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Fuel treatment effects on tree-based forest
carbon storage and emissions under
modeled wildfire scenarios
MatthewHurteau1- and Malcolm North2

Forests are viewed as a potential sink for carbon (C) that might otherwise contribute to clima te change. It is
unclear, however, how to manage forests with frequent fire regimes to maximize C storage while reducing
C emissions from prescribed bums or wildfire. We modeled the effects of eight different fuel treatments on
tree-based C storage and release over a century, with and without wildfire. Model runs show that, after a
century of growth without wildfire, the control stored the most C. However, when wildfire was included in
the model, the control had the largest total C emission and largest reduc tion in live-tree-based C stocks. In
model runs including wildfire, the final amount of tree-based C sequestered was most affected by the stand
structure initially produced by the different fuel treatments. In wildfire-prone forests, tree-based C stocks
were best protected by fuel treatments that produced a low-densi ty stand structure dominated by large, fire
resistant pines .
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G lobal awareness of human effects on climate has
increased in the past two decades and has led to

international and regional, political, and economic efforts
to reduce or offset greenhouse-gas emissions. Typically,
offsets are achieved through afforestation and reforesta
tion (Schulze et al. 2000; IPCC 2006: CCAR 2007) and
require landowners to establish a carbon (C) baseline to
quantify the amount of C stored on a given unit of forest
land OPCC 2006: CCAR 2007) . As trees grow, C is
sequestered, and these addi tiona l tons of C can be used to
offset emissions in other sectors. In fire-prone forests,
however, tree-based C storage may lead to large releases of
C if trees are killed and partially consumed by a high
severity fire (Breshears and Allen 2002; Hurtt et al. 2002;
Kashian et al. 2006; Hurteau et al. 2008 ).

Beginning in the mid-1900s, US forested lands became
a net sink for CO2, as a result of forest regrowth and fire
suppression (Hurtt et al. 2002). Fire suppression has
increased forest density and stand -rep lacement fire risk in
forests that were historically characterized by frequent,
low-severity fire regimes (McKelvey and Busse 1996).
Commensurate with these changes has been a shift in cli
mate, correlated with a longer wildfire "season" and an
increase in large fire (> 9400 ha) frequency (Westerling
et al. 2006) . Catastrophic wildfire presents a risk to forest
C storage (Breshears and Allen 2002) .

In fire-prone forests of the western US, there are three
common management practices for reducing forest bio
mass and the risk of catastrophic fire: prescribed fire,
mechanical thinning, and both treatments combined. In
California, a leader in developing C accounting guide-
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lines, forest managers must establish a baseline for C
stocks. The baseline is calculated as the total C in live and
dead trees, coarse woody debris, litter, duff, and live,
coarse roots , plus the amount added each year in above
ground growth. Although C stocks in fine roots and soil
can be substantial (Post et al. 1982; Schlesinger 1995),
neither is currently a required pool for calculating a base
line under the California Climate Action Registry Forest
Sector Protocol (CCAR FSP; CCAR 2007) . Current
meth odology also requires that harvest stock loss be
treated as an emission (CCAR 2007) . However, accou nt
ing for emissions from wildfire is not required, and if a
wildfire does occur, th e CCAR FSP requires th at the base
line be recalculated for the disturbed site.

Our objective was to model the amount of live- and
dead-tree-based C stored and released over a century with
and without wildfire in Sierra Nevada mixed-conifer
forests, after fuel reduction treatments. O ur hypotheses
were: (1 ) in the absence of wildfire, the no-fuels treat
ment alternative will store the most live- and dead-tree
based C; (2) with wildfire, treatments that develop and
retain large trees will store the greatest amount of live 
tree C; (3) pre -settlement forest structure will maximize
tree-based C storage while minimizing C release during
wildfire; (4) with wildfire, prescribed fire treatments will
have a lower total C release than unburned treatments;
and (5) reducing stand density and concentrating live
tree C stocks in larger individuals will decrease th e post 
wildfire mortality, reducing the drop below the baseline.
Here, we use cur rent CCAR FSP (2007) accounting
methods to eva luate changes in C stocks using the Forest
Vegetation Simulator (FVS ) and trac k fire em issions
usin g the Fire and Fuels Extension (FFE) of FVS
(Crookston and Dixon 2005). A ltho ugh FVS does not
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account for soil C, it is regionally calibrated, widely used
by managers to model forest response to different treat
ments and disturbances, and one of the CCAR-approved
models for establishing baselines.

