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Modeling of Nonseasonal Quarterly Earnings 
  

Allen W. Bathke, Jr., Kenneth S. Lorek and G. Lee Willinger 

I. Introduction 
 Firms that exhibit idiosyncratic nonseasonal quarterly earnings time-series properties have received 
considerable attention in the earnings forecasting literature.  Lorek and Bathke (1984) developed a filtering 
mechanism that has been used to screen nonseasonal from seasonal firms to facilitate empirical analysis.  
Specifically, they identified a parsimonious  autoregressive-integrated-moving-average (ARIMA) quarterly earnings 
expectation model for nonseasonal firms, a (100) X (000) model - a first-order stationary autoregressive process 
(i.e., AR1).  They provided evidence that this nonseasonal model outpredicted the premier seasonal ARIMA models 
across a holdout period that included the eight quarters in the 1975-1976 interval.1  
 Subsequent work has taken these findings into account.  For example, Bathke et al. (1989) controlled for 
the differential time-series properties of quarterly earnings by partitioning their sample of firms into nonseasonal and 
seasonal subsets to better assess the impact of firm size on predictive ability.  More recently, Brown and Han (2000) 
assessed the earnings-return relationship for firms exhibiting nonseasonal quarterly earnings behavior.  They 
employed the AR1 model as a quarterly earnings expectation model for a sample of nonseasonal firms that they 
identified using Lorek and Bathke’s nonseasonal screening mechanism.  Brown and Han tested whether the post-
earnings announcement drift phenomenon may be attributed solely to the complexity of the quarterly earnings 
expectation model by specifically examining a set of firms (i.e., nonseasonals) whose quarterly earnings properties 
may be characterized as “simple.”  They provide empirical results consistent with the notion that the complexity of 
the quarterly earnings expectation model is not the underlying cause of the post-earnings announcement drift. 
 We agree with the strategy of identifying a quarterly earnings expectation model specifically for 
nonseasonal firms.  ARIMA models for nonseasonal firms do not require seasonal differencing and/or seasonal 
autoregressive or moving-average parameters unlike the ARIMA models identified for seasonal firms.  In fact, 
Lorek and Bathke (1984) demonstrated that the use of such complex seasonal ARIMA models for nonseasonal firms 
results in overdifferencing of stationary time series, parameter redundancy, and is a violation of the principle of 
parsimony.  Brown (1993) observes that simpler quarterly earnings expectation models have proved to be more 
robust than more complex ones and are consistent with Occam’s razor.  These factors led Lorek and Bathke to 
model nonseasonal firms with the parsimonious AR1  process which does not rely upon differencing and/or seasonal 
parameters.   
 We extend the line of research related to the existence of nonseasonal firms for two reasons.  First, the 
original work of Lorek and Bathke (1984) assessed whether a nonseasonal characterization of quarterly earnings was 
appropriate for a subsample of firms versus the seasonal characterization put forth in the literature for all firms.  
Lorek and Bathke recognized that most firms were seasonal and had quarterly earnings series that were well 
described by the seasonal quarterly earnings models identified by Brown and Rozeff (1979), Foster (1977), Griffin 
(1977) and Watts (1975).  Their objective was not to find the “best” or “premier” nonseasonal model, but to identify 
a nonseasonal model that outpredicted the seasonal ARIMA models for certain types of firms (i.e., nonseasonals).  
Second, both Lorek and Bathke (1984) and Brown and Han (2000) used quarterly earnings data bases beginning 
with the early 1960s. Thomas (1993) has speculated that quarterly earnings time-series properties may have 
gradually changed over time.  Firms may have expanded their operations (e.g., through mergers and acquisitions) or 
increased the number and diversity of product lines which may result in counterbalancing effects that reduce the 
level of seasonality across firms and produce an increase in the percentage of firms described as nonseasonal. In 
addition, a multitude of firm-specific, industry, and macroeconomic factors coupled with the proliferation of 
numerous financial accounting standards may serve to alter the income generating process of nonseasonal firms. 
 Rather than focusing exclusively on the AR1 process as a character -ization of nonseasonal quarterly 
earnings, we examine a family of nonseasonal models using current data.  We assess the relative predictive ability of 
the candidate models and discover that nonseasonal firms are detected in greater numbers when applying Lorek and 
Bathke’s (1984) screening filter to more current quarterly earnings data bases.  The increased frequency of 
