

College of Business
Administration
Northern Arizona
University
Box 15066
Flagstaff AZ 86011

COBOL.NET
Running Legacy COBOL
Programs by Proxy

Working Paper Series 05-02— March 2005

John D. Haney

Clinical Professor of CIS
(928) 523-7352

john.haney@nau.edu

Northern Arizona University
College of Business Administration

Box 15066
Flagstaff, AZ 86011-5066

CBA • NAU

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenKnowledge@NAU

https://core.ac.uk/display/151422561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 1

College of Business
Administration
Northern Arizona
University
Box 15066
Flagstaff AZ 86011

COBOL.NET
Running Legacy COBOL
Programs by Proxy

John D. Haney

INTRODUCTION

Since its inception, COBOL has been a major part of the development of business information systems (Malek,
2002), and has adjusted as changes in programming methodology have arisen. Most noteworthy was the
development of top-down design as a reaction to ‘spaghetti’ code. The addition of graphical user interfaces (GUIs)
changed the complexion of programming, and the world of COBOL responded in two ways. First, GUIs were added
to COBOL compilers, such as MicroFocus’s Dialog system. Another response was to interface legacy COBOL
systems with GUI oriented languages like Microsoft’s Visual Basic. The trend toward object-oriented programming
has also entered the world of COBOL (Malek, 2002). The initial reaction was to place object-orientation into the
COBOL compilers (Price, 1997). However, given the flexibility of Microsoft’s .NET platform, it is only natural and
logical that there would be an inclusion of COBOL into the .NET environment (Narayana, 2001).

Part of Microsoft’s philosophy for the .NET Framework is that programmers should be able to use the
programming language best suited to their application (Malek, 2002). While C# and Visual Basic are the primary
programming languages within the .NET environment, other languages are available. COBOL is one of those
languages. Within the .NET Framework applications can be developed as stand-alone Windows applications or as
web-based applications. The focus of this study is on a Windows-based application using MicroFocus’s Net Express
with .NET. The application, written in C#, controls the execution of a legacy COBOL program. The result is the
execution of an old legacy COBOL program with a contemporary user interface, as if the program had been written
in an object-oriented language such as VISUAL BASIC or C#. The heart of this structure is a proxy class that can
easily be expanded to work with any existing COBOL program, hence ‘running legacy COBOL programs by
proxy.’

OVERVIEW OF SYSTEM

The process of running legacy COBOL programs within the .NET environment entails three required
components and one optional component. The most obvious required element is the legacy COBOL program.
Another is a program written in the .NET environment, such as a Visual Basic or C# program. In this example a C#
program is used. These two must be tied together, which is accomplished with a COBOL program that works as a
link between the C# program and the legacy COBOL program. An optional component is a COBOL object class
which provides for storing and retrieving data between other components. The relationship of these elements is
shown in the following diagram.

CBA • NAU

 2

The functionality of the legacy COBOL program is to update a payroll master file. A transaction file drives a
batch update that adds, changes, and deletes records. The update statistics: records added, changed, and deleted
along with a completion message are sent back to the C# program. The mechanics of the system are fairly
straightforward. The C# program, which provides the user interface, does two processes. First, the transaction data
file is located using a common dialog box, and the path and file name are placed into a string data member. The
second process, triggered by clicking the Update button, calls the COBOL proxy program. This sends the transaction
file name, as an argument, and returns the update statistics into an instance of the data object. After control is
retuned back to the C# program the statistics are then placed into the textboxes.

The COBOL proxy program receives the transaction file name and places it into its linkage section. Then the
proxy program calls the COBOL legacy program, sending the transaction file name and receiving back the update
statistics: records added, changed, deleted, and a completion message. These statistics are then placed into the data
object, which is returned back to the C# program.

The COBOL legacy program receives the transaction file name from the proxy program and proceeds with the
batch update to an indexed sequential payroll master file. The update is driven by a transaction file which in this
example deletes four records, adds the records back in, and then changes one of the records. The transaction file is
shown below.

Following is a printout of the payroll master file after the update.

 3

After the update, the legacy program returns the update statistics: records added, changed, deleted, and
completion message back to the proxy program.

