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A SPARSE IMPLEMENTATION OF THE FRISCH-NEWTON
ALGORITHM FOR QUANTILE REGRESSION

ROGER KOENKER AND PIN NG

ABSTRACT. Recent experience has shown that interior-point methods using a log
barrier approach are far superior to classical simplex methods for computing so-
lutions to large parametric quantile regression problems. In many large empirical
applications, the design matrix has a very sparse structure. A typical example is
the classical fixed-effect model for panel data where the parametric dimension of
the model can be quite large, but the number of non-zero elements is quite small.
Adopting recent developments in sparse linear algebra we introduce a modified ver-
sion of the Frisch-Newton algorithm for quantile regression described in Koenker
and Portnoy (1997). The new algorithm substantially reduces the storage (memory)
requirements and increases computational speed. The modified algorithm also facil-
itates the development of nonparametric quantile regression methods. The pseudo
design matrices employed in nonparametric quantile regression smoothing are in-
herently sparse in both the fidelity and roughness penalty components. Exploiting
the sparse structure of these problems opens up a whole range of new possibilities
for multivariate smoothing on large data sets via ANOVA-type decomposition and
partial linear models.

1. INTRODUCTION

Significant progress has been made over the last decade to improve the compu-
tational efficiency of interior point methods for linear programming. Primal-dual
interior-point algorithms are competitive with classical simplex methods for small to
moderate size problems and far superior for large problems. See Gonzaga (1992),
Lustig, Marsten and Shanno (1994), and Wright (1997) for surveys of the develop-
ment of interior point methods. Recent experience with quantile regression, described
in Koenker and Portnoy (1997), has shown that primal-dual interior-point algorithms
are competitive with least squares methods for large parametric quantile regression
problems when the parametric dimension is moderate.

In many large empirical applications of quantile regressions, however, the para-
metric dimension of the model can be quite large. This can adversely affect the
performance of some interior point implementations. Often though, such problems
have a design matrix that has a very sparse structure. A typical example is the clas-
sical fixed-effect model for panel data where the parametric dimension of the model
can be quite large, due to a large number of indicator variables and their interactions,

but the number of non-zero elements in the design matrix can be quite small. The
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design matrices arising in nonparametric quantile regression smoothing problems are
also inherently sparse in both their fidelity and roughness penalty components, see
e.g., Koenker, Ng and Portnoy (1994), He, Ng and Portnoy (1998), He and Ng (1999)
and Koenker and Mizera (2001).

In this paper we adapt recent developments in sparse linear algebra to introduce a
modified version of the Frisch-Newton algorithm for quantile regression described in
Koenker and Portnoy (1997). The new algorithm utilizes the BLAS-like routines for
sparse matrices available from Saad (1994) and the block sparse Cholesky algorithm
of Ng and Peyton (1993). Our algorithm substantially reduces storage (memory)
requirements and increases computational speed. Exploiting the sparse structure
opens up a whole range of new applications for multivariate smoothing on large data
sets via ANOVA-type decomposition and partial linear models.

2. QUANTILES REGRESSION AS A LINEAR PROGRAM

Given 7 € [0, 1] and n observations on the dependent variable y; and the p-variate
independent variable x;, the 7-th parametric linear regression quantile b is obtained
by solving

(1) min Z pr(y; — D)

where p;(u) = u(r — I(u < 0)). Letting e denote an n-vector of ones, we can rewrite
(1) as the linear program:
(2) : rlni/r}),){Te'u +(1—7)v|Xbtu—v=y, (u,v,b)ER" xR}

Here, u and v denote the positive and negative parts of the regression residual. The
dual of (2) is given by

(3) m?x{y'd|X'd =(1-7)X'e, del0,1]"}

where [0,1]" denotes the n-fold Cartesian product of the unit interval, and d may
be interpreted as a vector of Lagrange multipliers associated with the linear equality
constraints of the primal problem. It is the dual linear program in (3) that we solve
using the interior point methods.