nonseasonal firms coupled with the lack of analyst coverage for 43.6% of our nonseasonal sample [see the 
Additional Analysis section] underscore the importance of looking at alternative nonseasonal quarterly earnings 
processes.  We also present evidence on the impact of firm size on predictive ability. 
 Subsequent sections include a background section, and sections on the research design, including 
discussions of our sampling procedures, descriptive fit with respect to nonseasonal models, and predictive ability 
results.  We end with concluding remarks, limitations and suggestions for future research. 
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2. Background 
 While we agree with the findings of previous works that have shown that a majority of firms exhibit 
seasonal quarterly earnings properties (Brown and Rozeff (1979) and Foster (1977), among others), our results 
indicate that a sizable and growing percentage of firms exhibit quarterly earnings patterns that are clearly 
nonseasonal in nature.  The percentage and number of nonseasonal firms identified in extant work has been 
relatively small [i.e., 12.1% (n=29) in Lorek and Bathke (1984) and 16-18% (n=155) in Brown and Han (2000)].  
We identify 35.6% (n= 296) of our sample as nonseasonal firms using Lorek and Bathke’s nonseasonality screening 
filter.  Our predictive results are supportive of an alternative nonseasonal quarterly earnings expectation model, the 
(010) X (000) ARIMA model, a simple random walk process [hereafter, RW]. 
 The identification of a quarterly earnings expectation model for nonseasonal firms is of importance for 
several reasons.  It may simply help researchers better understand the time-series properties of quarterly earnings 
data for different types of firms (i.e., nonseasonals versus seasonals).  Such basic research, however, also has 
implications for other empirical-financial research topics.  For example, specific knowledge of firms’ earnings time-
series properties has led to the development of statistical proxies for earnings persistence (Collins and Kothari 
(1989) and Lipe and Kormendi (1994), among others).  In addition, the ability to identify better-specified quarterly 
earnings expectation models for nonseasonal and seasonal firms should enable researchers to more precisely 
disentangle the permanent and transitory earnings components that firms exhibit.2  Such findings may also lead to 
more powerful tests of the relation between proxies for quarterly earnings persistence and earnings response 
coefficients. 
 The family of nonseasonal ARIMA models that we examine as possible quarterly earnings expectation 
models for nonseasonal firms have different valuation implications.  For example, the AR1 model implies that a $1 
earnings innovation has valuation implications that are a function of the magnitude and exponential decay of its 
autoregressive parameter [i.e., Ǿk · at   where Ǿ = the autoregressive parameter, k = time periods in the future, and at  
is a current disturbance term].  The RW model, on the other hand, implies that a $1 earnings innovation has a 
permanent valuation implication [ i.e., 1 · at ]. These models, therefore, partition earnings into different transitory 
versus permanent income subsets as well as having correspondingly different valuation implications.3 
 Studies like Bernard and Thomas (1990) and Brown and Han (2000) that assess the earnings-return 
relationship employ a quarterly earnings expectation model to differentiate between expected and unexpected 
earnings.  Williams (1995) has argued that the choice of expectation model is important given that the likelihood of 
drawing erroneous inferences is influenced by the extent to which the expectation model measures the market’s 
expectation of earnings with error.  Bernard and Thomas employed a seasonal random walk model as their proxy for 
the unobservable market expectation of quarterly earnings.  On the other hand, Brown and Han restricted their 
analyses to firms that exhibited nonseasonal quarterly earnings characteristics and thus employed the AR1 
nonseasonal model as opposed to a seasonal model.  The selection of different quarterly earnings expectation models 
for different types of firms is based upon the findings of studies like Lorek and Bathke (1984), among others.  While 
we recognize that predictive ability results and capital market association tests are not perfectly correlated, Brown 
(1999) has suggested that advances in understanding the earnings-return relationship are more likely to follow if we 
abandon the myopic notion that all firms exhibit identical quarterly earnings time-series properties.4  Finally, 
statistically-based quarterly earnings expectation models must be used for 43.6% of our nonseasonal sample given 
the lack of analyst coverage for such firms.  Evidence with respect to the most accurate statistically-based quarterly 
earnings model for uncovered firms is particularly salient to researchers seeking accurate quarterly earnings 
predictions. 

