

College of Business
Administration
Northern Arizona
University
Box 15066
Flagstaff AZ 86011

Creating Web Services
Using ASP.NET

Working Paper Series 04-06— April 2004

Craig A. VanLengen
Associate Professor of CIS
craig.vanlengen@nau.edu

and

John D. Haney

Clinical Professor of CIS
john.haney@nau.edu

College of Business Administration
Northern Arizona University

Flagstaff, AZ 86011-5066

CBA • NAU

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenKnowledge@NAU

https://core.ac.uk/display/151422567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 1

College of Business
Administration
Northern Arizona
University

Creating Web Services
Using ASP.NET

Craig A. VanLengen and John D. Haney

INTRODUCTION

First we will start with some definitions of Web services and the technologies that are used. Let’s start with, “What
does Web services mean? Web services are a set of standard technologies (W3C) that allow applications to expose
and consume functionality independent of operating system, programming language, and hardware. Interfaces are
built using open standards. eXtensible Markup Language (XML) is used to describe the data, operations, and the
protocols for interaction between the provider of the service and the consumer of the service. The Web service is
registered in a Universal Description, Discovery and Integration (UDDI) registry. This registry can be private for
intranet access, or exposed to selected business partners over an extranet, or external for the entire Internet. The
registration of the Web service is through a discovery file, which is called a Web Service Description Language
(WDSL) document, where the namespaces, methods, and URL of the Web service are described. (IBM, MSDN,
Kalata). In Microsoft Visual Studio .NET you have a Web discovery service file with a .disco extension and a .wdsl
file. This allows the developer to discover Web services from within Visual Studio .NET. This way the objects of
the Web service can be used the same as local objects within the consuming application (Kalata).

WEB SERVICE EXAMPLE

The example demonstrates user access to a database that is displayed in sort order by either ID, Description, Price or
Quantity. We have added the ability for the user to select either the C# or the Visual Basic service. The user would
then select or click on the Display Grid button and the appropriate service would be executed and displayed. The
programming language option is provided to demonstrate Web services ability to work with different programming
languages. First we present the Web interface for the client application that is consuming the Web service. The
following Web address will display the client application:

https://bdnet.bus.cba.nau.edu/jdh39/project09/rmDemo.aspx

CBA • NAU

 2

The example shows a Web service client application that consumes either a Visual Basic.NET or a Visual C#.NET
server application. These two service applications are published on Web server and consumed by the client
application that is written in Visual Basic.NET. All applications were developed using Microsoft Visual Studio
.NET. The .NET development environment provides the necessary support to develop, expose and consume Web
services. The Web service application that is exposed is accessible using standard Web protocols.

When the user clicks on the “Display Grid” button the Web service will execute the methods exposed in either
dbService_VB.asmx.vb or dbService_CS.asmx.cs and the results will be displayed in the user’s browser.

CREATING THE WEB SERVICE SERVER APPLICATION

To create the Web service in Visual Studio .NET you create a new project and select ASP.NET Web Service as the
template. This will create the solution, project, and default files with a default Web service page of
Service1.asmx.vb. Code needs to be added for the connection to the database and other processing logic. For
purposes of this example we will concentrate on the code for Web services.

A server application that is exposed in ASP.NET must have an .asmx for the file extension. The code behind page
will have an .asmx.vb or .asmx.cs extension depending on the language used. The System.Web.Services namespace
must be imported in the source code of the code behind file so that all the methods of Web services are available.

<WebService(Namespace:="http://tempuri.org/")>

In the VB Web service the following code is used:

Imports System.Web.Services
<WebService(Namespace:="http://tempuri.org/")> _
Public Class VB_Service

The default Web service page includes the following commented code:

 ' WEB SERVICE EXAMPLE
 ' The HelloWorld() example service returns the string Hello World.
 ' To build, uncomment the following lines then save and build the project.
 ' To test this web service, ensure that the .asmx file is the start page
 ' and press F5.
 '
 '<WebMethod()> Public Function HelloWorld() As String
 ' HelloWorld = "Hello World"
 ' End Function

Using the example given in the default code we create the following function to be exposed as a Web service.

