
29
Ecological Restoration Institute 
Working Paper No. 29

Post-Wildfire Restoration of 
Structure, Composition, and 
Function in Southwestern 
Ponderosa Pine and Warm/
Dry Mixed-Conifer Forests

January 2014



Working Papers in Intermountain West Frequent-Fire Forest Restoration

Ecological restoration is a practice that seeks to heal degraded ecosystems by reestablishing 
native species, structural characteristics, and ecological processes. �e Society for Ecological 
Restoration International de�nes ecological restoration as “an intentional activity that 
initiates or accelerates the recovery of an ecosystem with respect to its health, integrity 
and sustainability….Restoration attempts to return an ecosystem to its historic trajectory” 
(Society for Ecological Restoration International Science & Policy Working Group 2004).

Most frequent-�re forests throughout the Intermountain West have been degraded during 
the last 150 years. Many of these forests are now dominated by unnaturally dense thickets 
of small trees, and lack their once diverse understory of grasses, sedges, and forbs. Forests 
in this condition are highly susceptible to damaging, stand-replacing �res and increased 
insect and disease epidemics. Restoration of these forests centers on reintroducing frequent, 
low-severity surface �res—o�en a�er thinning dense stands—and reestablishing productive 
understory plant communities. 

�e Ecological Restoration Institute at Northern Arizona University is a pioneer in 
researching, implementing, and monitoring ecological restoration of frequent-�re forests of 
the Intermountain West. By allowing natural processes, such as low-severity �re, to resume 
self-sustaining patterns, we hope to reestablish healthy forests that provide ecosystem 
services, wildlife habitat, and recreational opportunities.
 
�e ERI Working Papers series presents �ndings and management recommendations from 
research and observations by the ERI and its partner organizations. While the ERI sta� 
recognizes that every restoration project needs to be site speci�c, we feel that the information 
provided in the Working Papers may help restoration practitioners elsewhere.
 
�is publication would not have been possible without funding from the USDA Forest 
Service. �e views and conclusions contained in this document are those of the author(s) 
and should not be interpreted as representing the opinions or policies of the United States 
Government. Mention of trade names or commercial products does not constitute their 
endorsement by the United States Government or the ERI.

Cover Photo: High-severity burn patch with near to total tree mortality from the 2011 Wallow Fire near 
Greer, Arizona. Returning structural attributes to a forest burned at high severity outside of the natural range 
of variability may involve planting trees, managing natural regeneration, and manipulating levels and types of 
dead wood. Photo courtesy of Judy Springer, ERI
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Introduction
During the last several decades, uncharacteristically 
large wild�res have occurred at an increasing rate in 
the frequent-�re forests of the western United States 
(Westerling et al. 2006). �ese extensive and severely 
burned forests represent a serious conservation concern 
and restoration need. Indeed, Fulé et al. (2013, p.4) 
remarked that “large uncharacteristic wild�res pose one of 
the greatest risks to ecosystem integrity in the 21st century.” 
Such �res may be pushing forests in the western United 
States toward a “tipping point” that may lead to permanent 
changes in structure and composition, loss of carbon 
into the atmosphere and loss of carbon stocks (Hurteau 
and North 2009, North and Hurteau 2011, Hurteau et al. 
2011), and changes in hydrological function (Dore et al. 
2012, Adams 2013). Forests degraded by extensive high-
severity �re o�en also exhibit accelerated soil erosion 
and subsequent loss of soil productivity, expansions or 
invasions of non-native plant populations, loss of wildlife 
habitat; damaged watersheds and degraded water quality 
to connected streams, and/or vegetation type conversions 
(Figure 1).

