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ABSTRACT 

In a typical composite interval mapping experiment, 
the probability of obtaining false QTL is likely to be 
at least an order of magnitude greater than the 
nominal experiment-wise Type I error rate, as set by 
permutation test. F2 mapping crosses were simulated 
with three different genetic maps. Each map con- 
tained ten QTL on either three, six or twelve linkage 
groups. QTL effects were additive only, and herita- 
bility was 50%. Each linkage group had 11 evenly- 
spaced (10 cM) markers. Selective genotyping was 
used. Simulated data were analyzed by composite 
interval mapping with the Zmapqtl program of QTL 
Cartographer. False positives were minimized by us- 
ing the largest feasible number of markers to control 
genetic background effects. Bootstrapping was then 
used to recover mapping power lost to the large 
number of conditioning markers. Bootstrapping is 
shown to be a useful tool for QTL discovery, although 
it can also produce false positives. Quantitative boot- 
strap support—the proportion of bootstrap replicates 
in which a significant likelihood maximum occurred 
in a given marker interval—was positively correlated 
with the probability that the likelihood maxima re- 
vealed a true QTL. X-linked QTL were detected with 
much lower power than autosomal QTL. It is sug- 
gested that QTL mapping experiments should be 
supported by accompanying simulations that repli- 
cate the marker map, crossing design, sample size, 
and method of analysis used for the actual experi- 
ment. 
 
Keywords: Composite Interval Mapping; QTL  
Cartographer; Selective Genotyping; Power; Bootstrap; 
Permutation Test; False Discovery Rate 

1. INTRODUCTION 

Composite interval mapping [1] is frequently used to 

locate genes that influence quantitative phenotypes. How 
good is the typical analysis: that is, how powerful is it, 
and how honest is it? In the case of quantitative trait lo- 
cus (QTL) mapping, we want an analysis that maximizes 
our ability to detect QTL. We also want an honest analy- 
sis—defined as one that detects only true QTL. Honesty 
and power are conflicting goals. In this paper, I use 
simulated crosses with three different genetic maps to 
assess the honesty and power of a common QTL map- 
ping design (F2 intercross) as analyzed by composite 
interval mapping. I show that the conflict between hon- 
esty and power can emerge in unexpected ways. I argue 
that many, perhaps almost all, interval mapping analyses 
have produced false positive results: that is, they are not 
very honest. I suggest a general strategy to improve hon- 
esty, and to recover some of the power lost in doing so. 

It is widely appreciated that typical QTL mapping 
studies have modest power to detect QTL of small to 
moderate effect [2,3]. Strategies for increasing power are 
well-known and include increasing the sample size of 
recombinant genotypes, selective genotyping [4], and 
using recombinant inbred lines (RIL). The last strategy 
works by effectively increasing heritability, because phe- 
notypes can be measured on many individuals of each 
recombinant genotype. Less attention has been paid to 
the problem of false positives. In a typical analysis, a 
likelihood map is evaluated with respect to a significance 
threshold that is set by many random permutations of the 
genotypic and phenotypic data. Likelihood maxima that 
exceed the threshold significance level are taken to be 
QTL. It appears to be generally assumed that the fre- 
quency of false positives is equivalent to the nominal 
Type I error rate. That is, if a permutation test is used to 
establish a 5% experiment-wise Type I error rate, then 
there is only a 5% probability that any given experiment 
will detect one or more false positives. 

Commonly, permutations are done by randomizing 
phenotypes over intact multilocus marker genotypes un- 
der the assumption of complete exchangeability [5]. This 

OPEN ACCESS 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenKnowledge@NAU

https://core.ac.uk/display/151422258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Philip.Service@nau.edu


P. M. Service / Open Journal of Genetics 3 (2013) 127-140 128 

is sometimes referred to as the “standard” permutation 
scheme. Alternative schemes have been proposed for 
special cases. For example, Zou et al. [6] show that naïve 
application of the standard permutation method to a par- 
ticular experimental design (RIL) can lead to grossly 
inflated Type I error rates, that is, high false positive 
frequencies. However, relatively little attention has been 
given to the effectiveness of permutation tests for con- 
trolling Type I error rates in the case of intercross map- 
ping populations (e.g., F2) when there are multiple linked 
QTL, and when composite interval mapping is used for 
analysis. The simulated map used by Churchill and Do- 
erge [5] to illustrate the “standard” permutation scheme 
included only two unlinked QTL. They stated that “fur- 
ther work is needed on the problems of modeling QTL 
effects, especially with regard to the multiple QTL detec- 
tion problem” (my emphasis added). Doerge and Chur- 
chill [7] proposed two sequential permutation procedures 
in which each subsequent step is conditioned on already 
known (or inferred) QTL. The main purpose of their 
modified permutation methods is to increase the likeli- 
hood that QTL of small effect will be detected: that is, to 
reduce the Type II error rate and increase power. They 
simulated a map with four linkage groups and three QTL, 
two of which were linked. Single-marker t-tests, not 
composite interval mapping, were used to detect QTL. 
They appear to have obtained a relatively high number of 
false positive results with the larger of their two sample 
sizes (their Table 4), but no specific suggestions were 
made for addressing that problem. Li et al. [8] is an ex- 
ception to the general rule of ignoring the problem of 
false positives when there are multiple linked QTL. In a 
series of simulated backcrosses in which they used the 
“standard” permutation method to set significance thres- 
holds in the context of composite interval mapping, they 
observed a spectacularly high false positive frequency, in 
some instances more false positives than true QTL (see 
their Figure 4(B)). But, again, the thrust of their investi- 
gation was to find a method to increase power rather than 
honesty, and little consideration was given to methods to 
reduce the number of false positives.  