The execution of a legacy program within the .NET environment is within a .NET solution (csUpdate) that is
comprised of two projects. The first project (csUpdate) is a C# project, and the second project (cblUpdate) contains
three COBOL programs – the legacy program, the proxy program, and the data object class. The two projects must
reference each other.

LEGACY PROGRAM

The functionality of the program is a batch update to an indexed-sequential file, in this case a payroll master
file. The sequence of the update is driven by a text transaction file. Both the master and transaction files reside on
the same drive and in the same folder. Since the name of the master file is static it is hard coded into the program.
The transaction file is dynamic; therefore, the name of the file is supplied from the client program and routed
through the proxy program to the legacy program. The update activity is written to a log file.

Some modifications must be made to the legacy program in order to communicate properly with the proxy
program. These modifications have been underlined for easy reference. A linkage section is added to communicate
between the proxy program and the legacy program. The Procedure Division statement is modified to reference the
linkage section.

In the A100-Main paragraph an Exit Program statement replaces a Stop Run statement which would normally
end a program. The Exit Program statement returns control to the proxy program after the execution of the program.
In the B100-Initial paragraph the path and file name of the transaction file are placed into the filename field prior to
opening the transaction file. In the B300-End paragraph the counts for the number of records added, changed, and
deleted are placed into the Linkage Section fields, along with a message that the program is completed. Following is
the code for the legacy program:

**
*
* Legacy program for batch payroll update.
*
**
* cblUpdate - This is a batch update to a random access file.
* The master file is a payroll file.
* The update is driven by a transaction file.
* The activity is written to a log file.
*
**

 4

Identification Division.
Program-ID. cblUpdate.

Environment Division.
Input-Output Section.
File-Control.
Select 100-Payroll Assign to "Payroll.dta"
 Organization is Indexed
 Access Mode is Random
 Record Key is 100-Emp-ID.

 Select 200-Transaction Assign to 400-FileName
 Organization is line sequential.
 Select 300-Log Assign to "Log.dta"
 Organization is line sequential.

Data Division.
File Section.
Fd 100-Payroll.
01 100-Rec.
 05 100-Emp-ID Pic 9(5).
 05 Filler Pic X(47).

Fd 200-Transaction.
01 200-Rec Pic X(53).

Fd 300-Log.
01 300-Rec Pic X(60).

Working-Storage Section.

01 400-Work-Fields.
 05 400-Action Pic X Value " ".
 88 No-More Value "x".

 05 400-There-Flag Pic X Value " ".
 88 Record-There Value "Y".
 88 Record-Not-There Value "N".

 05 400-FileName Pic X(80) Value " ".

 05 400-Record-Counts.
 10 400-Add-Count Pic 9(6) Value 0.
 10 400-Chg-Count Pic 9(6) Value 0.
 10 400-Del-Count Pic 9(6) Value 0.

01 500-Work-Rec.
 05 500-Emp-ID Pic 9(5).
 05 500-TC Pic X.
 05 500-First-Name Pic X(12).
 05 500-Last-Name Pic X(15).
 05 500-Department Pic X(12).
 05 500-Hours Pic 99V99.
 05 500-Hours-X Redefines 500-Hours
 Pic X(4).
 05 500-Rate Pic 99V99.

 5

 05 500-Rate-X Redefines 500-Rate
 Pic X(4).
 01 600-Work-Rec.
 05 600-Emp-ID Pic 9(5).
 05 600-First-Name Pic X(12).
 05 600-Last-Name Pic X(15).
 05 600-Department Pic X(12).
 05 600-Hours Pic 99V99.
 05 600-Rate Pic 99V99.

Linkage Section.
01 lnk-FileName Pic X(80).
01 lnk-addCount Pic 9(6).
01 lnk-chgCount Pic 9(6).
01 lnk-delCount Pic 9(6).
01 lnk-txtMessage Pic X(50).

Procedure Division using lnk-FileName
 lnk-addCount
 lnk-chgCount
 lnk-delCount
 lnk-txtMessage.

A100-Main.
 Perform B100-Initial.
 Perform B200-Process Until No-More.
 Perform B300-End.
 Exit Program.