 Federal land management agencies have formally 
separated post-�re rehabilitation into short-term 
stabilization and long-term restoration measures. �e U.S. 
Forest Service Burned Area Emergency Response (BAER) 
program includes well-researched emergency treatments 
“to stabilize the burned area, protect public health and 
safety, and reduce the risk of additional damage to valued 
resources, such as water supply systems, aquatic habitat 
and roads” (Robichaud 2009). An immediate goal of BAER 
is to have protection in place prior to the �rst damage-
producing rain event following the �re. Rehabilitation 
activities are implemented and can be monitored for up to 
three years a�er wild�re, and include the repair of facilities 
and mitigation of land and resources that are unlikely to 
recover on their own (Robichaud 2009). Longer-term post-

�re restoration e�orts have generally received much less 
attention, although the increasing occurrence of very large 
wild�res has prompted more attempts to articulate and 
evaluate long-term strategies (Long et al. in press). 
 As opposed to emergency rehabilitation, ecological 
restoration focuses on assisting the recovery of 
characteristic ecological structure, process, and function. 
�is requires an understanding of natural ranges of 
variability for these key attributes as well as development 
of reference conditions to guide management activities 
(Egan and Howell 2001, Margolis et al. 2013). In addition, 
restoration activities demand long-term commitment 
and evaluation. However, given the altered conditions 
that sometimes follow high-severity �res in previously 
degraded forests, successful restoration to a desired state 
may be di�cult and costly (Sche�er et al. 2001).
 �is working paper describes the goals of post-wild�re 
forest restoration, identi�es the unique challenges and 
opportunities for management of severely burned large 
patches, and develops principles for restoring forests 
that have been burned by high-severity wild�res. As 
described by the Society for Ecological Restoration 
(2004), the attributes of a restored ecosystem include 
the reestablishment of the system’s resilience, structure, 
composition, function, physical environment, and 
landscape integrity.

Resilience and Disturbance 
Holling (1973) and Walker et al. (2006) described the 
concept of stability as the ability of a system to return to 
equilibrium following a disturbance. �e more rapidly a 
system returns and the less it �uctuates, the more stable 
it is. Resilience measures persistence and the ability of a 
system to absorb change and disturbance and still maintain 
the same function, structure, feedbacks, and identity. As 
burn severity increases, resilience of most systems tends 
to decrease (Lloret and Zedler 2009). �e more resilient a 
system is, the larger the disturbance it can absorb without 
shi�ing into an alternate regime. Uncharacteristically 
severe �res across the Southwest can result in local 
regime changes, from forests to grasslands or thickets 
of resprouting species, such as Gambel oak (Quercus 
gambelii) (Savage et al. 2013).
 Increasing the resilience of ponderosa pine forests to 
wild�re includes preventive measures, such as reducing 
surface fuels, increasing the height of live crowns, 
decreasing crown density and retaining large trees. Other 
actions that may build resilience include returning natural 
processes (e.g., �re regime, hydrology) to the ecosystem 
through protection and restoration of quality habitat and 
robust forests (Fitzgerald 2005, Fulé 2008, Lindenmayer 
et al. 2013). Post-wild�re activities may require avoiding 
actions that increase stress on these ecosystems, such as 
some types of post-�re logging or grazing, and instead 
taking action to assist natural recovery processes (Beschta 
et al. 2004). Prevention of future crown �res in previously 
burned areas by thinning dense young stands and 

Figure 1. High-severity burn patch near Greer, Arizona that has been 
seeded with certified non-persistent, weed-free barley and wheat 
to slow erosion following the Wallow Fire of 2011. Photo courtesy of 
Judy Springer, ERI
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reestablishing a surface-�re regime will also promote 
resilience (Savage and Mast 2005). Repeated high-severity 
�res may reduce the potential for recovery of some species 
by eliminating remnant seed source trees and damaging 
soils. A key principle that emerged from research in the 
Sierra Nevada Mountains is to target those size classes/
conditions in the forest that would have been targeted as 
part of a restoration treatment had the �re not occurred, 
that is, leave the large, pre-settlement trees and thin smaller 
post-settlement trees (Long et al., in press). 
 In terms of forest ecosystem resilience, it is important to 
recognize that a patchy mosaic of conditions o�en remains 
even a�er a stand-replacing wild�re. Such an environment 
includes patches of remaining older trees intermixed with 
larger areas of highly diverse, early successional plant and 
animal communities (Haire and McGarigal 2008, 2010; 
Swanson et al. 2011). �is mosaic provides a rich array 
of previously limited resources, methods for soil renewal, 
woody debris and snags, and other legacies following a 
�re. �e ecosystem, despite its charred appearance and the 
other negative attributes of a large wild�re, retains many 
resilient elements necessary for its restoration. 

