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Refining Our Understanding of Beta through Quantile Regressions 

I.  Introduction 

Before Markowitz (1952, and others) investors concentrated on investment returns but did not think 

carefully about risk.  Markowitz realized that risk was just as important of a factor when forming a 

portfolio and used variance of the return as a first risk measure.  They measured past variance of a stock 

and assumed it would continue into the future.  They also found that when stocks are combined into a 

portfolio, risk can be dramatically reduced.  Bad news on one stock may be offset by good news on 

another stock, reducing variance.  After combining about 15-20 stocks into a portfolio the benefits of 

diversification are mostly exhausted. The investor can no longer decrease risk simply by adding 

additional stocks.  Essentially, the investor is left with market risk, also called non-diversifiable risk.  

Variance as a measure of risk is no longer adequate because it includes diversifiable risk.  A new theory 

and measure of risk were needed. 

In the field of finance, the Capital Asset Pricing Model (CAPM) was developed and has been a key 

theory since the 1960’s (see Sharpe 1964 and others).  One of its main contributions is to attempt to 

identify how the risk of a particular stock is related to the risk of the overall stock market.  A main 

measure of this type of risk is called “beta”.  To estimate “beta”, the returns of a particular stock ( itR ) are 

regressed on the returns of a stock market proxy, say the S&P 500 ( mtR ): 

 it i i mt itR Rα β ε= + +  

The estimate of iβ  is usually obtained using ordinary least squares (OLS) regression.  The OLS estimates 

the responsiveness of itR  to changes in mtR  near the “center” of the mtR  distribution and provides an 

estimate of the average risk for the stock in relation to the risk of the overall market.  If the estimated iβ  

is greater than (less than) 1.0, the stock is considered to be riskier (less risky) than the overall market on 

average and if the iβ   is close to 1.0, the stock is about equally risky as the market on average.   

If the relationship between a stock and the overall market exhibits heteroskedasticity, then more 

can be learned about the stock’s behavior and its risk characteristics.  Heteroskedasticity occurs when the 

variance of the error term itε  varies across different values of mtR .  When the variance of the error term 

increases (decreases) as the overall market return increases, we call this “diverging (converging) 

heteroskedasticity”.  The quantile regression estimates of the beta slope under diverging (converging) 
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heteroskedasticity will generally increase (decrease) as we move from the lower towards the upper tail of 

the itR  distribution.  These patterns of heteroskedasticity may provide information useful to investors.  

Investors may be able to select stocks that exhibit patterns that more closely match their preferences. 

Kahneman and Tversky (1979) developed prospect theory which has been used to examine the 

behavioral aspects of stock market investors.  One prediction that is made from their theory is that 

i)  People exhibit “loss–aversion” in a gain frame, and 

ii)  People exhibit “risk-seeking” in a loss frame. 

In essence, if a person had done well or “gained”, they tend to be concerned about avoiding losses.  

Alternatively, if a person has experienced a bad outcome or has “lost”, their behavior may be risk seeking, 

perhaps trying to get back some of their losses.  This implies that investors may prefer riskier stocks 

(higher beta) in down markets and less risk (lower beta) in up markets.   

If a measure can be developed for each stock that incorporates investor’s preferences across good 

times and bad it could improve our ability to select portfolios that match investor’s preferences.  When 

considering the beta of a stock, a flatter slope (safer) during good times and steeper slope (more risky) 

during bad times would match the Kahneman and Tversky findings.  This would lead investors to prefer 

stocks that exhibit converging rather than diverging heteroscedasticity 

In addition, investors may prefer a larger variance of return on their stocks when the market 

return is down and a smaller variance of return on their stocks when the market is up.  This also would 

lead investors to prefer converging rather than diverging heteroskedasticity. 

 In the following section the data selection process is described.  Then a discussion of quantile 

regressions is presented followed by a discussion of the results and their implications. 