mMethods

We used data collected in the Teakettle Experiment
(http://teakettle.ucdavis.edu), in which all trees 2: 5-cm
diameter at breast height (dbh) were measured and
mapped in 18 replicate 4-ha plots. Using FVS, we mod 
eled the effects of eight treatments (control, bum only,
understory thin, understory thin and bum, restoration
thin [based on North et aI. 2007], restoration thin and
bum, 1865 reconstruction, and 1865 reconstruction and
bum) on tree-based C stocks. Although not significantly
different, pre-treatment forest structure and C stocks var 
ied among Teakettle's 18 plots (North et al. 2002) . To
normalize this difference in the model runs, we randomly
chose eight 4-ha plots and applied all model runs to the
same eight plots . Mechanical removal treatments were
applied to the pre-treatment plot data before the start of
model runs, to allow for the individual tree selection that
best met treatment goals.

With the exception of the 1865 reconstruction and
bum, all treatments that included prescribed fire were
burned every 20 years, beginning in 2000. The control
and bum-only treatments modeled stand conditions over
100 years without thinning. The understory thin and
understory thin and bum, after a widely used Sierran
mixed-conifer treatment (Verner et aI. 1992), removed all
trees 25-76 em dbh in 2000. The 1865 reconstruction
used the reconstruction of active-fire stand conditions for
the eight plots immediately after the last wildfire (North
et al. 2007). The 1865 reconstruction and bum added
prescribed fire to the treatment every 20 years, starting in
2020 (we excluded the 2000 prescribed fire because
reconstructed conditions were immediately after the
1865 fire). The restoration and restoration-and-burn
treatments retained all pines (Pinus lambertiana and
P jeffreyi) and removed fir (Abies concolor and A mag
nifica) and incense-cedar (Calocedrus decurrens) trees
from below (smallest sizes first) until plots were reduced
to a target of 67 trees ha-1 (North et ol. 2007).

We used the Western Sierra Nevada variant of FVS, an
individual-tree growth and yield model (Crookston and
Dixon 2005), to predict forest growth response to the
eight treatments. We specified that live-tree biomass be
calculated using the method described by Jenkins et al.
(2003), which uses genus-specific, allometric equations,
based on a literature survey. The live, coarse-root allo 
metric equations are for "soft woods" and are not genus 
specific, because few studies have quantified coarse root
biomass (Jenkins et al. 2003). To quantify each treat
ment's baseline, we calculated the starting amount of C
in live and dead woody matter immediately after
mechanical treatment and tracked changes in these C
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stocks using a lO-year time step. Under CCAR account
ing guidelines, the baseline would be recalculated after a
fire event. We did not recalculate each treatment's base
line after fire, because differences between tree-based C
stocks and baseline may provide a more complete
accounting of the influence of wildfire emissions on each
treatment's tree-based C budget.

Fire treatments were simulated and C emission values
calculated via the FFE of FVS. FFE uses three sub-models
to track standing dead trees and fuels, and to simulate fire
intensity and effect on fuels, snags, and live trees
(Reinhardt and Crookston 2003). FFE uses existing fire
models to calculate the potential surface-fire intensity of
user-defined parameters, including slope, fuel moisture,
wind speed (6-m above ground), and canopy closure
(Reinhardt and Crookston 2003). Surface fire intensity,
coupled with the height to live crown, is used to deter
mine torching. The probability of tree mortality from fire
is a function of individual tree attributes, including crown
scorch (Reinh ardt and Crookston 2003). The proportion
of tree crown scorched is considered killed and is
deposited on the forest floor as fuel during the time step.
Tree crowns exposed to fire experience 100% consump
tion of foliage and 50% consumption of small branch
wood (branches < 0.63 em; Reinhardt and Crookston
2003). The remainder of the unconsumed tree biomass is
moved to, and tracked in, the snag sub-model (Reinhardt
and Crookston 2003).

