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What Do Regressions Estimate?  

1. Introduction 

The simple linear regression analysis can be found in a majority of introductory statistics 
textbooks on the market today.  Almost all of them minimize the least squares criterion to obtain a sample 
regression line, which in turn acts as an estimate for some unknown population regression line.  However, 
it is not always clear exactly what the population regression line measures in many of these books.  
Similarly in many academic research and practical applications, the least squares regression (sometimes 

called the 2L regression) is often used to fit through some empirical data. In this case, very little or no 

clue can be found to determine what the population regression line that is being estimated is measuring.   
 

 Below are some interpretations that we have extracted from only a few of the introductory 
business statistics textbooks on the market today that attempt to offer interpretations for the least squares 
regression results but fall short in their attempts. Lind, Marchal and Wathen (2006, p.387) interpreted the 
intercept as “It is the estimated value of Y when X = 0” and, in the context of estimating the beta 
coefficient in finance, the slope coefficient as “when the S&P index increases by 1%, the stock price will 
increase by 1.5%.”  Black (2004, p.485) stated: “One interpretation of the slope in this problem is that for 
every unit increase in x …, there is a $40.70 increase in the cost of the flight.”  In Albright, Winston and 
Zappe (2003, p.566), we found “The slope, 0.7623, indicates that the sales index tends to increase by 
about 0.76 for each 1-unit increase in the promotional expenses index”.  In Triola (2007, p.578), we saw: 

“The slope 1b  in the regression equation represents the marginal change in y that occurs when x changes 

by one unit.”  Doane and Seward (2008, p. 432) provided the following interpretation for the slope: “The 
slope (b1 = 54.039) says that for each additional hour of flight, the Piper Cheyenne consumed about 54 
pounds of fuel …” 
 

What is wrong with the above interpretations?  We need to first understand “What are we 
estimating when we fit a regression line through a scatter plot?” to answer this question.  The answer to 
this question will dictate how one should interpret the results.  What we are estimating in a regression 
depends on (1) what we want to estimate in the conditional relationship and (2) what the optimization 
criterion that we choose to use in computing an estimate for that aspect of the conditional relationship. 

 
The next section illustrates the issues of the various alternative aspects of the conditional 

relationship one can estimate when performing a regression analysis and the corresponding available 
estimators.  Section 3 formally sets up the framework for the correct interpretations of the various 
regression results while the last section conjectures about the possible reasons for the misuses and 
misinterpretations found in common textbooks and illustrates the necessary corrections needed to make 
the interpretations correct.   
 

We hope that practitioners and educators will have a better understanding of what exactly we are 
estimating when performing a least squares regression or any regression for that matter, will be able to 
make more sensible interpretation of empirical results and teach students the correct way to interpret 
regression results after reading this paper.   
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2. What Are We Estimating in a Simple Regression? 

In a simple regression setting, the population regression depicts some conditional relationship 
between the dependent and independent variables.  For example, if one is interested in the average of the 
dependent variable Y for a given value of the independent variable X, the population regression represents 
the conditional mean function. The least squares (LS) regression computes the sample conditional mean 
of Y for a specific value of X, and it will be a natural estimate for the conditional mean function.  On the 
other hand, if one is interested in estimating the conditional median relationship, the population 
regression of interest becomes the conditional median function.  In this case, the least absolute deviation 
(LAD) criterion will result in the sample conditional median of Y for a fixed X, which will be the more 
natural candidate for the sample regression as an estimate for the conditional median function.  Likewise, 
if estimating the quantile or percentile of the population conditional relationship is of interest, then the 
quantile regression (QR) introduced by Koenker and Bassett (1978), which minimizes an asymmetric risk 
function, should be used as the sample regression.  

   
To illustrate all these various aspects of the population conditional relationship that one might be 

interested at, we plotted a simulated data set in Figure 1 with 200 pairs of ( )niii XY 1, =  on a response 

variable Y and a covariate X from the model  

( ) iiii XXY εγββ ++= 10  

where 10 =β , 11 =β and ( )1,0~ UX i  is randomly generated from a uniform distribution between 0 and 

1.  The ( )21.0,0~ Niε  is randomly generated from a normal distribution with a mean of 0 and a 

standard deviation of 0.1.  Heteroscedasticity in the error term is modeled as linear in the independent 

variable as ( ) ii XX 3=γ . Since the error distribution is symmetric and centered at 0, its mean and 

median are both 0.  Hence, the conditional mean function coincides with the conditional median function.  
Also superimposed in Figure 1 are the population conditional mean function (solid red line), the sample 
LS regression line (dash red line), the population conditional median function (solid black line), the 
sample LAD regression line (dash black line), the various population conditional quantile functions (solid 
gray lines) and the sample QR lines (dash gray lines).  Figure 2 is an enlargement of the boxed region in 
Figure 1.   
 