Forest and Community Structure
Some wild�res, especially very large ones, may result in 
sizable patches where nearly total coniferous tree mortality 
occurs. �ere may also be a temporary loss of important 
structural attributes, such as so� snags (standing dead trees 
with decayed wood) and large logs. Given the key role that 
forest overstory structural patterns play in regulating many 
ecosystem processes and functions, long-term restoration 
planning designed to reestablish characteristic structural 
attributes (Moore et al. 1999) is critical a�er a wild�re. 
Returning structural attributes to a forest burned at high 
severity outside of the natural range of variability may 
involve planting trees, managing natural regeneration, 
and manipulating levels and types of dead wood. Species 
composition, density, and spatial arrangement of tree 
regeneration should follow natural ranges of variability 
appropriate for the disturbed ecosystem. For example, 
pre-�re regime disruption stand density in southwestern 
ponderosa pine (Pinus ponderosa) forests ranged from 
14–137 trees per acre (Stoddard 2011) with trees spatially 
arranged as scattered individuals as well as in distinct 
groups (Sánchez Meador et al. 2011).

Natural Regeneration
Ponderosa pine regeneration in the Southwest is highly 
dependent on climate (precipitation and temperature) and 
appears to occur episodically. Literature reports indicate 
that the maximum wind dispersal distance for ponderosa 
pine seeds is about 85 feet and is roughly equivalent via 
dispersal by small mammals (Vander Wall 2003). Where 
seed trees are abundant and precipitation is high (e.g., the 
Mogollon Rim in Arizona), natural regeneration may be 
more than adequate to meet reference goals (Savage and 
Mast 2005, Haire and McGarigal 2010). In such areas, 

maintenance treatments, such as thinning or prescribed 
�re, may be needed soon a�er tree seedlings are established. 

Arti�cial Regeneration
Large, high-severity patches with near total coniferous 
tree mortality and no seed sources, natural restocking 
may take several decades to centuries. In many cases, 
arti�cial regeneration (i.e., planting or seeding) may be 
needed to assure tree recovery in large, high-severity burn 
patches (Figure 2). Although somewhat dated, much 
has been written about techniques and factors a�ecting 
planting success. �ese publications still contain relevant 
information for current conditions (e.g., see Schubert 
et al. 1970, Schubert 1974). �e Missoula Technology 
and Development Center also provides a “Reforestation 
Toolbox” (www.fs.fed.us/t-d/seedlings/index.htm) with 
information about arti�cial tree regeneration. 

 Site preparation is critical to a successful tree planting 
operation. Livestock should be excluded until seedlings are 
at least 2–3 feet in height (Figure 2), particularly during 
droughts, and until there is su�cient forage available. 
However, mortality from soil insects, tip moths, rodents, 
and browsing animals can occur for as long as 15 years 
following establishment (Schubert 1974). Seedlings can be 
protected from browsing and trampling by surrounding 
seedlings with rigid plastic tubes or mesh (Figure 3) or by 
using exclosures or temporary electric fencing. Planting 
seedlings near logs, stumps, or rocks o�ers some protection. 
Newly planted seedlings should also be protected from �re 
until they are large enough to survive its e�ects.
 Selecting the appropriate genetic stock is an important 
consideration in terms of meeting restoration goals, 
certainly for survivability, but also for conservation of 
genetic integrity of the local population. McKay et al. (2005) 
provide guidelines for ecological restoration from a genetic 
integrity standpoint. 
 Restoring reference structure also requires consideration 
of the spatial pattern of planted trees. For example, intact, 
functional ponderosa pine forests are characterized by 
scattered single trees and groups of trees 0.02–0.4 acres in 
size (Sánchez Meador et al. 2011, Churchill et al. 2013). 
In some cases, evidence of reference patterns (e.g., large 