II. Data Selection 

Stock prices are downloaded from the web site of Yahoo Finance.  The data collected are from 

the beginning of January 1999 to the end of December of 2003 which represents 260 weeks of data.  The 

total number of stocks initially in the sample was 6826.  Of these 2956 were listed on Nasdaq and 3261 

were listed on the NYSE and 609 were listed on the AMEX.  Stocks were omitted from the sample if they 

had a price less than one dollar, or if they were not common shares.  This left 3363 stocks that remained 

in the sample. 
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III. Quantile Regression 

The quantile regression technique invented by Koenker and Bassett (1978) is a very powerful tool 

in uncovering heteroskedasticity in a regression model.    In the CAPM model, given n observations of 

the individual return itR  and the market return mtR  for t = 1, …,n,  the τ –th quantile regression 

coefficients, τα  and τβ , minimize the following objective function: 

( )
: 0 : 0

1
it mt it mt

it mt it mt
t R R t R R

R R R R
τ τ τ τ

τ τ τ τ
α β α β

τ α β τ α β
− − ≥ − − <

− − + − − −∑ ∑  

where 10 <<τ  determines the desired conditional quantile of interest.  In the objective function, the 

positive and negative residuals, it mtR Rτ τα β− − , receive different weights in the minimization process.  

All the positive residuals are assigned a weight of τ  while the negative ones receive a weight of ( )1τ − .  

Hence, %100τ  of the individual returns will fall above the τ -th quantile regression line ixτ τα β+  and 

( )%1100 τ− below.  Hence, the τ -th quantile regression line bisects the individual returns into two 

different portions, %100τ  and ( )%1100 τ− , conditioned on the various market returns.  The special 

case of the 0.5-th quantile regression line, which is also the median regression line, divides the individual 

returns into two equal halves conditioned on the market returns so that half of the individual returns are 

above the line over the range of the market returns while the remaining half are below.  The 0.1-th 

quantile regression line, on the other hand, divides the data such that only 10% of the individual returns 

fall below the line and 90% above while the 0.9-th quantile regression line will have 10% of the 

individual returns above and 90% below the line.   

 The upper-right panel of Figure 1 shows five different quantile regression lines for τ = 0.1, 0.3, 

0.5, 0.7 and 0.9, and the different portions of the individual returns that fall above and below the lines are 

apparent.  Also shown in green is the OLS regression, which provides the traditional estimate of the beta 

coefficient. The black dots connected by the solid line in the lower-right panel represent the regression 

quantile estimates of the beta coefficient τβ  for τ = 0.1, 0.3, 0.5, 0.7 and 0.9.  As we move from the left 

to the right with τ increases from 0.1 to 0.9, we can see that the quantile regression estimates of beta 

decrease from about 0.1β = 1.25 to 0.9β = 0.35 which reflects the declining slope of the quantile regression 

lines in the upper-right panel as we move from the lower quantile regression lines to the higher quantile 

regression lines.  The grey band around the dots is the 95% confident band so that a particular τ -th 

quantile regression beta estimate τβ  is statistically different from 0 at a 5% level of significance when the 
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band does not contain 0 for the chosen τ .  The horizontal dash line shows the value of the OLS estimated 

beta OLSβ  with the horizontal dotted lines represent the 95% confidence band. The lower-left panel shows 

the regression quantile estimates of the alpha coefficient τα . 

Figure 1. Stock with a strong converging heteroskedasticity. 
The upper-left panel contains summary statistics of the chosen stock, which include the ticker symbol, p-value for 
the Wald test for heteroskedasticity, indicator for whether the stock is diverging, estimated Alpha and beta, r-
square, and the p-value for the test for symmetry of the stock return.  The upper-right panel shows the various 
quantile regression fits of the CAPM model for τ  = 0.1, 0.3, 0.5, 0.7 and 0.9.  The lower-left panel contains the 
quantile regression estimates of Alpha while the lower-right panel shows the quantile regression estimates of beta 
for τ  = 0.1, 0.3, 0.5, 0.7 and 0.9 along with their 95% confidence band. The dash line indicates the magnitude of 
the OLS beta estimate while the dotted lines are the 95% confidence interval.  