In this scenario, both the LS regression and LAD regression provide natural estimates for the 
conditional mean and median functions, respectively.  However, if other conditional quantile functions 
are of interest to the researcher, neither the LS nor LAD regressions will be appropriate.  QR regressions 
should be used instead. 
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Figure 1.  The data represent observations from a simple regression model with 
heteroscedastic symmetric errors.  The black solid line represents the population 
conditional median function while the black dash line is the least absolute deviation 
regression, which is a natural estimate for the conditional median.  The red solid line, 
which overlaps the black solid line, is the population conditional mean while the red 
dash line is the least squares regression, which estimates the conditional mean.  The 
gray solid lines are the various population conditional quantile functions that are 
estimated by the quantile regressions represented by the gray dash lines. 
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Figure 2.  This is an enlargement of the boxed region in Figure 1. 

 
Figure 3.  The data represent a simple regression model with heteroscedastic 

errors that are right-skewed. 
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The model presented in Figure 3 is similar to Figure 1 except that ( )1~ 2χε i  is randomly 

generated from a chi-square distribution with one degree-of-freedom and re-centered at its mean at 1 to 
illustrate the effect of a skewed error distribution on the conditional functions.  Figure 4 is the 
magnification of the boxed region in Figure 3.  As we can see from Figure 4, the conditional mean has a 
positive slope while the conditional median function has a negative slope.  If the intention is to estimate 
the conditional median, the LAD regression is a natural candidate and provides a reasonably good 
estimate.  The LS regression provides a good estimate for the conditional mean, but it is a terrible 
estimate for the conditional median.  Again, if any of the other conditional quantile functions are of 
interest, one will have to use the QR regression lines. 

 

 
Figure 4.  This is a magnification of the box-region in Figure 3. 

 
We have seen from Figure 1 through Figure 4 that “How one should interpret the intercept and 

slope coefficients of the sample regression line is dependent upon what conditional relationship one is 
interested in estimating and what the criterion is being used in the regression optimization problem (the 
risk function in the context of decision theoretic paradigm).”  To pinpoint exactly what has gone wrong in 
the interpretations in the various examples cited above, we formally set up the model in the next section. 
 

3. The Correct Interpretations 

 In a univariate setting, for any real valued random variable, Y, with a finite second moment and 

characterized by its right-continuous distribution function, ( ) ( )yYPyF ≤= , it is well know that the 

population mean, ( )YEY =μ , minimizes the following risk function1, 

                                                 
1 See e.g. Lehmann (1983, p. 54). 
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 ( ) ( ) ( ) ( ) ( ) ( )∫∫ −=−=−= ydFaydyyfayaYEa 222φ . (1) 

If we replace the distribution function above with the empirical distribution 

function, ( ) ( )∑
=

− ≤=
n

i
in yYInyF

1

1  with ( )⋅I  representing the indicator function, the empirical risk 

function becomes, 

 ( ) ( ) ( ) ( )∑∫
=

− −=−=
n

i
inn aYnydFaya

1

212φ . (2) 

This empirical risk function is minimized by the sample mean, Y .  We can see that the sample mean is a 
logical estimate for the population mean. 
 

If the squared error loss function in (1) is replaced by the absolute error loss function, the 

population median, 5.0ξ  = ( )5.01−F  = ( ){ }5.0:inf ≥yFy  minimizes the following new risk function, 

 ( ) ( ) ( )∫∫ −=−=−= ydFaydyyfayaYEaφ . (3) 

Likewise, the sample median, 5.0ξ̂  minimizes the following sample counterpart of (3), 

 ( ) ( ) ∑∫
=

− −=−=
n

i
inn aYnydFaya

1

1φ  (4) 

and provides a logical estimate of the population median. 
 