Figure 2. Ponderosa pine seedlings planted in a high-severity burn 
patch in northern Arizona. Trees in the left side of the photo were 
planted within an exclosure. Seedlings on the right side were not 
protected from grazing. Photo courtesy of Elwood Rokala, Kaibab NF
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stumps, snags, and logs) may remain on the site and can be 
used to guide planting to achieve reference spatial patterns 
(Hu�man et al. 2001). However, loss of �eld evidence o�en 
increases with �re severity. In such cases, other sources of 
information, such as pre-�re inventories, written reports 
and photos, may be needed to develop spatial pattern 
planting prescriptions (Moore et al. 2004). 
 Direct seeding of ponderosa pine has been attempted as 
a more economical alternative to planting trees. However, 
while the cost is considerably less than planting seedlings, 
this method is less reliable (Schubert et al. 1970) because 
both frost heaving and spring droughts can cause high 
mortality in the Southwest. 
 �e environmental conditions a�er a high-severity 
wild�re may cause lowered and freezing temperatures 
leading to inhibited germination or mortality of seedlings. 
Water also runs o� burned sites more readily and there 
are higher evapotranspiration rates in these areas, leading 
to drier conditions. �e overall e�ect is lower minimum 
temperatures later into the spring and earlier in the fall 
and drier soil conditions earlier in summer, which equal 
suppressed germination. Conditions vary by site, with 
wetter areas bene�tting from warming temperatures 
due to climate change and, therefore, having increased 
regeneration. However, those areas at the dry end of the 
climate envelope have shown almost no regeneration in 
recent years (Feddema et al. 2013).

Vegetation Type Conversion
Due to their ability to resprout, several woody species, 
including manzanita (Arctostaphylos stp.), New Mexico 
locust (Robinia neomexicana), and Gambel oak tend to 
survive most wild�res. Some researchers have suggested 
that oak thickets or oak shrub�elds are persistent and will 
suppress germination of ponderosa pine either through 
shading or from allelopathic, or toxic, chemical compounds 
in the oak leaves (Moir et al. 1997, Harrington 1987, Savage 
and Mast 2005). Oak thickets appear to naturally thin 
over time, although there is some debate whether thickets 
perpetuated by frequent �re form a stable vegetation state 
or if these thickets are primarily early successional (Brown 

1958, Harper et al. 1985, Abella 2008). For instance, Hanks 
and Dick-Peddie (1974) observed that the oak shrub stage 
may last roughly 80 years and that 50–100 years may be 
required for conifers to reestablish. 
 If restoration goals involve returning coniferous species 
within a shorter timeframe, regeneration may have to 
be accomplished using some form of active restoration 
that may include cutting and/or burning (Savage and 
Mast 2005) oaks in addition to planting pine seedlings. 
Pine seedlings rarely become established naturally in 
areas of dense oak (Schubert 1974), and older literature 
recommends killing shrubs and resprouting trees prior to 
planting trees arti�cially. Harrington (1989) experimented 
with prescribed burning of Gambel oak, with some success, 
to deplete carbohydrate reserves and thereby reduce its 
ability to resprout. �e controlled use of domestic livestock 
or wild browsers to manage fuels (i.e., prescribed herbivory) 
may show some promise in controlling resprouting species. 
However, prescribed herbivory requires knowledge of 
animal feeding strategies and the toxicity of plant species. 
For example, goats or deer are more likely to control shrubs 
than cattle or sheep, which are more likely to consume 
herbaceous vegetation (Vallejo et al. 2012). 
 �at said, resprouting species, such as oaks and 
manzanitas, provide a desirable habitat type for many 
species following wild�re, are valuable in controlling soil 
erosion, and add structural diversity across the landscape, 
so any e�orts to eradicate them following �re should be 
carefully weighed against the bene�ts they provide. Having 
oak thickets interspersed across the landscape may be a 
desirable restoration goal.