3. Research Design 
Data Sampling Procedures 
 We obtained a sample of 831 calendar, year-end firms that had complete time-series data on quarterly net 
income before extraordinary items for each quarter during the 1984 to 2003 interval on the Quarterly Compustat 
tapes.  To partition our sample with respect to nonseasonality of the quarterly earnings stream, we computed sample 
autocorrelation functions (SACFs) of the quarterly earnings series for each firm using the first 40 observations in the 
data base (1984-1993).5  We employed the same nonseasonality screening filter originally developed by Lorek and 
Bathke (1984) to determine those firms in the 831 firm sample that exhibited nonseasonal quarterly earnings 
characteristics.  Specifically, a firm was designated nonseasonal if all three lag multiples of the seasonal span of the 
SACF (i.e., 4, 8 and 12) were less than the respective value of the standard deviation associated with that lag.6  This 
resulted in our classifying 296 of 831 (35.6%) sample firms as nonseasonal. 
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Profile Information on Sample Firms 
 Table 1 presents profile information on the nonseasonal (n=296) and seasonal (n=535) test samples.7  We 
report mean (median) values for total assets as of December 31, 1993 as well as annual income and sales, both 
computed for the last year of the identification period (1993).  The number of loss quarters pertains to the 40 quarter 
interval encompassing the 1984-1993 identification period. 
 

Table 1 
Profile Information on Sample Firms 

 Nonseasonals Seasonals 

 Mean Median Mean Median 

Total Assets $7,922.1 $996.5 $7,050.1 $1,016.7 
(in $ millions n=293 n=527 
as of 12/31/93) p = .789* 
     
Annual Income $95.1 $12.0 $198.6 $33.7 
(in $ millions n=296 n=535 
FYE 1993) p= .003* 
     
Annual Sales $2,934.2 $622.8 $3,455.2 $653.0 
(in $ millions n=283 n=527 
FYE 1993) p= .610* 
     
# Of Loss Qtrs. 6.70 3 4.77 1 
(during ident. n=296 n=535 
Period 1984-93) p= .001* 
     
* based upon Mann-Whitney U-tests. 

 
 The nonseasonal firms exhibit mean (median) total assets of $7,922.1($996.5) million versus $7,050.1 
($1,016.7) million for seasonal firms.  However, Mann-Whitney U-tests revealed insignificant differences (p= .789) 
in total assets and annual sales (p= .610) across samples.  Seasonal firms, however, were significantly more 
profitable (p= .003).  Specifically, 1993 mean (median) annual income numbers were $198.6 ($33.7) million for the 
seasonals versus $95.1 ($12.0) million for the nonseasonals. 
 We also provide mean (median) number of loss quarters experienced by sample firms throughout the 40 
quarter model identification period (1984-1993).  Differences in the frequency of loss quarters between seasonal and 
nonseasonal firms may be partially responsible for the diversity in quarterly earnings time-series properties of these 
firms.  Nonseasonal firms experienced significantly greater loss quarters with mean (median) losses of 6.70 (3) 
versus 4.77 (1) for seasonals (p=.001).  These descriptive findings are suggestive of potentially reduced levels of 
autocorrelation in the quarterly earnings streams of nonseasonals vis-à-vis seasonals.  Additionally, Hayn (1995) 
provides evidence that losses are less informative than profits about firms’ future prospects due to the liquidation 
option that shareholders possess. 
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Modeling Considerations  
 Table 2 displays the cross-sectional SACFs for the undifferenced (d=D=0), consecutively-differenced (d=1, 
D=0), seasonally-differenced (d=0, D=1) as well as consecutively and seasonally-differenced (d=1, D=1) quarterly 
earnings series for the 296 nonseasonal firm sample.  The patterns in the spikes of these respective SACFs provide 
clues with respect to the (pdq) X (PDQ) ARIMA structures that might be appropriate for nonseasonal firms. 
 

