boundaries) and sliced through the demand surface at the
different income grid points starting at the sixth and ending at the twentieth 2.
Also superimposed in the figures are the 95% point-wise confidence intervals.
The boundary effect along the price direction is also reflected as wider intervals
near the edges in each panel. The effect is more drastic for the semi-parametric
model reflecting the slower convergence rate of the nonparametric approach.

The semi-parametric demand surface depicts the phenomenon we observed
in the conditional plots in Figure 3. The price elasticity seems to be lower
(in magnitude) when income is lower. As income increases, demand generally
becomes more price sensitive. This confirms for U.S. consumers the type of
income effect that McRae (1994) discovered in comparing price elasticities in
industrialized and developing nations. Short-run price elasticity plots of the
demand slices are shown in Figure 11. The price elasticity functions are step
functions reflecting the piecewise linear nature of our quantile smoothing B-
splines 2. Short-run demand also seems to be less price elastic at lower prices
and to become more elastic as prices increase. The translog model produces
somewhat different result, as shown in Figure 13. As before, the price elasticity
of demand appears to increase with income. However, the estimated price
elasticity generally increases with price, which contradicts the semi-parametric
estimates.

Our semi-parametric estimates of short-run price elasticity range (across
price and income levels) from —.205 to —.017 with a median of —.134. This

2We plotted quantity on the vertical axis and price on the horizontal axis in Figures 7
and 9 to maintain coherence with Figures 5 and 18.

3Since we have measured all variables in logarithmic form, the slope of each log-linear
segment of the demand curve corresponds to the elasticity.
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compares to the average value of —.24 reported by Dahl and Sterner (1991) for
models that use a comparable partial adjustment mechanism. Our short-run
price elasticity evaluated at the median of the data is —.205, which is even
closer to the number reported by Dahl and Sterner (1991). Our estimates
of long-run price elasticity range from —5.02 to —.415, which extends well
beyond the highest long-run price elasticities reported by Dahl and Sterner
(1991). Our median estimate of —3.27 is about four times the magnitude of
their average long-run elasticity.

Estimates of short-run price elasticity we obtain from the parametric trans-
log model range from —.295 to —.045 with a median of —.189. The elasticity at
the median of the data is —.206. In general, gasoline demand appears slightly
more elastic when fitted to the translog model instead of the semi-parametric
model.

A generally positive effect of income on consumption is also apparent in
Figures 5 and 18. In Figures 15 and 19, we slice through the demand surface at
fixed price levels to illustrate the Engel curves, and again superimpose the 95%
confidence intervals in the plots. The slight negative income effects evident at
extremely high price levels are artifacts of the data that can not be taken too
seriously in view of the very wide confidence intervals that are found at the
boundaries of the data set. The boundary areas are sparsely populated, as can
be seen in all the four corners of Figure 24, which shows the projection of the
data onto the price-income plane. The quantile smoothing B-splines estimates
of short-run income elasticity corresponding to each panel in Figure 15 are
presented in Figure 21 while estimates derived from the translog model are
shown in Figure 23. Apart from the boundary effects noted above, short-run
income elasticities seem to fall as income rises. This finding is also consistent,
with McRae’s (1994) conclusion that income elasticities are generally lower
in the relatively prosperous industrialized countries than in the developing
countries of South East Asia.

Discarding the negative values near the boundary, our semi-parametric
estimates of short-run income elasticity fall between 0 and .048, with a median
value of .008. The short-run income elasticity evaluated at the median of the
data is .042 which is substantially lower than the average short-run income
elasticity of .45 reported by Dahl and Sterner (1991). Our estimates of long-
run income elasticity range from 0 to 1.17, with a median value of .195. Our
long-run income elasticity of 1.03 evaluated at the median of the data is fairly
close to the average long-run elasticity of 1.31 which Dahl and Sterner (1991)
report.

The estimates of short-run income elasticity we derive from the translog
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model range between 0 and .06 with a median of .01. These values are quite
close to our semi-parametric estimates. They also confirm again the general
tendency of income elasticities to decline as incomes rise. At the median of
the data, the short-run income elasticity is .012, which is only 1/4 of that of
the semi-parametric model.

5 Conclusion

We have applied a new, semi-parametric estimator to test the hypothesis that
the elasticity of gasoline demand varies systematically across price and income
levels. The approach we take uses the conditional median to produce a robust
alternative to conventional parametric models that rely on the conditional
mean. Our results tend to confirm, with different data and methods, both of
McRae’s (1994) suggestions: gasoline demand appears to become more price
elastic, but also less income elastic, as incomes rise. In addition, we find that
demand appears to become more price elastic as prices increase in real terms.