Coarse Wood Management 
Immediately a�er severe �re, forest structure is o�en 
comprised of standing dead trees. Standing dead trees in 
burned-over ponderosa pine forests of the Southwest are 
likely to fall within 30 years of the �re event (Passovoy and 
Fulé 2006). Fallen dead trees provide important inputs of 
coarse wood (i.e., “dead-and-down” pieces greater than 3 
inches in diameter) to the forest �oor, and contribute to 
soil processes and wildlife habitat (Brewer 2008). Optimal 
ranges of coarse wood to meet soil nutrient cycling, 
wildlife, and restoration objectives are about 5 to 20 tons 
per acre for dry forest types, and 10 to 30 tons per acre for 
cooler, moister types (Brown et al. 2003). An important 
principle is to leave larger (pre-settlement) snags while 
removing material that would have been taken out as part 
of restoration treatments because tons per acre does not 
acknowledge the value of di�erent size classes of debris. 
Smaller diameter materials are likely to be abnormally 
abundant and fall faster. Greater amounts than the given 
maximums may be undesirable in terms of increased 
�re hazard and soil heating in the event of reburning. 
Roccaforte et al. (2012) found that in �res older than 12 
years, coarse wood amounts were usually within the range 
of desirable conditions without removal activities. Passovoy 
and Fulé (2006) concluded that �ne fuels required to 

Figure 3. Conifer seedlings surrounded by tree shelters on a high-
severity burn patch. Photo courtesy of Elwood Rokala, Kaibab NF
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support high-intensity reburning were typically low on 
older burned sites. More work is needed to determine if 
fuel loading and �re hazard concerns are truly warranted 
at various times a�er severe �re in southwestern forests. 
Activities intended to reduce amounts of dead wood a�er 
�re should follow best management practices (see Brewer 
2008). Managers will need to weigh economic, ecological, 
and strategic tradeo�s between leaving trees onsite versus 
removing them.
 �e e�ects of the removal of standing dead trees in 
pine forests following uncharacteristic �res on future 
forest structure (including regeneration of pine seedlings 
and resprouting of other tree species) and on future 
reburning and �re severity is still largely unresolved, due 
primarily to con�icting research results. Much of the 
post-�re logging research has been conducted in areas 
where decay rates are high, such as in parts of the Paci�c 
Northwest, whereas decay rates occur at a much slower 
rate in many areas of the Southwest, leading to results 
that may not be applicable across ecosystems and regions. 
Although post-�re logging is an extremely controversial 
topic and the negative e�ects have been well-summarized 
(McIver and Starr 2000, McIver and Starr 2001, 
Lindenmayer and Noss 2006), it may have ecologic or 
economic bene�t following high severity �res in some 
cases. 

Composition
Non-native Species
Post-wild�re environments have an abundance of 
nutrients, sunlight, and bare soil—conditions that 
are generally favorable to invasive, non-native plant 
species (Goodwin et al. 2002). A number of tools and 
assessments are available to rank those species that 
cause the most harm to biodiversity or ecosystem 
function (Hiebert and Stubbendiek 1993, California 
Exotic Pest Plant Council 2003, Randall et al. 2008). 
�ese protocols rank species according to such factors 
as their ecological impacts, invasive potential, ecological 
amplitude and distribution, current distribution and 
abundance, and management di�culty. 
 �e ecological impacts of invasion by non-native 
plant species vary along a gradient, depending on 
whether they a�ect a single native species or the 
ecosystem as a whole, with “transformer species” (sensu 
Richardson et al. 2000)  posing the most negative 
ecological consequences (Ortega and Pearson 2005). 
Transformers are a “subset of invasive plants which 
change the character, condition, form or nature of 
ecosystems over a substantial area relative to the extent 
of that ecosystem” (Richardson et al. 2000, p. 98). �ey 
include species that are of particular concern because 
they are capable of reducing species diversity and/
or changing �re regimes (e.g., knapweeds and annual 
bromes, including cheatgrass/Bromus tectorum). 
Control e�orts employing herbicides, grazing livestock 

or biological controls can be quite e�ective for some 
species. However, some species are extremely di�cult 
to eradicate once they are established, and competing 
native vegetation is necessary to colonize bare soil in 
order to prevent further invasion and colonization by 
unwanted plant species.