Table 2 
Cross-sectional Sample Autocorrelation Function 

For the 296 Nonseasonal Firms: 1984 – 1993  
Means and Standard Deviations 

 
 1 2 3 4 5 6 7 8 9 10 11 12 

d  D             

0  0             

mean .273 .217 .170 .153 .099 .061 .042 .035 .005 -.019 -.027 -.044 

sd (.158) (.179) (.192) (.199) (.205) (.209) (.213) (.215) (.217) (.219) (.220) (.222)

             

 1 2 3 4 5 6 7 8 9 10 11 12 

d  D             

1  0             

mean -.399 -.019 -.014 .029 -.016 -.011 -.006 .016 -.008 -.014 .008 -.002 

sd (.160) (.187) (.191) (.193) (.194) (.196) (.198) (.200) (.201) (.202) (.204) (.205)

             

 1 2 3 4 5 6 7 8 9 10 11 12 

d  D             

0  1             

mean .159 .096 .034 -.332 -.023 -.021 -.020 -.009 -.011 -.021 -.023 .045 

sd (.167) (.178) (.182) (.186) (.207) (.209) (.212) (.214) (.215) (.217) (.219) (.220)

             

 1 2 3 4 5 6 7 8 9 10 11 12 

d  D             

1  1             

mean -.389 -.002 .177 -.391 .151 .002 -.002 .001 .004 -.004 .011 -.019 

sd (.169) (.197) (.198) (.206) (.229) (.234) (.236) (.238) (.240) (.241) (.243) (.245)

             