 For an asymmetric error loss function, ( )uτρ  = ( )uu 12 −+ τ with 10 <<τ , the risk function, 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫
∞

∞−
−+−−=−=

a

a
ydFayydFayaYEa ττρφ 212  (5) 

is minimized by the τ -th population quantile of Y, ( ) ( ){ }ττξτ ≥== − yFyF :inf1 .2  The τ -th sample 

quantile, which minimizes 

 

( ) ( ) ( ) ( )

( ) ( )( )∑∑

∑∫

<−>−

−

=

−

−−+−=

−=−=

00

1

1

1

122
aY

i
aY

i

n

i
inn

ii

aYaYn

aYnydFaya

ττ

ρρφ
 (6) 

becomes a natural estimate.  Note that the loss function ( )uρ  assigns a weight of 2τ  to the positive 

residuals and ( )2 1τ −  to the negative residuals, and (6) becomes the absolute loss function in (4) when 

0.5τ = .  The role of the loss function ( )uρ  can be easily visualized in Figure 5 for 4/1=τ  so that 

                                                 
2 Koenker (2005) provides a detailed derivation of the solution. 
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( )uρ  assigns a weight three times as much for negative residuals as for positive residuals.  In this case, 

( )2Ya =  yields the smallest value for (6)-. 

   
 

Figure 5.  The risk function ( )uρ  for the 0.25th quantile regression assigns 3 times as 
much weight to negative residuals (represented by the dash line segments) as to positive 
residuals (represented by the solid line segments).  At ( )2Ya = , the sum of the weighted 
residuals in black is the smallest compared to the sums in red and blue that correspond to 

( )1Ya =  and ( )3Ya = , respectively. 
 
Typically, sample median or quantiles are computed from ordering of the raw data.  Figure 5 illustrates 
that sample quantiles can also be obtained from solving an optimization problem. 
 

 In a simple linear regression setup given n pairs of observations ( )niii XY 1, = , the problem is 

usually posted as “finding the best estimates for the population parameters ( )10 ,ββ ” in the linear model 

 iii XY εββ ++= 10 . (7) 

What is assumed, implicitly, is that there is an unobserved true population regression line, iX10 ββ +  

with an intercept parameter 0β  and a slope parameter 1β , which describes the true linear relationship 

between the dependent variable Y and the explanatory variable X.  The fact that the n pairs of data points 

( )ii XY ,  do not fall exactly on the population regression line necessitates the introduction of the 

disturbance (or error) term, iε , into the model in (7).  Usually the disturbance term is assumed to have a 

mean of zero and independent of the covariate X.  
  

 The most popular method to obtain the estimates for ( )10 ,ββ  is to obtain a pair of intercept and 

slope ( )LSLS
10

ˆ,ˆ ββ  which solves the problem 
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( )

( )∑
=∈

−−
n

i
ii

R
XY

1

2
10

, 2
10

min ββ
ββ

. (8) 

The least squares linear regression line, i
LSLSLS

i XY 10
ˆˆˆ ββ +=  becomes an estimate of the population 

regression line, iX10 ββ + .  The estimators ( )LSLS
10

ˆ,ˆ ββ , are called the least squares estimators, because 

they are obtained by minimizing the least squares deviation from the fitted line to the data point in the 
response variable Y expressed in equation (7).  Usually what is not explicitly addressed is the question 

“What does the least squares regression line, LS
iŶ , really estimate?”  The usual answer provided is “It 

estimates the population linear regression line.”  If one presses further and asks, “What exactly does this 
population linear regression line measure?”  one will then discover that, by comparing equation (2) to (8), 
the population linear regression line that is being estimated by the least squares regression line is really 

the conditional mean function, ( )XXY |μ  = ( )XYE |  = X10 ββ + , of the response Y given the covariate 

X.  Therefore, the sample conditional mean function, LS
iŶ , provides a natural estimate for the population 

conditional mean function.   
 

 If one replaces the squared error loss with the absolute error loss function and estimates ( )10 ,ββ  

by the solutions to 

 
( ) ∑

=∈
−−

n

i
i

R
XY

1
10

, 2
10

min ββ
ββ

 (9) 

one will obtain the least absolute deviation estimators ( )LADLAD
10

ˆ,ˆ ββ .  If one carries out the questions and 

answers exercise above by comparing equation (4) to (9), one will realize that the LAD regression line, 
LAD

iŶ  = i
LADLAD X10

ˆˆ ββ + , provides an estimate for the so-called true population linear regression line, 

which is, in fact, the conditional median of the response Y given the covariate X.  In fact, one can carry 
out this exercise one-step further by using the asymmetric loss function and the solutions to 

( )
( ) :min

1
10

, 2
10

=−−∑
=∈

n

i
i

R
XY ββρτ

ββ
 

( )
( ) ( )( )∑∑

<−−>−−∈
−−−+−−

0
10

0
10

,
1010

2
10

122min
iiii XY

i
XY

i
R

XYXY
ββββββ

ββτββτ  

as the estimators for ( )0 1,β β .  The estimators obtained ( )ττ ββ 10
ˆ,ˆ  are the τ -th regression quantiles, 

introduced in Koenker and Bassette (1978).  What exactly does the regression line iXττ ββ 10
ˆˆ +  estimate? 