B100-Initial.
 Move lnk-FileName to 400-FileName.
 Open I-O 100-Payroll.
 Open Input 200-Transaction.
 Open Output 300-Log.
 Perform C200-Get-Transaction-Record.

B200-Process.
 Perform C100-Get-Payroll-Record.
 Perform C300-Update.
 Perform C200-Get-Transaction-Record.

B300-End.
 Close 100-Payroll.
 Close 200-Transaction.
 Move "Program Ended!" to 300-Rec.
 Write 300-Rec.
 Close 300-Log.
 Move 400-Add-Count to lnk-addCount.
 Move 400-Chg-Count to lnk-chgCount.
 Move 400-Del-Count to lnk-delCount.
 Move "Update completed successfully!" to
 lnk-txtMessage.

C100-Get-Payroll-Record.
 Move 500-Emp-ID to 100-Emp-ID.
 Move "Y" to 400-There-Flag.
 Read 100-Payroll Into 600-Work-Rec

 6

 Invalid Key Move "N" to 400-There-Flag
 End-Read.

C200-Get-Transaction-Record.
 Read 200-Transaction Into 500-Work-Rec
 At End Move "x" to 400-Action
 End-Read.

C300-Update.
 If 500-TC is equal to "a"
 If 400-There-Flag is equal to "Y"
 Move space to 300-Rec
 String 500-Emp-ID " Already on file"
 into 300-Rec
 Write 300-Rec
 Else
 Perform D100-Add
 Exit Paragraph
 End-IF.
 If 500-TC is equal to "c"
 If 400-There-Flag is equal to "N"
 Move space to 300-Rec
 String 500-Emp-ID " Not on file"
 into 300-Rec
 Write 300-Rec
 Else
 Perform D200-Change
 Exit Paragraph
 End-IF.
 If 500-TC is equal to "d"
 If 400-There-Flag is equal to "N"
 Move space to 300-Rec
 String 500-Emp-ID " Not on file"
 into 300-Rec
 Write 300-Rec
 Else
 Perform D300-Delete
 Exit Paragraph
 End-IF.

D100-Add.
 Move 500-Emp-ID to 600-Emp-ID 100-Emp-ID.
 Move 500-First-Name to 600-First-Name.
 Move 500-Last-Name to 600-Last-Name.
 Move 500-Department to 600-Department.
 Move 500-Hours to 600-Hours.
 Move 500-Rate to 600-Rate.
 Move " " to 400-Action.
 Write 100-Rec from 600-Work-Rec
 Invalid Key
 Move "e" to 400-Action
 Move "Error on Add" to 300-Rec
 Write 300-Rec
 End-Write.
 If 400-Action not = "e"
 Move space to 300-Rec
 String 500-Emp-ID " Record Added"
 into 300-Rec

 7

 Write 300-Rec
 Add 1 to 400-Add-Count
 End-If.

D200-Change.
 If 500-First-Name is not equal to space
 Move 500-First-Name to 600-First-Name
 End-If.
 If 500-Last-Name is not equal to space
 Move 500-Last-Name to 600-Last-Name
 End-If.
 If 500-Department is not equal to space
 Move 500-Department to 600-Department
 End-If.
 If 500-Hours-X is not equal to space
 Move 500-Hours to 600-Hours
 End-If.
 If 500-Rate-X is not equal to space
 Move 500-Rate to 600-Rate
 End-If.
 Move " " to 400-Action.
 Rewrite 100-Rec from 600-Work-Rec
 Invalid Key
 Move "e" to 400-Action
 Move space to 300-Rec
 String 500-Emp-ID " Error on Change"
 into 300-Rec
 Write 300-Rec
 End-Rewrite.
 If 400-Action is not equal to "e"
 Move space to 300-Rec
 String 500-Emp-ID " Record Changed"
 into 300-Rec
 Write 300-Rec
 Add 1 to 400-Chg-Count
 End-If.

D300-Delete.
 Move 500-Emp-ID to 100-Emp-ID.
 Move " " to 400-Action.
 Delete 100-Payroll
 Invalid Key
 Move "e" to 400-Action
 String 500-Emp-ID " Error on Delete"
 into 300-Rec
 Write 300-Rec
 End-Delete.
 If 400-Action is not equal to "e"
 String 500-Emp-ID " Record Deleted"
 into 300-Rec
 Write 300-Rec
 Add 1 to 400-Del-Count
 End-If.