where: d  = consecutive differencing 

 D  = seasonal differencing 
 
 Lorek and Bathke (1984) identified the (100) X (000) AR1 model by examining the SACF of the 
undifferenced (d=D=0) quarterly earnings series for their sample of 29 nonseasonal firms.  Close inspection of the 
undifferenced series in Table 2 reveals the nonseasonal nature of the quarterly earnings series in our sample of firms 
since there are no spikes at the seasonal lags of 4, 8, and 12 (.153, .035, and -.044, respectively).  The SACF of the 
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undifferenced series depicts a monotonic pattern of consecutively declining values across the first four lags (.273, 
.217, .170, .153) suggestive of an AR1 process.8  Thus, the AR1 model is still a plausible description of the quarterly 
earnings series of nonseasonal firms.  While this pattern was evident in Lorek and Bathke,        the values they report 
across the same lags were markedly higher (.546, .460, .348, .270).  This provides a descriptive clue that the AR1 
model might not perform as well on our nonseasonal sample given the substantially reduced levels of 
autocorrelation that are evident. 
 Inspection of the consecutively-differenced (d=1, D=0) series in Table 2, reveals behavior consistent with 
an (011) X (000) integrated-moving-average ARIMA process [hereafter, IMA].  Lags 2-12 exhibit relatively low 
levels of autocorrelation with SACF autocorrelation values insignificantly different from zero.  The presence of a 
spike at lag one (-.399) is suggestive of a first-order moving-average parameter in the tentative model.  This leads to 
the specification of the IMA ARIMA model as the second candidate quarterly earnings expectation model for our 
family of nonseasonal models.  Further examination of the autocorrelation of the residuals [unreported] of the IMA 
process reveals the possible presence of an autoregressive pattern.  Therefore, we modified the IMA process by 
inserting a first-order autoregressive parameter resulting in a (111) X (000) (hereafter FIMA) ARIMA model - our 
third candidate nonseasonal model. 
 We also included the random walk model (i.e., RW), a (010) X (000) ARIMA process.9  This model avoids 
all parameter estimation and simply extrapolates the most recent change in quarterly earnings into the future.  To the 
extent that the income-generating process has become more volatile through time, the RW model may prove to be 
more robust than the other candidate nonseasonal models that require estimation of regular autoregressive and/or 
moving-average parameters.  Examination of the RW model is consistent with the viewpoints on parsimony 
expressed above by Brown (1993) and Thomas (1993), among others.  Therefore, we include the RW model as the 
fourth candidate nonseasonal model.  These four expectation models represent  a family of nonseasonal models 
exhibiting varying degrees of parsimony. 
 We compare the predictive ability of the four nonseasonal models discussed above versus the BR seasonal 
ARIMA model: (100) X (011).10  Lorek and Bathke (1984) provided evidence that the AR1 model significantly 
outperformed the seasonal premier ARIMA models in one-step-ahead quarterly earnings predictions across the eight 
quarter holdout period in 1975-1976.  We reassess the predictive performance of the AR1 process versus the BR 
ARIMA model and competing nonseasonal structures (i.e., IMA, FIMA, and RW), using a more extensive and 
recent holdout testing period (i.e., the forty quarters in 1994-2003) as well as a larger sample of nonseasonal firms 
(n=296).  These methodological refinements that we incorporate should serve to enhance the external validity of our 
findings. 
 The parameters of the five expectation models were estimated using a quarterly earnings data base 
beginning with the first quarter 1984 and ending with the fourth quarter 1993.  These models were used to generate 
the first quarter 1994 predictions.  The parameters were reestimated prior to making each additional one-step-ahead 
prediction over the 1994-2003 period.  Therefore, the forecast profile contains forty one-step-ahead quarterly 
earnings forecasts for each of the five expectation models.  That is, the nonseasonal sample of 296 firms yields 
11,840 firm/quarter forecasts. 
 The accuracy of the forecasts was assessed using the absolute percentage error metric (APE): [ | (A – F) / A 
| ] where A = actual quarterly earnings and F = forecasted quarterly earnings.  Median APEs (i.e., MAPEs) are 
reported in panel A of Table 2 for the one-step-ahead quarterly earnings predictions across the five expectation 
models (AR1, IMA, FIMA, RW, and BR) for each individual quarter (1st, 2nd, 3rd, 4th) as well as on a pooled basis 
across all quarters and years.11  The accuracy of the predictions was assessed by using the Friedman ANOVA ranks 
test (Hollander and Wolfe 1973).  For each firm/quarter observation, the prediction model yielding the smallest APE 
was given a rank of one, the next smallest error was given a rank of two and so on until the model yielding the 
largest error was given a rank of five.  Panel A also provides the average rank of each prediction model and 
Friedman’s S-statistic and its associated level of significance for each individual quarter and on a pooled basis 
across quarters and years. 
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Table 3 
Median Absolute Percentage Errors of One-Step-Ahead 

Quarterly Earnings Predictions (1994-2003) 
(n=296) 

 
Panel A: Overall Results      

 1st 2nd 3rd 4th Pooled 
 Qtr Qtr Qtr Qtr  

 
Avg 

Rank MAPE 
Avg 

Rank MAPE
Avg 

Rank MAPE
Avg 

Rank MAPE 
Avg 

Rank MAPE
Model           
AR1 3.34 .480 3.52 .458 3.46 .458 3.37 .522 3.42 .478 
IMA 2.84 .388 2.90 .356 2.92 .363 2.85 .420 2.88 .380 
FIMA 2.89 .406 2.96 .374 2.93 .372 2.88 .445 2.91 .396 
RW 3.05 .449 2.62 .300 2.56 .284 2.62 .366 2.71 .344 
BR 2.87 .381 3.00 .370 3.14 .390 3.27 .566 3.07 .420 
           
Friedman           
ANOVA 202.83 511.14 519.29 468.53 1,378.54 
S-statistic           
           
Significance           
Level .001 .001 .001 .001 .0001 
           

where:           
 AR1 = (100) X (000) ARIMA model 
 IMA  = (011) X (000) ARIMA model 
 FIMA = (111) X (000) ARIMA model 
 RW = (010) X (000) ARIMA model 
 BR  = (100) X (011) ARIMA model 
           