We simulated prescribed fire at 20-year intervals to
match the historic fire regime for Sierran mixed conifer
(McKelvey and Busse 1996; North et ol. 2005), setting
specific prescribed fire conditions to closely match condi
tions during Teakettle's 2001 prescribed bum: 10 mile
per hour (mph) [-16.1 kilometer per hour (kph)] winds,
70· F (- 21.1· C) temperature, and moist fuel conditions
common during prescribed bums in the fall. To examine
each fuel treatment's response to wildfire, we simulated
wildfire during the year 2050. Wildfire conditions often
occur during high (90th percentile) or extreme (97.5th
percentile) weather conditions (Stephens and Moghaddas
2005). We used extreme fire weather conditions that
included 40 mph (-64.3 kph) winds, 90· F (-32.2° C)
temperature, and very dry fuel conditions. A temperature
of 90· F is not uncommon during the warmest part of the
summer at the study site (MH and MN personal observa
tion). The 40 mph wind speed is on the upper end of the
wind-driven, crown-fire speeds reported by Rothermel
(1991) and was chosen to represent a worst -case scenario.
Fire emissions within the FFE carbon submodel are calcu
lated via a fire event's biomass reduction at a biomass-to
C conversion factor of 0.37 for litt er and duff, and 0.50
for wood (Reinhardt and Crookston 2003; FFE
Addendum 2007).

There are limitations in FFE's accounting of fire C
release. For example, soil organic matter may be
volatilized through burning or translocated after the fire
event, as a result of erosion (Breshears and Allen 2002).
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Fire may also form black C that can
remain within the forest (Schulze et al.
2000; DeLuca and Aplet 2008).
Although the FFE module misses these
C dynamics, the relative emission differ
ences between treatments should be rep
resentative of the different stand condi
tions that FVS does effectively model.

Results

Flg'UTe 1. Tons of C perhectare stored in live and dead tree biomass and released
by fire in eight fuel treatments : (a) control, (b) bum only, (c) understory thin, (d)
understory thin and bum, (e) restoration thin , (f) restoration thin and bum, (g)
1865 reconstruction, and (h) 1865 reconstruction and bum. Reddots indicate the
tons of C per hectare released in the 2050 wildfire and during each prescribed bum
event. Baseline dots with standard error bars represent the total aboveground live
and dead biomass, starting from the post-treatment standcondition , if the forest did
not bum. Baselines in (b-h) can be compared with the control's baseline to assess
total changes in C stocks from pre-treatment condition.
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the understory and restoration thinning treatments,
respectively. This C, however, is not emitted directly to
the atmosphere. For a merchantable timber sale such as
Teakettle, about 40% may become rapidly decomposed
mill ing "waste" such as sawdust , and 60% can become
wood products with a half-life of 1-100 years (Skog and
Nicholson 2000) .

Thinning trees from small size classes had little impact
on tree-based C storage, but did raise the average heigh t
from the ground to the base of th e live crown, a key fact or
in reducing fire intensity (Agee and Skinner 2005) .
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A t th e sta rt of the model runs, the 1865
reconstruction had the greatest tree 
based C stock. In the absence of wildfire,
basel ine conditions ind icate th e control
(476 .3 t C ha-1

) and bum only (417.4 t C
ha-I) had the largest tree -based C stocks
by 2100 (Figure 1 a,b) . With a mid-cen
tury wildfire, the bum-only and 1865
bum treatments' had the h ighest tree
based C stocks in 2100 and were the only
treatments that con tinued to meet their
respective CCAR pre-wildfire baselines.
Treatments that included prescribed
burning had tree-based C stocks closest to
baseline levels, particularly after the 2050
wildfire (Figure 1). The restoration-bum
treatment had the smallest drop below
baseline. The proportion of dead to live C
tended to increase after fire events and is
most influenced by stand stocking levels.
High-density stands, such as the control,
had a higher proportion of their total
aboveground C in dead biomass than did
open stands (ie the 1865 treatments),
wh ich had a greater proport ion of large
diameter, fire-resistant species .