IV. Heteroskedasticity 

 The presence of heteroskedasticity is apparent in Figure 1 from the increasing quantile regression 

beta coefficients τβ . As the value of the market return on the horizontal axis increases, the degree of 

variation of the individual return decreases.  We call this sort of heteroskedasticity a “converging 

heteroskedasticity” while the form of heteroskedasticity depicted in Figure 2 is termed “diverging 

heteroskedasticity”.  The strength of the heteroskedasticity is classified using the p-value for the Wald test 

for existence of heteroskedasticity introduced by Koenker and Bassett (1982).  Since the smaller the p-

value, the stronger is the evidence in the data against the null hypothesis of the absence of 

heteroskedasticity, we classify the strength of heteroskedasticity using the delineation specified in Table 1. 
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Figure 3 and 4 provide examples of sample stock returns with moderate and weak converging 

heteroskedasticity according to the increasingly larger p-value shown among the summary statistics in the 

upper-left panel of the figures while Figure 5 and 6 show examples of moderate and weak converging 

heteroskedasticity. 

We use the rq function in the quantreg package (Koenker, 2010) available from the GNU Free 

Software R for statistical computing and graphics (R Development Core Team, 2008) to compute the 

quantile regression coefficients in this study. The function uses a modified version of Barrodale and 

Roberts’s (1974) algorithm for L1 regression as described in Koenker and d’Orey (1987, 1994) for small 

sample sizes and the interior-point algorithm described in Koenker and Ng (2005) for large sample sizes.  

The standard error assumes local linearity of the conditional quantile functions and computes an Eicker-

Huber-White sandwich estimate using a local estimate of the sparsity as described in Koenker (2005). 

Koenker and Hallock (2001) is an excellent non-technical primer for quantile regression. 

Figure 2. Strong diverging hetorskedasticity. 

The upper-left panel contains summary statistics of the chosen stock, which include the ticker symbol, p-value for 
the Wald test for heteroskedasticity, indicator for whether the stock is diverging, estimated Alpha and beta, r-
square, and the p-value for the test for symmetry of the stock return.  The upper-right panel shows the various 
quantile regression fits of the CAPM model for τ  = 0.1, 0.3, 0.5, 0.7 and 0.9.  The lower-left panel contains the 
quantile regression estimates of Alpha while the lower-right panel shows the quantile regression estimates of beta 
for τ  = 0.1, 0.3, 0.5, 0.7 and 0.9 along with their 95% confidence band. The dash line indicates the magnitude of 
the OLS beta estimate while the dotted lines are the 95% confidence interval. 
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Table 1. Classification of heteroskedasticity. 

The table classifies the degree of converging and diverging heteroskedasticity into strongly, moderately, weakly 
and little or no heteroskedasticity.  The smaller the p-value is for the Wald test for heteroskedasticity, the stronger 
is the degree of diverging or converging.  Divergence or convergence is determined by the difference between the 
higher ( )0.9β and lower regression quantiles ( )0.1β  for beta.  A negative difference with 0.9 0.1 0β β− < is 

defined as converging while a positive difference 0.9 0.1 0β β− >  is called diverging.  

P value  Type of Heteroskedasticity 
0.9 0.1β β− % of sample  Number of stocks

[0.0‐0.1)  Strongly Converging  − 2.9  97 
[0.1‐0.2)  Moderately Converging  − 3.1  104 
[0.2‐0.3)  Weakly Converging  − 3.8  127 
[0.3‐1.0)  Little or no heteroskedasticity  −  or +   70.4  2368 
[0.2‐0.3)  Weakly Diverging  + 6.8  228 
[0.1‐0.2)  Moderately Diverging  + 6.2  208 
[0.0‐0.1]  Strongly Diverging  + 6.8  228 

Figure 3. Moderate diverging heteroskedasticity. 

The upper-left panel contains summary statistics of the chosen stock, which include the ticker symbol, p-value for 
the Wald test for heteroskedasticity, indicator for whether the stock is diverging, estimated Alpha and beta, r-
square, and the p-value for the test for symmetry of the stock return.  The upper-right panel shows the various 
quantile regression fits of the CAPM model for τ  = 0.1, 0.3, 0.5, 0.7 and 0.9.  The lower-left panel contains the 
quantile regression estimates of Alpha while the lower-right panel shows the quantile regression estimates of beta 
for τ  = 0.1, 0.3, 0.5, 0.7 and 0.9 along with their 95% confidence band. The dash line indicates the magnitude of 
the OLS beta estimate while the dotted lines are the 95% confidence interval. 
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Figure 4. Weak diverging heterskedasticity. 