Augmentation with Native Species
Land managers may accelerate natural recovery 
processes by actively intervening to enhance habitat for 
various plant species (Dobson et al. 1997). Activities, 
such as planting and seeding, may help accelerate and 
complement the return of herbaceous plants, especially 
in areas that have experienced signi�cant tree loss and 
soil sterilization due to severe wild�re. �e objectives 
of such activities are likely to be di�erent from those 
of BAER, which is mainly focused on immediate 
establishment of cover to prevent accelerated erosion 
and loss of top soil (Robichaud et al. 2000, Beyers 2009, 
Peppin et al. 2010). Augmentation (o�en referred to as 
“restocking”) involves reintroduction of native plants 
or seeds into pre-existing habitat in an e�ort to increase 
abundance or biodiversity. Post-�re surveys can be 
used to determine if there are enough individuals of 
a species on-site to provide a seed source for natural 
regeneration. 
 One under-utilized technique for revegetating 
severely burned areas is the use of seed islands in 
order to recruit native species into nearby areas. �is 
technique has shown promise for both wind- and 
animal-dispersed plant species (Reever Morghan 
and Sheley 2005). Seed islands need not be large and 
can measure just about 30 square feet in size, and 
planted with multiple species. Although very little 
experimentation has been conducted with this concept, 
seed islands may be attempted with any herbaceous 
native species that can be propagated through 
seeding or transplanting. Another strategy to increase 
population size or vegetative ground cover involves 
protecting plants from herbivores, theoretically leading 
to increased vigor of the population overall and to 
increases in population numbers (Bevill et al. 1999). 
�e �rst species that emerge following a �re are o�en 
very attractive to herbivores and can be protected by 
reducing animal population size, protecting individual 
plants (possibly with the use of nurse plants), or 
protecting the entire area from herbivores (Vallejo et al. 
2012). 
 Another little used, but promising, technique is the 
transfer of soil containing seeds of the target species 
in the soil seed bank (Vallee et al. 2004). However, 
this technique, if not carefully planned, could result 
in severe ground disturbance when extracting soil. 
Salvaged plants or soil should be relocated to sites 
with similar aspect, soil type, elevation, hydrology, 
precipitation, and community associations in order to 
increase chances of success (Bowler and Hager 2000). 
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Function 
Ecosystem functions can be described as the ecological 
processes that control the �uxes of energy, nutrients, and 
organic matter through an environment. �ese functions 
include primary production, decomposition of dead 
matter, and nutrient recycling. �ere are a number of 
direct and indirect e�ects of burn severity on nutrient 
cycles in forested systems, both long- and short-term. Fire 
changes the form, distribution, and amount of nutrients. 
It also changes plant species composition, plant growth, 
and soil biota (Wan et al. 2001). Such changes in species 
composition and structure, in turn, will a�ect nutrient 
composition and nutrient turnover rates (Raison et al. 
2009). For instance, researchers have found that soil 
carbon increases with the age of forests, while nutrient 
availability o�en decreases (Raison et al. 2009). Likewise, 
tree regeneration rates in�uence the rate of carbon recovery 
in stands that have experienced extensive tree mortality. 
Carlson et al. (2012) found that severely burned stands 
recovered carbon about 20 years more slowly than stands 
that had lower mortality rates and higher regeneration 
rates. Stands with high rates of regeneration may recover 
carbon stocks 30–45 years sooner than those with little to 
no regeneration. 
 