Denoting the conditional distribution function of Y given X as ( )|Y XF y , the τ -th quantile (or 100τ -th 

percentile) regression line ii XY τττ ββ 10
ˆˆˆ +=  provides an estimate for the τ -th conditional quantile (or 

100τ -th conditional percentile) function, ( )1
| 0 1Y XF Xτ ττ β β− = +  of Y given X, assuming that the τ -th 

conditional quantile is linear in X.  That is, 100τ % of the data points will lie above the τ -th quantile 
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regression line iXττ ββ 10
ˆˆ +  while 100 ( )1 τ− % will fall below it.  Note that the LAD estimators are just 

a special case of the τ -th regression quantiles when 0.5τ = , so half of the data points fall above the 
LAD regression line while the other half fall below it. 
 
 It should now be obvious that the so-called true population linear regression line depends on 

which loss function is being used in the risk function to define the estimates of 0β  and 1β .  When the 

squared loss function is used in the optimization problem, the resulting sample regression line provides an 
estimate of the conditional mean function.  The sample regression line is an estimate of the conditional 
median function if the absolute loss function is used, and it becomes the quantile regression function and 

provides an estimate of the conditional quantile function if the asymmetric loss function ( )uρ  is used. 

4. Misuses and Misinterpretations 

4.1 Misuses of Estimators  

 In the previous sections, we have demonstrated that “The sample regression line estimate is really 
determined by the loss function that has been used to define the optimization problem.”  Given the same 
data set, the LS estimators can very well be estimating a very different true population regression line 
than the LAD estimators.  If the disturbance term has an asymmetric distribution, and the intention is to 
estimate the conditional median, then LAD estimators should be used instead of the LS estimators.  The 
LS estimators should be used if the intention is to estimate the conditional mean function if there are no 
outliers in the dependent variable.  If there are outliers in the response variable Y and the intention is to 
estimate the measure of central tendency, the LAD estimators will be preferable to the LS estimators due 
to its robustness property.  
  
 Suppose we are given a data set in which the response variable is income and the covariate is 
years of education, and we are interested in the behavior of the upper quantile income, say the 95th 

percentile, given a specific years of education.  We will naturally want to compute the 0.95-th regression 

quantiles ( )95.0
1

95.0
0

ˆ,ˆ ββ  and use the .95-th quantile regression line iX95.0
1

95.0
0

ˆˆ ββ +  as the estimate for the 

95th percentile income line instead of using the LS or LAD regression lines to estimate the center 
behavior.  In all cases, the LS regression should not be used blindly as in a Povlovian fashion to estimate 
any linear relationship between the response and a covariate. 

4.2 Misinterpretations 

 Since LS estimators are the most widely used estimators, we will focus on some common 
mistakes made in interpreting the estimating results obtained from the LS regression. 
 
 After a LS regression line is computed, a common incorrect interpretation that we have often 

encountered is “Given the value of the explanatory variable iXX = , the estimated value of the 

dependent variable Y equals i
LSLSLS

i XY 10
ˆˆˆ ββ += .”  We have already shown in Section 3 that the LS 

regression line i
LSLSLS

i XY 10
ˆˆˆ ββ +=  estimates the conditional mean of Y for a given value of iXX = .  

Therefore, the correct interpretation should be “Given the value of explanatory variable iXX = , the 
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estimated average value of the dependent variable Y equals i
LSLS X10

ˆˆ ββ + .”   The response variable Y is 

a random variable, and we do not estimate a random variable.  We estimate a parameter or, to be more 
exact, a conditional function in this case.  It is, however, perfectly all right to interpret the fitted 

regression value as “The predicted value of the dependent variable Y equals i
LSLSLS

i XY 10
ˆˆˆ ββ +=  given 

the value of explanatory variable iX X= ” , because it makes sense to predict the future value of a 

random variable Y.  Likewise, the LAD regression line, i
LADLADLAD

i XY 10
ˆˆˆ ββ += , provides an estimate 

of the conditional median for a specific value of the covariate, X while the QR regression line, 

iXττ ββ 10
ˆˆ + , provides estimate for the τ -th conditional quantile. 