In comparison to previous parametric estimates of gasoline demand, our
results tend to indicate that long-run adjustments are quite large relative to
short-run effects. Regarding the effect of prices on demand, our short-run
estimates are generally consistent with the consensus of previous short-run
elasticities. Regarding the income effect, however, our long-run estimates tend
to be much more consistent with the results of previous studies than are our
short-run estimates. Further empirical research would be useful in helping to
clarify what appears to be an important difference in the nature of dynamic
adjustments to income versus price changes.
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Let Ay = {u]} <10 Ay = {vj}f:pl and A, = {wj};.i”l be uniform partitions
of the domains covering d, p and y respectively. The B-spline representation of
the estimate of g3 is g3 (d;) = ZjKdl 4;Bj (d;) and the bi-linear tensor product

B-spline formulation of the estimate of g5 is

P !l
G12 (0 0i) = Y AwaBr (1) Br ()

k=1 1=1
where

Y= (L Tk s VRols 2 VepsKys Vo™ 2 VK)'
is the (K,K, + K4) vector of B-spline coefficients, and B;, By, B; are the
linear basis functions defined over d, p, and y [see e.g. Schumaker (1981) for

construction of the B-spline bases].
The objective function (3) can now be written as

P Ki‘!
manP(qZ—CS ZZ%lBk pz Bl yz Z’Yg i —OZCI 1z>

;
*T k=1 =1

(EEEbmieottue] o
EEEE e o]
[E Eebo ]

where BJ(-I), B,(C1 and Bz are first order derivatives of B;, By and B; respec-
tively.

To express (7) as a linear program, we let K = K, (K, — 1)+ K, (K, — 1)+
(K4 — 1), 1 be a vector of ones and 0 be a vector or matrix of zeros whose di-
mensions will be apparent from the context, 8’ = (6,7, a) be a (K, K, + K4+ 2)
vector of parameters,

G

G12 — .
cx
be an N x K,K, matrix with rows

G = (Bi(pi))Bi(yi), - ,Bi(pi) Bk, (i), -, B, 0:) B1 (i), - -,
Bk, (i) Bk, (i)
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fori=1,--- N,
[ By (d1) --- Bg,(d1) -‘

' {Bl (EdN) BKd:(dN) J

be an N x K, matrix,
— 12 -—
Vii

12
Vik,

V12 —

12
VK]f,—1,1

12
VKP—I,Ky i

be a (K, — 1) (K,) x K,K, matrix in which

Bl<wj);"',

V21 —
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be a (K,) (K, — 1) x K,K, matrix in which

Vio= ({BS) (wis1) — BY (w,-)} By (vj),--,
(" (wis1) = BYY (i) | B, (v)),-++ ,
&) (wis1) = BY) (w;) p By (vj), -+ |

B
B : )
{BL) (wis) BY) (wy)} B, (7))

forz’:l’--- ,Kp andjzl,'-' 7Ky_1a
CATTRE I R T )
V3 — : :
{B§1) (Uip1) — Bg) (Uz)} {Bg (wir1) = Bg (u’)}

be a (K; — 1) x K; matrix,

V12
V=[]

be a (K — K4+ 1) xK, K, matrix,

 [rere
X=!0 V 0 o0 (8)
[0 0 V3OJ

!

be an (N + K) x (K,K, + K, + 2) pseudo design matrix, § = (¢1,--- ,qn,0)
be a (N + K) pseudo response vector, and
T+ (7= 1) sgn (G — @10)
W= 1 - -
1+ (7= 1) sgn Gy — in0)
Al

be an (N + K) vector of weights. We can then express (7) in the following
compact form:

N+K
I Zl wi |gi — T:0)| (9)
1=

This is a variant of the minimization problem for the linear regression quan-
tile of Koenker and Bassett (1978) and can be solved by the modified linear
programming algorithm in Koenker and Ng (1992).
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Figure 7: Smoothing B-splines confidence intervals for the demand curves:

magnitude of price effect observed at increasing income levels.
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Figure 9: Confidence intervals for the translog demand curves:

price effect observed at increasing income levels.
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price elasticity for the translog model.
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Figure 15: Smoothing B-splines confidence interval for the demand curves:

magnitude of income effect observed at increasing price levels.
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Figure 16: Translog Demand surface.
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Figure 17: Confidence interval for the translog demand curves: magnitude of

income effect observed at increasing price levels.
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Figure 19: Confidence interval for the translog demand curves: magnitude of
income effect observed at increasing price levels.
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Figure 20: Convex-hull of data projected onto the log(price)-log(income) plane.
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Figure 21: Smoothing B-splines short-run income
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Figure 22: Convex-hull of data projected onto the log(price)-log(income) plane.
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Figure 23: Short-run income elasticity for the translog model.
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