Fire and Soil Erosion
Following low- to moderate-severity wild�res, the 
remaining organic material, in addition to needle cast from 
surviving trees, may form an adequate amount of surface 
cover (Cerdà and Doerr 2008, Pannkuk and Robichaud 
2003, Robichaud 2009) and emergency treatments may be 
unnecessary. According to MacDonald (2013) erosion rates 
are minimized, and in�ltration is maximized, if there is at 
least 60–70 percent surface cover. Surface cover includes 
objects that are either too large to be washed away in runo� 
or that are attached to the soil surface, such as rocks, twigs, 
logs and cones, pine needles and leaves, live vegetation, and 
biological soil crusts.
 However, severe �res produce signi�cantly di�erent 
results since most organic matter on the soil surface is 
gone. For example, in a mixed-severity �re in an Arizona 
ponderosa pine forest, runo� following the �re was more 
than eight times greater on a severely burned watershed 
than on a comparable unburned area during autumn rains 
(Campbell et al. 1977). Runo� was 3.8 times higher the 
following year in the severely burned watershed. In the 
year following the �re, the runo� in the severely burned 
watershed carried approximately 1.7 tons per acre of 
sediment compared to only a few pounds per acre in the 
unburned watersheds (Campbell et al. 1977). Other more 
recent large wild�res have also been observed to produce 
high �ows and sediment yields (Neary et al. 2006). E�ects 
of post-�re soil water repellency will generally break down 
within approximately one to three years, but have been 
observed to last as long as four to six years (Doerr et al. 
2009).

 While such losses occur in upland forested areas, the 
resulting �ows also signi�cantly a�ect lower level riparian 
and aquatic environments (Long et al. 2005). Some of the 
dynamics associated with such erosion may be desirable for 
rejuvenating riparian and aquatic systems, but when such 
impacts occur across large, diverse areas and/or in areas 
where important species exist, stabilizing the situation may 
be a real concern to management e�orts. 
 �e success of early BAER treatments varies by type of 
treatment, treatment combinations, and environmental 
conditions, and carries implications for long-term health 
and restoration of an ecosystem. Long-term monitoring 
of treatments can allow for information to be accessible to 
BAER teams to further re�ne future treatments (Robichaud 
et al. 2009). Dry mulch treatments have been more e�ective 
at maintaining surface cover and increasing soil moisture 
retention than some other options, such as hydromulches 
(Wagenbrenner et al., 2006, Bautista et al. 2009, Robichaud 
et al. 2010, Vallejo et al. 2012). For example, when a roughly 
1-inch thick layer of wood shreds was applied to at least 60 
percent of the surface burned in the Schultz Fire, it allowed 
vegetation to emerge and kept the soil more moist and better 
protected against accelerated erosion on steeper slopes (>35 
percent) than a similar application of agricultural straw (R. 
Steinke, 2013, personal observation). Seeding immediately 
a�er �re is o�en ine�ective at reducing bare soil cover 
enough to slow erosion. Stella et al. (2010) observed that 
seeding with wheat signi�cantly decreased bare ground 
enough to protect the area from most rainstorm events on 
only one of three �res, due primarily to increased litter cover 
from senesced, or dead, wheat.
 During a severe �re, soil seed banks may be sterilized 
and much of the aboveground vegetation destroyed, 
so there may be large areas devoid of living vascular 
plants. Recolonization of some microorganisms is highly 
dependent on restoration of the plant community following 
wild�re. Non-spore forming fungi, some nitrifying bacteria 
and protozoa are particularly sensitive to �re. Sterilization 
of the �rst few centimeters of soil may or may not occur, 
depending on the �re intensity and temperature, length 
of time that the soil is heated, and on soil moisture at the 
time of �re. Some microorganisms and fungi produce 
spores that allow them to become dormant and to survive 
�re. Filamentous fungi, including mycorrhizal fungi, are 
perhaps the most a�ected of any group of soil organisms by 
�re intensity and burn severity, as well as the e�ects of �re 
on their host plants. �ose mycorrhizas in the deepest soil 
layers generally survive, while those in the organic horizon 
are more prone to the negative e�ects of �re. E�ects may be 
less severe in dry environments because mycorrhizas tend 
to live deeper in the mineral soil in these environments 
and receive more protection from the damaging impact 
of �re (Stendell et al. 1999, Mataix-Solera 2009). Densities 
of arbuscular mycorrhizas may increase rapidly following 
�re (Korb 2003), depending on the availability of host 
plants (and organic substrates for ectomycorrhizal fungi 
(N. Johnson, 2013, personal communication)). Return of 
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many types of soil organisms to pre-�re levels may take 
several years or even decades, depending on the physical 
environment (Mataix-Solera et al. 2009, Holden et al. 2013). 
 See Cerdá and Robichaud (2009), the USFS Moscow 
Fire Science Lab website (http://forest.moscowfsl.wsu.edu/
cgi-bin/engr/library/searchpub.pl?author=Robichaud), 
and the Colorado State University Department of Forest, 
Rangeland and Watershed Stewardship (http://warnercnr.
colostate.edu/~leemac/publications.htm) for more 
detailed information about �res, soils, and restoration 
strategies including erosion barriers, hillslope treatments, 
scari�cation, spreading slash, and seeding.