The upper-left panel contains summary statistics of the chosen stock, which include the ticker symbol, p-value for 
the Wald test for heteroskedasticity, indicator for whether the stock is diverging, estimated Alpha and beta, r-
square, and the p-value for the test for symmetry of the stock return.  The upper-right panel shows the various 
quantile regression fits of the CAPM model for τ  = 0.1, 0.3, 0.5, 0.7 and 0.9.  The lower-left panel contains the 
quantile regression estimates of Alpha while the lower-right panel shows the quantile regression estimates of beta 
for τ  = 0.1, 0.3, 0.5, 0.7 and 0.9 along with their 95% confidence band. The dash line indicates the magnitude of 
the OLS beta estimate while the dotted lines are the 95% confidence interval. 
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Figure 5. Moderate converging heteroskedasticity. 

The upper-left panel contains summary statistics of the chosen stock, which include the ticker symbol, p-value for 
the Wald test for heteroskedasticity, indicator for whether the stock is diverging, estimated Alpha and beta, r-
square, and the p-value for the test for symmetry of the stock return.  The upper-right panel shows the various 
quantile regression fits of the CAPM model for τ  = 0.1, 0.3, 0.5, 0.7 and 0.9.  The lower-left panel contains the 
quantile regression estimates of Alpha while the lower-right panel shows the quantile regression estimates of beta 
for τ  = 0.1, 0.3, 0.5, 0.7 and 0.9 along with their 95% confidence band. The dash line indicates the magnitude of 
the OLS beta estimate while the dotted lines are the 95% confidence interval. 
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Figure 6. Weak converging heteroskedastictiy. 

The upper-left panel contains summary statistics of the chosen stock, which include the ticker symbol, p-value for 
the Wald test for heteroskedasticity, indicator for whether the stock is diverging, estimated Alpha and beta, r-
square, and the p-value for the test for symmetry of the stock return.  The upper-right panel shows the various 
quantile regression fits of the CAPM model for τ  = 0.1, 0.3, 0.5, 0.7 and 0.9.  The lower-left panel contains the 
quantile regression estimates of Alpha while the lower-right panel shows the quantile regression estimates of beta 
for τ  = 0.1, 0.3, 0.5, 0.7 and 0.9 along with their 95% confidence band. The dash line indicates the magnitude of 
the OLS beta estimate while the dotted lines are the 95% confidence interval. 

 

V. Interpretation of the Results 

 The sample of 3363 stocks is tested for levels of converging or diverging heteroskedastictiy.  The 
Wald test for the existence of heteroskedaticity is used to determine the type and level of 
heteroskedasticity and the results are presented in Table 1.  Strong, moderate and weak heteroskedasticity 
are defined as p-values between 0.0-0.1, 0.1-0.2 and 0.2-0.3, respectively.  For the sample of 3363 stocks 
2.9%, 3.1% and 3.8% showed strongly converging, moderately converging and weakly converging 
hetereoskedasticity, respectively.  In total, 9.8% of the sample (328 stocks) showed some degree of 
converging heteroskedasticity.  Conversely, 6.8%, 6.2% and 6.8% showed strongly, moderately and 
weakly diverging heteroskedasticity.  In total, 19.8% of the sample (664 stocks) showed some degree of 
diverging hetereskedasticity.  The remaining 70.4% of the sample showed no significant 
heteroskedasticity. 

 One interpretation of these findings is that just under 10% of the stocks will fit the behavioral 
preference indicated by the Kahneman and Tversky findings.  These stocks, showing converging 
heteroskedasticity, would be more preferred by investors than the other 90% of the stocks if all other 
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factors are held constant.  On the other side, just under 20% of the stocks show patterns that are contrary 
to the Kahneman and Tversky findings.  These stocks, showing diverging heteroskedasticity, would be 
less preferred by investors if all other factors are held constant. 

 Investors are always looking for any possible indicator that can help them improve their 
portfolios.  Even small improvements can provide benefits to investors’ utility.  The results presented may 
give new information about 30% of the universe of stocks that investors will choose from.  When a 
portfolio can be chosen that more aligns with investors preferences, it may be a benefit to investors. 
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