 8

PROXY (WRAPPER) PROGRAM

The Proxy or Wrapper program is the link between the Client (C#) program and the legacy (COBOL) program.
The Proxy program also interacts with the Data Object class. The Proxy program creates an instance of the Data
Object in the Repository which is referenced in the Linkage Section. The Repository provides the means of relating
internal names with external references. The Proxy program receives the name of the transaction file from the Client
program and returns the Data Object back to the Client program. A Local-Storage section, which is visible only
within the method, is used to contain the name of the transaction file, the update counts, and the completion message
which are returned from the legacy program. The Local-Storage functions as the common data area with the legacy
program. The Transaction file name is placed from the Linkage Section into the Local-Storage section, and then the
legacy program is called. At the conclusion of the execution of the legacy program an instance of the Data Object is
created, and the values are sent from the Local-Storage section into the Data Object. At the conclusion of the Proxy
program control is returned back to the Client program.

**
*
* Proxy class for batch payroll update.
*
**
* cblProxy - This program provides the functionality to provide
* a file name to the batch update program (cblUpdate)
* and return counts for the number of records
* added, changed, and deleted, and a message
* after the batch update program is run.
*
**

 CLASS-ID. cblProxy As "cblProxy".
 REPOSITORY.
 CLASS StringClass As "System.String"
 CLASS dataObject As "dataObject" .
 STATIC.
 DATA DIVISION.
 PROCEDURE DIVISION.
 METHOD-ID. CallUpdateProgram As "CallUpdateProgram".
 Local-Storage Section.
 01 lo-DataIn.
 05 lo-FileName Pic X(80).
 01 lo-DataOut.
 05 lo-Message Pic X(50).
 05 lo-Added Pic 9(6).
 05 lo-Changed Pic 9(6).
 05 lo-Deleted Pic 9(6).

 LINKAGE SECTION.
 01 lnk-FileName Object Reference StringClass.
 01 lnk-dataObj Object Reference dataObject.

 PROCEDURE DIVISION Using by value lnk-FileName
 Returning lnk-dataObj.

 SET lo-FileName to lnk-FileName.

 CALL "cblUpdate" USING lo-FileName
 lo-Added
 lo-Changed

 9

 lo-Deleted
 lo-Message .

 Invoke dataObject "New" Returning lnk-DataObj.
 Set lnk-dataObj::"ReturnMessage" to lo-Message.
 Set lnk-dataObj::"ReturnAdded" to lo-Added.
 Set lnk-dataObj::"ReturnChanged" to lo-Changed.
 Set lnk-dataObj::"ReturnDeleted" to lo-Deleted.

 END METHOD CallUpdateProgram.
 END STATIC.
 END CLASS cblProxy.

DATA OBJECT CLASS

 The Data Object class serves only one purpose, to store data that is transferred from the Proxy program back to
the Client program. The data consists of a message and three counts for the number of records added, changed, or
deleted in the payroll master file. The message indicates that the update completed successfully. The property
identifies the class data member that is referenced in the Client program. A property is a name that is used to qualify
an object reference so a value can be passed into or out of the object. This allows the transference of data that is
defined in a COBOL program as Picture X or Picture 9 easily into a C# program.

*
* Data Object Class.
*
**
* cblData - This class defines the data object which is
* used to pass data from the wrapper to the client.
*
**

 Identification Division.
 Class-id. dataObject As "dataObject".
 Environment Division.
 Configuration Section.
 Repository.
 Class DecimalClass as "System.Decimal"
 Class StringClass as "System.String" .
 Object.
 Data Division.
 Working-Storage Section.
 01 ReturnMessage
 Object Reference StringClass
 Property as "ReturnMessage".
 01 ReturnAdded
 Object Reference DecimalClass
 Property as "ReturnAdded".
 01 ReturnChanged
 Object Reference DecimalClass
 Property as "ReturnChanged".
 01 ReturnDeleted
 Object Reference DecimalClass
 Property as "ReturnDeleted".
 End Object.
 END CLASS dataObject.