2.1. Notation. In the remainder of the paper we will adopt the notational conven-
tions of the numerical analysis literature as e.g., Lustig, Marsten and Shanno (1992).
the primal-dual pair is described as

(4) min{cz|Ax =b, 0 <2z <wu, zeR'}

max {0'y|[Ay+z—w=c, (2,w)>0, (y,z,w)€R" xR}

(z:w,9)
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Note that the dual linear program in (3) that we want to solve corresponds to the
primal problem above in (4) so that —y, d, (1 —7) X'e, and X in (3) correspond,
respectively, to c¢,x,b, and A in (4). Note also that we have generalized the problem
slightly to allow u to be an arbitrary vector of upper bounds. This is convenient, for
example, when we eventually deal with penalty functions in nonparametric regression
problems.

3. THE FRrRISCH-NEWTON ALGORITHM

The log-barrier form of the Lagrangian for the primal problem (4) is,

L=z —y(Av—b) —w'(u—2—3s) — M(Zlogxi + Zlog Si),

for g > 0. The final log-barrier term in the expression guarantees that (z,s) stays
away from the boundary of the positive orthant. The strategy is to gradually relax p,
letting it tend toward zero as the duality gap ¢’z — b’y > 0 closes and we approach the
optimal solution. Differentiating the Lagrangian with respect to x, y, w, s, equating
to zero, and defining 2 = uX~'e, the classical Karush-Kuhn-Tucker (KKT) conditions
for optimality are,

Ay+z—w-—c

Ax —b

(5) g©=| ats—u |=0
XZe — pe
SWe — pne

where the upper case letters are diagonal matrices with the corresponding lower case
vectors as their diagonal elements, so for example X = diag(z). Given an initial point
&0 = (Yo, 20, o, , S0, Wo) the Newton approximation to (5) is

(6) 9(&) = Veg(&o)ds + g9( o).

We choose a descent direction d¢ by setting this approximation equal zero, i.e.,

d§ = —[Veg(&e)] g

Frisch (1955) was a pioneering advocate of the log-barrier method for solving linear
programming problems, so Portnoy and Koenker (1997) call their implementation of
the log-barrier method for quantile regression a Frisch-Newton algorithm. The linear
system we obtain from setting (6) equal zero looks like

AT 0 0 -—I dy Ay+z—w—c T
0O 0 A 0 O dz Ax —b T
(7) 0O 0 I I 0 de | = — rTH+s—u = | r3
0 X Z 0 0O ds XZe — pe T4
o 0 0o w S dw SWe — pe s
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All interior-point algorithms involve generating sequences of the primal-dual vari-
ables and iterating until the duality gap becomes smaller than a specified tolerance.
A critical aspect of this approach is the choice of an updating strategy for the barrier
parameter p.

The most successful updating strategy to date, is the predictor-corrector method of
Mehrotra (1992). This is the approach adopted by Lustig, Marsten and Shanno (1994)
and by Portnoy and Koenker (1997). At each iteration the algorithm computes an
affine-scaling “predictor” direction, step lengths are then computed and p is updated,
and finally a “corrected” direction is computed and a step is taken. The affine-scaling
predictor steps are given by solving 7 with y = 0,

dy = (AQ™'A') [ + AQ™'7]
de = Q Y(A'dy — 7))
(8) ds = —dx
dz=—2— X '"Zde = -7 (e + X’ld:v)
dw=—w—ST'Wds = —W (e + S7"ds)

where Q = X' Z 4+ S™'W, 7, =c— A'y and 7y = b — Ax.
The maximum feasible affine-scaling primal and dual step lengths that ensure the
primal and dual variables x, s, z and w stay feasible are then

ap = argmax{a € [0,1]|r + adr > 0,s + ads > 0}
ap = argmax{a € [0,1]|z + adz > 0,w + adw > 0}

(9)
The duality gap from taking this affine-scaling step is
ftas = (x + apdz) (z + apdz) + (s + apds)’ (w + apdw)

This new duality gap is then compared to the existing duality gap po = 2’z + s'w to
evaluate the amount of centering needed. If 114, is much smaller than the current g,
it suggests that the affine-scaling step manages to reduce the duality gap significantly
and, hence, not much centering is needed. Therefore, i can be reduced substantially.
On the other hand, if the difference between s and p is small, the affine-scaling
step will not lead to large improvement and, hence, substantial centering is needed.
Mehrotra’s centering proposal involves replacing p in (7) by