Landscape Context and Integrity  
Some important and common threats to severely burned 
forest sites from surrounding landscapes include domestic 
and wild grazers, which may feed on newly seeded areas or 
planted trees (Allen 1996) and the introduction of invasive 
plants that may disperse or be inadvertently transported 
into burned areas (Davies and Sheley 2007). �e e�ect of 
subsequent wild�res (reburns) on areas that have already 
burned is another landscape context issue. Land managers 
and researchers have observed that both shrub�elds and 
hyper-dense forests are subject to high-severity reburns 
in the Southwest. For example, Savage and her colleagues 
(2013) have noted that some New Mexico forests that 
burned in high-severity �res in the 1950s and converted to 
shrub�elds and grasslands, have reburned in roughly the 
last decade, leading to a trend of reburning that may not be 
conducive to pine regeneration. 
 Stoddard (2011) compiled reference conditions for 
southwestern forest structural characteristics. Although few 
studies have quanti�ed reference conditions and variability 
at the landscape scale (but see Roccaforte 2010), stand-
scale data from multiple studies across the region provide 
some inferences concerning overall ranges of variability 
(Robichaud et al. 2009).
 Determining when and where it makes sense to intervene 
and where natural recovery processes may be deemed 
su�cient within high-severity burn patches requires careful 
consideration of a number of site-speci�c interactive 
factors. Moreover, decisions about intervention or natural 
recovery will need to be made within a broad landscape 
context as well as overall costs and bene�ts. Finally, 
long-term monitoring is crucial in order to determine if 
ecosystem changes are occurring and how to best respond 
to them.

Conclusions and Summary
•	 Ecological restoration requires an understanding of 

natural ranges of variability from investigation of 
reference conditions (e.g., scale of stand-replacing 
patches, community types, and size classes of snags and 
coarse woody debris) in order to guide management 
activities.

• Long-term planning for reestablishing characteristic 

structural attributes is critical in post-�re restoration 
because of the in�uence structure has on ecosystem 
processes and functions.

• Returning structural attributes to a burned forest may 
involve restoration activities such as tree planting, 
managing natural regeneration, and manipulating levels 
and types of dead wood. 

• Restoring reference structure also requires consideration 
of the spatial pattern of planted trees.

• Where natural regeneration is adequate, maintenance 
treatments, such as thinning or application of prescribed 
�re, will likely be needed a�er trees are established 
(Yocom 2013). 

• Restoration may be necessary where natural tree 
regeneration is inadequate or expected to be inadequate 
in a reasonable period of time. 

• Many non-native plant species are well-adapted to �re 
and can capitalize on open niches created post-�re faster 
than their native counterparts. Transformer species, 
such as knapweeds and annual bromes, are of particular 
concern. 

• Long term, post-�re seeding activities involve 
conservation and biodiversity goals and objectives that 
may be di�erent from those of BAER. 

• While the short-term e�ects of �re on nutrient cycling 
are fairly well described, the long-term e�ects of high-
severity �re on nutrient dynamics are largely unknown. 

• Stands with high rates of regeneration may recover 
carbon stocks much sooner than those with little to no 
regeneration. 

• Maintaining or establishing a 60–70 percent surface 
cover on vulnerable areas minimizes erosion and 
maximizes the in�ltration rate.

• Prevention of future crown �res in previously burned 
areas, by thinning dense, young stands and reestablishing 
a surface-�re regime, will promote resilience. 

• Determining how soon prescribed �re can be applied 
following wild�re or tree planting is an area that needs 
more research.
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