Wildfire emissions were h ighest in the
control (Figure 2) and decreased in order
of understory, restoration, and 1865 treat
ments. Thinning treatmen ts tha t
included prescribed fire had lower wildfire
emissions than did treatmen ts that only
involved thinning (Figure 2). Stands with
a higher percentage of dead biomass had
higher wildfire emissions (Figure 1). Over
five applications, total prescribed bum emissions were
2-3 times higher than one-time wildfire emissions in
treatments that combi ned thinning and prescribed burn
ing. Prescribed fire emissions correlated with stocking
levels, with the bum-only having the h ighest C release
and the 1865-bum treatment having substantially lower
emissions (Figure 2). The fire emissions pattern is the
same when wildfire emissions are included, with all pre 
scribed-bum treatmen ts having higher totals than their
unburned, paired treatmen t. Harvested trees acco unted
for 65 t C ha-1 and 47.8 t C ha-1 removed from the site for
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FJgUTe 2. Total C emissions (t C ha-1) from each wildfire and
prescribed bum event for each of the eight treatments . Rx,
prescribed.

Long-term fuels reduction was greatest for restoration and
prescribed-bum treatments, because they reduced small
diameter tree densities and shifted composition toward
more fire-resistant pines. The most wildfire-resistant
treatments, as measured by those with the highest num
ber of large trees (> 75 em dbh), were the 1865, 1865
and-bum, restoration-and-burn, and bum-only treat
ments, whereas the control and understory-thin
treatments had the fewest (Figure 3). In the intermediate
size classes (35-75 em), the percentage of pine (P jeffreyi
and P lambertiana) is important, because pines are more
likely to survive a wildfire than fir (A concolor and A mag
nifica) and incense-cedar (C decurrens). Only the 1865
and restoration-and-bum treatments had a substantial
percentage of pine in the intermediate size classes. All
prescribed fire treatments had lower stocking in the more
flammable, small-diameter classes, particularly the 15-25
em class. Stocking levels in small size classes are highest
in the control, understory-thin, and restoration-thin
treatments, suggesting that these are susceptible to more
combustion and C release in future wildfires.

mDiscuss ion

In flammable forests, sequestering C is more complex
than maximizing stocking levels and mean annual growth
increments. There are trade-offs in emission and storage
rates, depending on treatment application and wildfire
timing as stands develop. However, the consistently high
storage and low emissions of the 1865 reconstruction sug
gest that a low-density forest, dominated by large, fire
resistant pines, may be a desired stand structure for stabi
lizing tree-based C stocks in wildfire-prone forests .

Current accounting practices only examine tree-based
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C, without considering the substantial proportion of C in
soils and in fine-root turnover (Garten Jr et al. 1999).
Although belowground C estimates are difficult and cur
rent methodologies need refinement (Strand et aI. 2008),
a more complete accounting would consider fuel treat
ments and wildfire effects on these stocks. In the interim,
forest managers will have to focus on tree-based C: stocks
that can be manipulated to influence C accumulation
and long-term storage. Currently, changes in C stocks are
calculated at the typical management scale of a forest
stand. Calculating changes in a landscape's C stock would
be more compatible with our understanding of fire proba
bilities and bum behavior. Many landscapes, however, are
divided by ownership/management boundaries, making
large-scale C accounting difficult within the current cap
and-trade approach.

.The CCAR's current accounting methods do not
require forest managers to report wildfire emissions; they
are only required to adjust the forest baseline. A more
complete accounting would include C released from fire
events, similar to the IPCC (2006) guidelines. Under this
accounting, which includes wildfire emissions, our model
runs suggest that a forest structure that is resistant to
stand-replacing fire would not differ substantially from its
baseline. Modeled future California climate conditions
suggest that rises in temperature and increasing growing
season length are likely to occur (Cayan et al. 2008), and
that these changes may increase the number of large fire
events (Westerling et aI. 2006). Given the frequency of
fire occurrence in pre-settlement forests, during a rela
tively cool, moist period (Taylor and Beaty 2005), and
the predicted shifts in climate, untreated forests are likely
to have lower tree-based C stocks than more fire-resistant
forest structures.