2
(10) U= (@) (@)
Hi n
Following Lustig, Marsten and Shanno (1992), the third component, corrector di-

rection, 8§ = (0y’, 02,02, ds', 0w') are obtained by substituting £ = £ + ¢ into (5),
setting 7y = ry = r3 = r4 = r5 = 0 and solving for 0¢. The linear system obtained is
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similar to (7):

A T 0 0 —-I oy 0
0 0 A 0 O 0z 0
(11) 0O 0 I I 0 ox | =— 0
0 X Z 0 0 0s dXdZe — pe
o 0o 0 wW S ow dSdWe — e

Notice the main difference between the systems in (7) and (11) is the nonlinear terms
dXdZe and dSdWe on the right-hand-side. The computational implication from
this is critical because the major amount of computational resource is expended in
the Cholesky factorization of the coefficient matrix in the left-hand-side, which only
needs to be performed once for each iteration. Applying similar algebra for the
affine-scaling predictor direction given in (8) yields the following expressions for the
corrector steps:

dy = (AQ™'A)TAQ™"7]

br = Q7 (A'Sy — 7y)
(12) ds = —ox

6z =—X""Z6x + X (ue — dXdZe)

Sw=—S""Wés+ S (ue — dSdWe)
where 71 = pu(S™" — X ')e + X~'dXdZe — S'dSdWe. The motivation for the
corrector steps is given in Lustig, Marsten and Shanno (1992, pp. 441-2) and Wright
(1997, pp.196-7). Basically, the correction is an attempt to correct for the amount

of deviation, dXdZ, of XZ from its targeted zero values in (5) when taking the
affine-scaling step.

4. SPARSE LINEAR ALGEBRA

In large problems almost all of the computational effort of the Frisch-Newton algo-
rithm occurs in the solution of the linear system involving the matrix AQ~'A’ matrix
in (8) and (12). Fortuitously, both solutions can use the same Cholesky factorization
so this operation only needs to be performed once for the affine-scaling step d¢ and can
be reused for the corrector steps 0¢ in each iteration. Recall that given the Cholesky
factorization LL" = A, the symmetric, positive definite linear system Ax = b can be
solved in two steps by backsolving the triangular systems:

Ly=1»
o=y
The block sparse algorithm of Ng and Peyton (1993) provides an extremely effi-

cient Cholesky factorization for solving a linear systems of equations with symmetric
positive definite coefficient matrix. It consists of four distinct steps: (1) ordering, (2)
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symbolic factorization, (3) numerical factorization and (4) numerical solution. The
ordering step attempts to reorder the AQ~'A’ matrix using the multiple minimum de-
gree routines from Liu (1985) to reduce the fill-in and the amount of work required by
the factorization steps. Symbolic factorization generates the compact data structure
in which the Cholesky factor L will be computed and stored. Numerical factorization
computes the sparse Cholesky factor using the efficient data structures obtained from
symbolic factorization. The numerical solution step merely performs the triangular
eliminations needed to solve the linear system.

5. APPLICATION TO BIVARIATE SMOOTHING

To obtain a better sense of the computational cost of Ng and Peyton’s algorithm,
we use the bivariate test function

fo(e.y) 40 exp (8 (x — 5+ (y — .5)2)

0\T,Y) =

exp (8 ((x—.2° + (y—.7)%)) +exp (8 ((z —.7)° + (y — .2)%))
which has been studied extensively in Gu, Bates, Chen and Wahba (1989), Breiman
(1991), Friedman (1991), He and Shi (1996), Hansen, Kooperberg and Sardy (1996),

and Koenker and Mizera (2002). The (z;,y;) covariates are generated from indepen-
dent uniforms on [0, 1]* and the response is generated by

(13) 2= folwy,y) +u, i=1---.n

where u; is generated as standard normal random variable. Notice that in the last
two equations we have reverted temporarily back to the notations commonly used in
the statistics literature. This bivariate surface is then fitted with the penalized tri-
ogram introduced in Koenker and Mizera (2002) which is formulated as the following
regression quantile problem:

n M
. /! /!
(14) gg;{nn;p(zz — gib) +Akzl 1]
where g; is the pseudo design vector with elements g;; = (B; (x;,v:)), Bj is a barycen-
tric basis function, hy is the roughness vector that reflects the change in gradients
along the M edges of the triogram and A is the smoothing parameter that controls
the trade-off between fidelity to the data measured in the first term and roughness of
the fit captured in the second summation. To express (14) as the regression quantile

/
problem in (1), we introduce the (n+ M) x n pseudo design matrix X = {G’EH’}

where G = (g}), H = (h},), and the pseudo response vector y = (2’,0') € R"™™ . This
can then be solved as the linear program in (3) or (4).