Panel B: Paired Comparisons Based on Ranks of Prediction Models on a Pooled Basis 
Model IMA  FIMA  RW  BR    
(Average 
rank) 2.88  2.91  2.71  3.07    

ARI IMA***  FIMA***  RW***  BR***    
(3.42)           
IMA   IMA**  RW***  IMA***    
(2.88)           
FIMA     RW***  FIMA***    
(2.91)           
RW       RW***    
(2.71)           
           

where:           
 ***  = significant at .001 
 ** = significant at .01 
  
 Inspection of the results presented in panel A of Table 3 reveals the following: First, the RW model 
provides the lowest pooled MAPE across quarters and years (.344) as well as the lowest MAPE for quarters two 
(.300), three (.284) and four (.366).  The BR model provides the lowest MAPE (.381) for quarter one.  Second, the 
RW model provides the lowest average rank among the five expectation models for the same periods where it 
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exhibits the lowest MAPEs.  Third, the AR1 model provides the highest pooled MAPE (.478) and the highest pooled 
rank (3.42).  These results underscore the importance of our findings.  Although the descriptive fit of the AR1 model 
is still adequate for nonseasonal firms, other more parsimonious nonseasonal models exhibit significantly greater 
predictive power. 
 Panel A of Table 3 also reveals a statistically significant difference in the average ranks of the MAPEs 
(p=.001) for each individual quarter in addition to the pooled results across quarters and years (p=.0001).  Panel B 
provides all pairwise comparisons between each of the prediction models using the pooled predictions.12  Recall that 
lower rankings imply a lower MAPE and greater predictive ability.  Each cell value in Panel B contains the superior 
prediction model for the row-column comparison as well as its corresponding significance level.  Specifically, the 
RW model outperforms the AR1, IMA, FIMA, and BR ARIMA model at p=.001.  The statistical dominance of the 
RW model over all other candidate models in the pooled predictions is suggestive of the need to employ the RW 
model as a quarterly earnings expectation model for nonseasonal firms when using more current data.  Panel B also 
reveals that the AR1 model is outperformed by all other models (p=.001).  This finding underscores the reduced 
predictive power of the AR1 process for nonseasonal firms.  Finally, as expected, the IMA and FIMA models 
significantly outperform the BR ARIMA model (p=.001). 
 While the pooled results (as well as the unreported predictive results for the second, third, and fourth 
quarters) consistently support the predictive dominance of the RW model, the results for quarter one are less 
straightforward.  The best performing model in terms of ranks is the IMA model (2.84) while the BR model provides 
the lowest MAPE (.381).  Since the conditioning quarter for the RW model is the most recent quarter, the RW 
expectations for the first quarter are based entirely upon the fourth quarter results in the previous year.  Bathke and 
Lorek (1984), among others, provide results consistent with fourth quarter earnings that are heavily influenced by 
the “settling-up” effect where annual accruals are brought into correspondence with quarterly estimates.  This source 
of measurement error in fourth quarter earnings numbers may serve to mitigate the relative predictive power of the 
RW model on first quarter extrapolations as this model relies exclusively on the fourth quarter of the prior year as a 
prediction of earnings for the first quarter of the current year. 
 The dominance (inferiority) of the RW (AR1) model was not time-period specific.  Analysis [unreported] 
of individual years in the 10-year holdout period reveals that the RW model provided the lowest MAPEs for 8 of 10 
years, the only exceptions were 2001 and 2002.  The AR1 model, however, provided the highest MAPEs for each of 
the 10 years in the holdout period demonstrating its relatively poor predictive power across the entire decade that we 
examine. 