 <WebMethod()> Public Function getProduct(ByVal srtType As String) As DataSet

'This Service connects to the database,
'and based on the argument sent, orders the Product table by
'ID, Description, Price, or Quantity and then returns the
'selected dataset.

 Connection = "Provider=MSDAORA;Password=oraPW;User ID=oraUserID;Data Source=oracba"
Conn = New OleDbConnection(Connection)
'Select from the database table
If srtType = "ID" Then

SQL = "SELECT * FROM Product Order by ID"
End If
If srtType = "Descr" Then

SQL = "SELECT * FROM Product Order by Description"
End If

 3

If srtType = "Price" Then
SQL = "SELECT * FROM Product Order by Price Desc"

End If
If srtType = "Qty" Then

SQL = "SELECT * FROM Product Order by Quantity Desc"
End If
Cmd = New OleDbCommand(SQL, Conn)
'Open the connection and establish the SQL statement
Conn.Open()
'Create an instance of the adapter and dataset
Adapter = New OleDbDataAdapter(Cmd)
ds = New DataSet()
'Fill the dataset
Adapter.Fill(ds, "Product")
'Return the dataset
Return ds

End Function
End Class

Notice that the function is prefaced by the keyword “<WebMethod()>” that exposes the function as a Web service.
At the end of this function we return a DataSet object to the client application with a

 Return ds

statement.

When we build (compile) the Web service a discovery file, Web Service Description Language (WDSL) document
is created. This file is an XML document that describes how to interact with the service and how to format and send
data to the service. If we enter the address for this Web service in the browser we get the following:

https://bdnet.bus.cba.nau.edu/jdh39/dbService_VB/dbService_VB.asmx

 4

If you click on the Service Description link you will be able to see the WSDL contract, which is an xml file. The top
part of the WSDL file is shown below.

 <?xml version="1.0" encoding="utf-8" ?>
- <definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema" xmlns:s0="http://tempuri.org/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" targetNamespace="http://tempuri.org/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

- <types>
- <s:schema elementFormDefault="qualified" targetNamespace="http://tempuri.org/">
 <s:import namespace="http://www.w3.org/2001/XMLSchema" />

Below the Service Description you see the methods that are exposed:

getProductByID
getProduct
getProductByPrice
getProductByDescr
getProductByQty

Clicking on a method allows you to examine a sample SOAP request and response.

POST /jdh39/dbService_VB/dbService_VB.asmx HTTP/1.1
Host: bdnet.bus.cba.nau.edu
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://tempuri.org/getProductByID"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <getProductByID xmlns="http://tempuri.org/" />
 </soap:Body>
</soap:Envelope>

We also created this same functionality with C#. Some sample code from dbService_CS.asmx.cs is shown below:

using System.Web.Services;
namespace rmWSCS
{
 public class CS_Service : System.Web.Services.WebService
 {
 private System.Data.OleDb.OleDbConnection Conn;
 private System.Data.OleDb.OleDbCommand Cmd;
 private System.Data.OleDb.OleDbDataAdapter Adapter;
 private System.Data.DataSet ds;
 private string Connection;
 private string SQL;
 public CS_Service()
 {
 //CODEGEN: This call is required by the ASP.NET Web Services Designer

 5

 InitializeComponent();
 }

 [WebMethod]
 public DataSet getProduct(string srtType)
 {
 /*
 This Service connects to the database,
 and based on the argument sent, orders the Product table by
 ID, Description, Price, or Quantity and then returns the
 selected dataset.
 */
 // Connect to the database

Connection = "Provider=MSDAORA;Password=oraPW;User ID=oraUserID;
Data Source=oracba";

 Conn = new System.Data.OleDb.OleDbConnection(Connection);
 // Select from the database table
 if (srtType.Equals("ID"))
 {
 SQL = "SELECT * FROM Product Order by ID";
 }
 if (srtType.Equals("Descr"))
 {
 SQL = "SELECT * FROM Product Order by Description";
 }
 if (srtType.Equals("Price"))
 {
 SQL = "SELECT * FROM Product Order by Price Desc";
 }
 if (srtType.Equals("Qty"))
 {
 SQL = "SELECT * FROM Product Order by Quantity Desc";
 }
 Cmd = new System.Data.OleDb.OleDbCommand(SQL, Conn);
 // Open the connection and establish the SQL statement
 Conn.Open();
 // Create an instance of the adapter and dataset
 Adapter = new System.Data.OleDb.OleDbDataAdapter(Cmd);
 ds = new DataSet();
 // Fill the dataset
 Adapter.Fill(ds, "Product");
 // Return the dataset
 return ds;
 } // end of function
 } // end of class
} // end of namespace