When prescribed fire is used to reduce wildfire severity,
there are trade-offs in smoke and C emissions. Prescribed
fire consumes forest-floor fuels, including litter and duff,
which can be a major contributor to total wildfire emis
sions (Campbell et al. 2007). Individual, direct pre
scribed-bum emissions were low, ranging from 4.5 to 18 t
C ha-I (Figure 1), but when totaled over a century and
added to the wildfire emissions, total released C was
greater than that in the no-bum treatments (Figure 2).
Recent research suggests that immediate wildfire emis
sions may only be a portion of actual C losses, if the fire
leaves few surviving trees (Kashian et al. 2006). Auclair
and Carter (1993) calculated that high-intensity, post
wildfire C release was approximately three times the
direct release of CO2 during the fire event. In ponderosa
pine, direct flux measurements found higher CO2 emis
sions from a high-intensity bum than those from an
unburned site, even 10 years after fire (Dore et al. 2008).
Future research may more effectively incorporate these C
losses associated with high-intensity fire into models,
but, in this paper, we compare only direct C emissions
occurring during the fire.

Although the addition of prescribed fire does result in
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Figure 3. Diameter distTibutions by species in tlte year 2100 for the eight fuel
. treatments : (a) control, (b) burn only, (c) understory thin, (d) understory thin and
burn , (e) restoration thin, (f) restoration thinand burn, (g) 1865 reconstruction, and
(h) 1865 reconstruction and burn. A concolor, ABCO; A magnifica, ABMA;
C decurrens, CADE ; P jeffreyi, PUE; P lambertiana , PILA . .
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higher total direct emissions, it has
some advantages. Prescribed fire
reduces wildfire intensity, can be lit
when crews are available, and affords
some control over smoke drift. Stand
conditions by treatment in 2100
(Figure 3) also suggest that prescribed
fire is an effective treatment for mov
ing forest structure toward a more
fire-resistant condition. Similar to
some thinning treatments, prescribed
fire not only reduces competition and
"releases" residual tree growth, but
can also accelerate large pine devel
opment with a post-fire nutrient pulse
and selective mortality of smaller
diameter, fire-sensitive species (eg
restoration versus restoration-and
burn treatments in Figure 3 e,f).

In our simulations that included
wildfire, tree-based C stocks in 2100
are strongly affected by stand structure
produced by the initial fuel treatments.
Treatments that reduce the number of
small-diameter trees, which act as lad
der fuels, reduce emissions (Figure 3)
and the mortality of large trees. In sim
ulations varying wildfire timing (ie
2020-2090) , intermediate (35-75 cm
dbh) tree survival increased with inter
val length, but emissions also increased
substantially. The low density of the
1865 reconstruction consolidates
increment growth in large, fire-resis
tant trees, while maintaining fewer
small trees (Figure 3). The restoration
and-burn treatment (Figure 3f) is the
best option for approximating the 1865
forest structure and species composi
tion, conditions that should be fire
resistant. We caution, however, that
our modeling focus is on stands exposed to a simulated,
uniform wildfire event. Wildfire effects on forest condi
tions and C emissions will vary across a burn landscape
in response to local fuel conditions and the interaction
of fire behavior and weather. We have not attempted to
model this more complex fire dynamic and instead have
focused on the scale at which managers often manipulate
forest structure and use different fuel treatments.

Forest C sequestration has been proposed as a way to
help offset other anthropogenic CO2 emissions (Woodbury
et al. 2007). In forests that historically burned with high
frequency and low severity, adding to the C baseline by
increasing stocking levels may exacerbate the modern shift
toward high-severity fire produced by fire suppression and
climate change. Current C accounting practices can be at
odds with efforts to reduce fire intensity in many western
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US forest types. Although the concept of restoring forests
in the western US to some pre-settlement target may not
be feasible as the climate changes, reducing fire severity
and increasing and stabilizing tree-based C storage may be
achieved with fuel treatments that promote low-density,
large pine-dominated stand structures.
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