4.  Additional Analysis 
 Bathke et al. (1989) provide evidence that firm size affects the predictive accuracy of statistically-based, 
seasonal ARIMA quarterly earnings expectation models (i.e., BR, F, and GW).  The sample of nonseasonal firms 
that we examine exhibit radically different quarterly earnings time-series properties that are at variance with the 
seasonal ARIMA models.  Nonseasonal ARIMA models do not employ seasonal autoregressive or moving average 
parameters and/or seasonal differencing that are commonly used in the seasonal ARIMA models.  We were, 
therefore, interested in assessing the effect, if any, that firm size might have on the predictive power of the more 
parsimonious, nonseasonal quarterly earnings expectation models. 
 We partitioned our sample of nonseasonal firms into small (n=98), medium (n=98) and large (n=97) firm 
subsets on the basis of total assets measured at the end of the model identification period, December 31, 1993.13  We 
generated one-step-ahead quarterly earnings predictions across the 40 observation holdout period (i.e., 1994-2003) 
using the RW model.  Pooled MAPEs for the small (.402), medium (.410), and large firm subsets (.225) were 
significantly different (p=.0001) based upon the K-sample median test.  Mann-Whitney U-tests of paired 
comparisons revealed that large firm predictions were significantly smaller than those generated by both small and 
medium-size firms (p=.0001).  However, there were no significant differences in the accuracy of the predictions for 
the small versus medium firm comparisons (p=.958).  These results clearly demonstrate the existence of a firm-size 
effect on the quarterly earnings predictions of the RW model for nonseasonal firms.  Researchers who employ 
research designs that are sensitive to the accuracy of quarterly earnings expectations for nonseasonal firms should 
consider controlling for this firm-size effect. 
 We also provide evidence on whether the nonseasonal sample firms were covered by security analysts as 
reported by I/B/E/S at the end of the model identification period (i.e., December 31, 1993).  We find that 129 of 296 
sample firms (43.6%) had no analyst coverage.  For such firms, knowledge of the superior predictive power of the 
RW model takes on added importance and is particularly salient information for researchers who must rely 
exclusively on statistically-based quarterly earnings expectation models for uncovered firms.  For example, we 
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observe a significant decline in predictive power in the pooled MAPEs of the AR1 model (.478) versus the RW 
model (.344) as reported in Table  3. 
 Since 43.6% of the nonseasonal sample firms have no analyst coverage, empirical evidence on the 
incremental predictive power of the RW model on covered versus uncovered firms is also of potential interest.  
Recent evidence by Elgers, Lo, and Pfeiffer (2001) suggests that analyst following is positively associated with the 
efficiency with which investors process firm-specific information.  Moreover, analysts may decide to cover certain 
firms that exhibit quarterly earnings time-series properties more conducive to statistical extrapolation.  We generated 
pooled one-step-ahead quarterly earnings predictions across the 1994-2003 holdout period for the covered (n=167) 
and uncovered (n=129) firms separately.  MAPEs for the covered (uncovered) firms were .302 (.392), respectively.  
Mann-Whitney U-tests revealed significantly smaller MAPEs for the covered firms (p=.0001).  We hypothesize that 
the time-series forecasts of covered firms, in addition to being significantly more accurate, might be combined more 
readily with firm-specific, industry, and macroeconomic information resulting in a decision by analysts to cover 
such firms.  Alternatively, earnings series of covered firms may be more persistent.  Additional research is necessary 
to fully examine these issues. 