 10

CLIENT PROGRAM

The Client program is written in C#, although it could just as easily have been written in Visual Basic. A class
string data member is defined to hold the path and filename of the transaction data file which is populated using a
common dialog box.

In the update method an instance of the Data Object is created. Then the COBOL Proxy program is called by
sending the transaction file name and returning the update counts and message into an instance of the Data Object.
The Class-ID is named cblProxy and the Method-ID is named CallUpdateProgram. Finally, the message and update
counts are assigned to the appropriate textboxes from the data members of the Data Object. The counts, being
numeric, must be converted to string. Only the relevant code of the C# program is shown below.

/*
 **
 * A C# program to provide a Graphical User Interface (GUI) to a
 * legacy program. This program uses a common dialog box to get
 * the path and file name of the transaction file. The path and
 * file name are passed to the Proxy class.
 *
 * The Proxy class returns counts for records added, changed, and
 * deleted, and a message.
 **
 */
public class csMain : System.Windows.Forms.Form
{

private string strFileName = "";
. . . .

private void btnUpdate_Click(object sender, System.EventArgs e)
{
 dataObject dtaObj = new dataObject();
 dtaObj = cblProxy.CallUpdateProgram(strFileName);
 txtMessage.Text = dtaObj.ReturnMessage;
 txtAdded.Text = Convert.ToString(dtaObj.ReturnAdded);
 txtChanged.Text = Convert.ToString(dtaObj.ReturnChanged);
 txtDeleted.Text = Convert.ToString(dtaObj.ReturnDeleted);
}

SUMMARY AND CONCLUSIONS

Since COBOL programs will be part of business information systems for the foreseeable future, making
COBOL part of contemporary development environments is a natural consequence. The focus of this study has been
the incorporation of COBOL into Microsoft’s .NET Framework. Within that framework, old legacy COBOL
programs can be integrated with contemporary languages such as Visual Basic or C#. The process is accomplished
by creating an application in a .NET solution that consists of two projects. The first project contains the .NET user
interface, in this case written in C#. The second project contains two required COBOL programs, and one optional
program. The required programs are the legacy program and a proxy, or wrapper, class that is the link between the
legacy program and the user interface program. A third COBOL program is an object class that is used to transfer
data between the C# program and the COBOL proxy class. There are other means of transferring data but this is the
most efficient, so it is not optional in this case.

Only slight modifications to the legacy COBOL program are required to enable communication between the
legacy program and the proxy class. The proxy class is the heart of the interface. This COBOL object class calls the
COBOL legacy program, and in turn is called by the C# program. The transference of data between the legacy
program and the proxy class is via normal COBOL processing with a Linkage Section. The transference of data
between the proxy class and the C# program is accomplished with a data object class. An instance of the data object
is created in both the proxy class and the client (C#) program. Data is placed into the data object in the proxy class
and then retrieved by the client program. The result is the execution of a legacy COBOL program ‘by proxy.’

 11

REFERENCES

Micro Focus. (2003). Net Express With .NET. Beaverton, OR.: Micro Focus International Limited.

Price, Wilson T. (1997). Elements of Object-Oriented COBOL. Orinda, CA.: Object-Z Publishing.

Price, Wilson T. & Rippin, Wayne. (2004). COBOL and .NET. Draper, UT.: Object-Z Publishing.

Malek, Rick. “Why Object Orientation for COBOL?” (2002), Online:

http://www.c-sharpcorner.com/Code/2002/July/Art02-OOIntro.asp

Malek, Rick. “Calling Procedural COBOL from VB.NET” (2002), Online:

http://www.c-sharpcorner.com/Code/2002/Aug/vb2cobol.asp

Malek, Rick. “Welcome to COBOL.NET Corner” (2002), Online:

http://www.c-sharpcorner.com/Code/2002/June/WelcomeCobolNet.asp

Sharp, John & Jagger, Jon. (2002). VISUAL C# .NET. Redmond, WA.: Microsoft Press.

Surapaneni, Narayana Rao. “COBOL for Microsoft .NET“ (2001), Online:

http://www.c-sharpcorner.com/CobolNet/Cobol4MSNETNRS.asp