Reverting back to the numerical analysis notations, the structure of a typical pseudo
design matrix A" in (4) of the triogram is presented in Figure 1. Figure 2 contains
the pattern of the AQ ' A’ matrix. It is apparent from Figure 2 that the matrix to be
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F1GURE 1. A typical pseudo design matrix of the penalized triogram
problem in Koenker and Mizera (2002)
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row
100

50 100 150 200
column

FIGURE 2. A typical AQ 'A’ matrix of the penalized triogram problem
in Koenker and Mizera (2002)
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factorized is extremely sparse. The portion of nonzero entries in AQ~'A’ is roughly
13/n. Separate timing of the four different steps in Ng and Peyton’s algorithm is
presented in Figure 3. The amount of time reported is the median execution time
of solving the linear system of equations with AQ~'A’ as the coefficient matrix and
the pseudo response vector in (14) as the right-hand-side in 50 replications of (13)
for sample size ranges from 1000 to 50000. The timing grows exponentially. The
rates of growth are reflected in the value of the least-squares slope coefficient b; of
the log-linear model fitted to the data points in Figure 3. The biggest chunk of time
is expended in numerical factorization followed by minimum degree ordering. The
fact that the nonzero pattern of the AQ~'A’ matrix remains unchanged from one
iteration to the other enable us to perform the ordering step only once over the whole
iteration process in the Frisch-Newton algorithm. With a twenty-iteration execution,
for example, an additional saving of roughly a factor of 1/5 in computing time can
further be realized.

The remaining linear algebra in the system of equations in (8) and (12) is performed
with the routines available in SparseM, see Koenker and Ng (2002), which utilizes
BLAS-like routines tailored for sparse matrices from SPARSKIT2.

6. PERFORMANCE

We perform a small scale simulation using the penalized triogram in (14) to fit the
bivariate model in (13) to study the performance of our sparse implementation of
the Frisch-Newton algorithm. We compare our sparse implementation (srqfn) to the
implementation in Koenker and Mizera (2002), which utilizes the dense matrix version
of the Frisch-Newton algorithm (rqfn) reported in Koenker and Portnoy (1997). Since
it takes a long time for rqfn to solve the penalized triogram problem for just one
replication for moderately large size, we only perform 10 replications in the simulation
study for n = 261 100y 05)  Both implementations of the Frisch-Newton algorithm
are coded in FORTRAN while the interfaces are in R. The simulation is performed
on a Sun Sparcstation and the timings are clocked between the time the computation
enters and leaves the Fortran code that performs the Frisch-Newton iterations, hence,
eliminating any discrepancy on the overhead between the two implementation.

Figure 4 reports the median execution time required to compute the triogram
solutions. The advantage of srqfn over rqfn is prominent in Figure 4 over the whole
range of sample sizes we have investigated. The factor of improvement ranges from
roughly 36 at the sample size of 64 to approximately 852 at the sample size of 1024.
Also reported in the legend of Figure 4 are the least-squares estimated coefficients of
the log-linear model fitted to execution time on sample size. In Figure 5, we report
the timing for only the srqfn for n = 26t 14by05) = Alsg included in the figure are
the least-squares estimated intercept and slope coefficients from regressing the log of
execution time on the log of sample size. The estimated slope coefficient is almost
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F1GURE 3. Median timing in seconds for the steps in Ng and Peyton’s
(1999) algorithm of one least-squares solution over 50 replications as a
function of sample size

identical to that in Figure 4, which suggests execution time grows exponentially at
the rate of around 1.54.

To compare the storage saving from our sparse implementation, we report in Figure
6 the storage size, in bytes, needed to compute the penalized triogram solutions for
different sample sizes on our Sun Sparcstation. What is evident from the figure is the
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FIGURE 5. Median execution time of srqfn.
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exponentially increasing storage requirement of rqfn compared to the linear increase

in srqfn.
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Storage in Bytes
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