 
 Another common mistake that we have encountered occurs in the interpretation of the 

estimators ( )LSLS
10

ˆ,ˆ ββ .  Sometimes the claim is made that “ LS
0β̂ estimates the value of the response 

variable Y when the covariate 0X = , and LS
1β̂  estimates the change in Y as a result of an incremental 

change in X.”  Again, given the fact that the LS regression line estimates the conditional mean of Y 

instead of the value of Y, the correct interpretation should be “ LS
0β̂  estimates the expected value of the 

response variable Y when the covariate 0X =  (with the usual caveat that only if it makes sense to have X 

= 0 in the context of the problem) and LS
1̂β  provides an estimate for the change in the expected values of 

Y as a result of an incremental change in X.”  We postulate that a likely cause for such common 
misinterpretations is that when one takes the partial derivative of equation (7) with respect to X, the slope 

parameter is
i

i

X

Y

∂
∂

=1β .  However, equation (7) depicts the relationship between the n observation pairs 

( ),i iY X  not the functional relationship between the random variables Y and X.  Therefore, one should 

take the partial derivative of the conditional mean function ( )XXY |μ  = ( )XYE |  = X10 ββ +  with 

respect to X instead and obtain 
( )

X

XYE

∂
∂

=
|

1β .  The slope parameter should then be interpreted as the 

change in the expected value of Y because of an incremental change in X. 

 Similarly, the LAD estimators LAD
0β̂  should be interpreted as “The estimated median of the 

response variable Y when the covariate X is 0 (only if it makes sense for X = 0).  In addition, LAD
1̂β  should 

be interpreted as “The estimated change in the median of the dependent variable as a result of an 
incremental change in the independent variable.” 
 

So exactly what are the mistakes in the examples cited in the Introduction?  The bolded text 
inside the parentheses below represents the missing components in the interpretations that we fill in.   

 

 For Lind, Marchal and Wathen (2006, p.387), LS
0β̂ should be interpreted as “It is the estimated 

(average) value of Y when X = 0” and the slope as “when the S&P index increases by 1%, the stock price 
will increase by (an estimated) 1.5% (on average).”  In Black (2004, p.485), “One interpretation of the 
slope in this problem is that for every unit increase in x …, there is a(n estimated) $40.70 increase in the 
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(average) cost of the flight.”  In Albright, Winston and Zappe (2003, p.566), “The slope, 0.7623, 
indicates that the sales index tends to increase by (an estimated average of) about 0.76 for each 1-unit 

increase in the promotional expenses index”.  Triola (2007, p.578) should interpret LS
1̂β as “The slope 1b  

in the regression equation represents the (estimated) marginal change in (the average value of) y that 
occurs when x changes by one unit.”  In Doane and Seward (2008, p. 432), “The slope (b1 = 54.039) says 
that for each additional hour of flight, the Piper Cheyenne consumed a(n estimated average of) about 54 
pounds of fuel …” 

The examples in the prior paragraph represent only a portion of the wrong interpretations we have 
encountered.  Of the 30 books randomly selected from the professional libraries of the authors, fifteen or 
50% were found to contain incorrect interpretations.  Such a high percentage is alarming, because the 
understanding of this topic by beginning business statistics students is, at best, incomplete. 

5 Conclusion 

 We have demonstrated in the paper that the solutions to the intercept and slope coefficients in a 
simple regression model depend on the definition of the loss function used in the optimization problem.  
There is not a universal population linear regression line.  If a squared error loss function is used, the 
population regression line being estimated turns out to be the conditional mean function while an absolute 
loss function yields the conditional median as the estimated population regression line.  When an 
asymmetric loss function as that defined in Koenker and Bassett (1978) is used, the population regression 
line being estimated becomes the conditional quantile (percentile) function. 
 
 Also highlighted are a few mistakes commonly made in interpreting the least squares regression 
results, and we have discussed some potential misuses of the least square regressions.  We hope that by 
pointing out these specific mistakes, practitioners and educators will have a better understanding of what 
exactly we are estimating when we perform a least square regression or any regression for that matter. 



 12

References 

 
Albright, S. C., W. L. Winston and C. Zappe (2003), Data Analysis & Decision Making with Microsoft 

Excel, 2nd edition, Thomson Brooks/Cole. 
 
Black, K. (2004), Business Statistics For Contemporary Decision Making, 4th edition, Wiley. 
 
Doane, David P. and Lori E. Seward, Essential Statistics in Business and Economics, New York:  

McGraw-Hill Irwin. 
 
Koenker, R. (2005), Quantile Regression, Cambridge University Press. 
 
Lehmann, E. L. (1983), Theory of Point Estimation, John Wiley & Sons. 
 
Lind, D. A., W. G. Marchal and S. A. Wathen (2006), Basic Statistics for Business and Economics, 5th 

edition, Boston: McGraw-Hill Irwin. 
 
Triola, M. F. (2007), Elementary Statistics Using Excel, 3rd edition, Pearson/Addison Wesley. 