5. Concluding Remarks 
 While we present empirical results supportive of the superior predictive power of the RW model for 
quarterly earnings predictions of nonseasonal firms, there are at least two potential limitations pertaining to our 
research design.  First, our sampling procedures operationalized across the 1984-2003 time period are subject to a 
survivorship bias endemic to all time-series work.  Second, while we have examined a very wide set of nonseasonal 
ARIMA models (i.e., AR1, IMA, FIMA, and RW), other nonseasonal expectation models could yield different 
results.  Nevertheless, the relatively large number of nonseasonal firms that we identify (n=296), especially relative 
to extant work, serves to mitigate against the impact of these limitations. 
 We provide new empirical evidence that the number of nonseasonal firms is increasing in frequency 
relative to the studies performed by Lorek and Bathke (1984) and Brown and Han (2000).  Heretofore, the AR1 
model was the accepted quarterly earnings expectation model for nonseasonal firms.  Our results suggest that the 
RW model provides significantly more accurate pooled one-step ahead quarterly earnings predictions across the 
1994-2003 holdout period.  In fact, the AR1 model was the worst performing expectation model across quarters, 
years, and on a pooled basis.  We attribute the poor performance of the AR1 model in our study to at least two 
factors: 1) the reduced levels of autocorrelation evidenced in the SACFs based on the more current data that we 
examine relative to the SACFs examined by Lorek and Bathke (1984) who used less current data, and 2) the 
significantly greater frequency of loss quarters evidenced by nonseasonal versus seasonal firms during the model 
identification period.  These factors favor the more parsimonious RW model versus more complex alternatives. 
 We also document that 129 of 296 sample firms (43.6%) had no analyst coverage at the end of the model 
identification period.  Researchers interested in performing earnings-return analyses for uncovered firms exhibiting 
nonseasonal quarterly earnings characteristics must rely exclusively upon statistically-based models for such firms.  
Our results suggest that researchers who employ the RW model for nonseasonal firms will be able to separate 
expected from unexpected earnings with greater precision than relying upon the AR1 model.  Finally, we provide 
new evidence of a firm-size predictive effect for nonseasonal firms, consistent with the findings of seasonal firms, 
where the earnings predictions of larger firms derived from the RW model are significantly more accurate than those 
of smaller firms. 
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Endnotes 

                                       
1 In customary (pdq) X (PDQ) notation, these include the Foster (1977) (100) X (010) with drift model [hereafter F], 
the (011) X (011) Griffin (1977) and Watts (1975) model [hereafter GW], and the Brown and Rozeff (1979) (100) X 
(011) model [hereafter BR]. 
 
2 See Baginski et al. (1999) for an example of a study that combines ARIMA models for earnings data with 
valuation theory to specify a statistical proxy for earnings persistence. 
 
3 See Collins and Kothari (1989) for additional discussion on valuation implications of different time-series models 
for earnings. 
 
4 O’Brien (1988) found a stronger association between abnormal returns and ARIMA models than analyst eps 
forecasts taken from the Institutional Brokers’ Estimate System  [I/B/E/S].  See Brown (1993) for an extensive 
discussion regarding the mixed evidence researchers have found with respect to the dual evaluative criteria of 
predictive ability and capital market association. 
 
5 We withheld the last 40 observations of quarterly earnings (1994-2003) as a holdout period for predictive 
assessment. 
 
6 This procedure was conducted on the consecutively-differenced series to avoid potential nonstationarity problems. 
 
7 Annual income and number of loss quarter statistics are based upon the full sample of nonseasonals (n=296) and 
seasonals (n=535).  Total asset and annual sales statistics were based on a slightly smaller numbers of firms due to 
missing data. 
 
8 We suppress presentation of the partial autocorrelation function for brevity, but it does reveal a spike at the first lag 
(.273) with behavior consistent with a white-noise series across the remaining lags of the SACF. This provides 
corroborative descriptive evidence supportive of the AR1 process. 
 
9  While the RW process has not fared well in predictive ability assessments using quarterly earnings numbers, 
Albrect, Lookabill and McKeown (1977) and Watts and Leftwich (1977) provide evidence that it outperforms 
seasonal ARIMA models using annual earnings data bases. 
 
10 We suppress providing detailed predictive results for the F and GW ARIMA models.  The BR model provides 
significantly more accurate pooled one-step-ahead quarterly earnings predictions than the GW model and provides 
predictions virtually indistinguishable from those of the F model. 
 
11 We report median rather than mean APEs across sample firms to mitigate against the effect of explosive errors.  
Mean APEs using a 100% truncation rule provide qualitatively similar results to those that we report. 
 
12 Analysis of the second, third, and fourth quarter predictions yields results qualitatively similar to the pooled 
predictive results. 
 
13 We lost 3 of 296 firms due to unavailability of total asset data.  Attempts to partition our sample using the fair 
market value of common stock equity resulted in considerably more missing data. 