Notice the importing or for C#, using System.Web.Services line and the System.Web.Services.WebService
declaration for the public class CS_Service. This inherits all the appropriate methods for Web services. Once again
the keyword [WebMethod] prefaces the methods that are being exposed.

public DataSet getProduct(string srtType)

 6

CONSUMING THE WEB SERVICE

Now we create the “client” Web application to consume the “server” Web service. This time we create a new project
in Visual Studio .NET as an ASP.NET Web Application, not a Web service. The consuming application will be
developed in Visual Basic.NET so we have the following files:

 rmDemo.aspx
 rmDemo.aspx.vb

In the Solution Explorer window add a Web Reference. The Add Web Reference will search or discover the Web
Services. We enter the URL of our Web Service “server” application. This provides the following dialog. From this
dialog the developer can view the WDSL and other documentation of the Web service.

Clicking on the Add Reference button in the lower right-hand corner will add a reference to the Web service that
allows the developer to treat it like any other object within a page. Visual Studio IntelliSense will provide popup
access to the properties and methods of the Web service class. The Web application solution explorer window will
now include a Web Reference for the dbService_CS. Note the .disco and .wsdl file under edu.nau.cba.bus.bdnet1.

 7

When you build or compile your consuming application a proxy class is created using the WSDL document. When
the Web service application is executed the proxy class reads the WDSL to verify the descriptions of the Web
service. When using SOAP for the request and response messages, the proxy creates a SOAP envelope that is passed
to the Web service. After the Web service executes the return value is also passed back to the proxy in a SOAP
envelope over the HTTP connection. The client Web application must then convert the SOAP XML response into
the format required by the client Web application.

In the code behind page .aspx.vb we make the following declarations:

 Dim dbServiceVB As vbService.VB_Service = New vbService.VB_Service()
 Dim dbServiceCS As csService.CS_Service = New csService.CS_Service()

The first line of code creates an object dbServiceVB of vbService.VB_Service() type. The second line creates an
object dbServiceCS of csService.CS_Service() type. Since the Web Reference was added to the project the
referencing of the objects when creating the code is the same as any other object within Visual Studio .NET.

The code example below shows the creation of a DataSet object and then using the getProduct(srtType) method of
the server Web service to fill the dataset.

 Dim ds As New DataSet()
 If langType = "C#" Then
 ds = dbServiceCS.getProduct(srtType)
 Else
 ds = dbServiceVB.getProduct(srtType)

Following are the screen shots from executing a few of the different options. The first example shows a selection of
C# for the programming language and to sort by ID.

 8

The next example shows the selection of C# for the language and to sort by description.

 9

The next example shows a selection of VB for the language and to sort the data by ID.

The last example shows a selection of VB for the language and to sort the data by description.

 10

CONCLUSION

Developing Web Services can be confusing because of the numerous technologies (XML, SOAP, UDDI , and
WSDL). Using Visual Studio .NET to create and consume the Web Service makes the process less difficult, but can
also hide some of the details. When the Web Service is compiled Visual Studio .NET creates the WDSL document,
the SOAP request and response messages for the exposed methods. Visual Studio .NET also creates the Web
Discovery Service file that is used to discover Web Services on your server. Developers should study each of these
technologies to gain a through understanding of Web Services development.

 11

REFERENCES

IBM developerWorks. New to Web services. March 25, 2004.<http://www-
106.ibm.com/developerworks/webservices/newto/>.

Kalata, K., 2003. Introduction to ASP.NET. Boston: Thomson: Course Technology.

MSDN Library. XML Web Services Basics. December 2001. March 25, 2004.

<http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/webservbasics.asp>.

W3C. Web Service Activity. March 24, 2004. March 25, 2004. <http://www.w3.org/2002/ws/>.