The balance between honesty and power is the balance 
between Type I and Type II errors. Lander and Kruglyak 
[9] argued that stringent control of experiment-wise Type 
I error rates in whole-genome scans results in low power 
to detect linkage associations that are present, thus po- 
tentially missing important information. They proposed a 
classification scheme for reporting linkage between 
markers and traits in which the strength of evidence for 
linkage was inversely proportional to the (nominal) ex- 
periment-wise Type I error rate. As an alternative to the 
classification scheme of Lander and Kruglyak, Weller et 
al. [10] proposed that analysis should focus on control- 

ling the false discovery rate (FDR), rather than on con- 
trolling the experiment-wise Type I error rate to some 
arbitrary level, such as 5%. They defined the FDR as the 
proportion of significant tests that are false positives. 
FDR-control methods do not seek to minimize the num- 
ber of false positives. Rather, their purpose is to in- 
crease power while controlling the expected proportion 
of false positives at some specified level, say 20% of all 
putative QTL. Weller et al. [10] present QTL mapping 
simulations in which power is high, as is the likelihood 
that one or more false positives are obtained, but in 
which false positives are a relatively small proportion of 
all putative QTL. Following on Weller et al. [10], there 
has been considerable debate about the appropriate way 
to define and control false discovery rates in genetic 
analyses (e.g., [11]). FDR-control methods have been 
applied to QTL mapping in swine [12] and dairy cattle 
[13], but have not been widely used. This may be be- 
cause of complexity, and lack of suitable software. Also, 
FDR-control methods do not appear to have been evalu- 
ated in the context of composite interval mapping as im- 
plemented by QTL Cartographer. 

QTL Cartographer [14,15] is a free software package 
that implements several interval mapping models, and 
has been commonly used for published studies. The QTL 
Cartographer package also includes a program that per- 
forms “standard” permutations of the data. When using 
composite interval mapping, the investigator can specify 
several options for the analysis: the number of markers 
that are to be used to control for genetic background ef- 
fects (i.e., QTL outside the interval currently being 
tested); the method used to select those markers; and the 
“window size” for excluding markers that are used to 
control genetic background. In the absence of informed 
guidelines, the choice of options is haphazard, at best. 
Frequently, the options chosen are not specified in pub- 
lished works or, when they are, there is often no justifi- 
cation for the values chosen. Simulation results (Figure 7 
of [8]) and anecdotal evidence (e.g., [16,17]) indicate 
that different option settings can produce very different 
likelihood maps. How are we to choose the “best” set- 
tings and produce the “best” map? 

I suggest a stepwise approach to interval mapping in 
which the initial analysis maximizes honesty while sacri- 
ficing power. This first-stage analysis emphasizes control 
of genetic background effects. We can be more confident 
that QTL detected in this initial analysis are true QTL: 
for some genetic maps at least, the realized experi-ment- 
wise Type I error rate can approach the nominal error 
rate that is implied by permutation analysis. Bootstrap- 
ping can then be used in a subsequent analysis to detect 
additional QTL, but at the cost of increasing the likeli- 
hood of false positive results. Bootstrapping has been 
advocated as a method for estimating confidence inter- 
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vals for QTL location [18-20]; and although the capabil- 
ity is included within QTL Cartographer, bootstrapping 
seems not to have been widely used in QTL mapping 
studies. Here, in addition to using bootstrapping to esti- 
mate confidence intervals for QTL location, I show that 
it can also be used, with caution, to “discover” QTL that 
are not revealed in the first stage of analysis. 

2. MATERIALS AND METHODS 

2.1. Crosses 

Crosses were simulated with programs written in C by 
the author (available upon request). I used a standard F2 
mapping design. Inbred parental lines were fixed for al- 
ternative QTL alleles, and additive allelic effects on the 
phenotype were all in the same direction within parental 
lines. Three different genetic maps consisting of three, 
six, or twelve linkage groups (Map-3, Map-6, and 
Map-12, respectively) were simulated (Table 1). Each 
chromosome had 11 evenly spaced markers (10 centi- 
morgan [cM] intervals), and each map contained 10 QTL 
(autosomal and X-linked) with additive effects only (no 
dominance and no epistasis). QTL were deliberately 
placed on each map to control their number and spacing 
on each chromosome. In no case were QTL placed in 
adjacent marker intervals, and in only one case where 
two QTL separated by a single interval. Effects of each 
QTL ranged from approximately 1.3% to 26.3% of the 
total additive genetic variance. F2 phenotypes were gen- 
erated by summing the additive effects of QTL, and then 
adding a random normally-distributed environmental 
deviation that was scaled to produce 50% heritability (so  

that individual QTL effects ranged from approximately 
0.7% to 13.2% of total phenotypic variance). Simulated 
populations were dioecious with XX-XY sex determina-
tion, with chromosome 1 being the X chromosome. 
There were no Y-linked QTL.  

I choose to use selective genotyping because it in- 
creases power to detect QTL [4,21]. Total F1 and F2 
population sizes ranged from 1000 to 10,000 individuals; 
and sample sizes ranged from 250 to 1000, evenly di- 
vided between the upper and lower tails of the pheno- 
typic distributions (Table 2). Phenotype and marker ge- 
notype data for selectively sampled F2 individuals were 
formatted for input to QTL Cartographer (qtlcart.cro 
format). “Non-genotyped” individuals were excluded from 
the mapping analysis.  

One experiment was repeated with crosses simulated 
by the Rcross module of QTL Cartographer. I did this in 
order to verify that my results were not influenced by 
peculiarities of my own simulation program, or due 
solely to selective genotyping. Data sets simulated by 
Rcross differed from mine in that the population was 
monoecious (without sex chromosomes), and they were 
not selectively genotyped.  

2.2. QTL Mapping 

All mapping was done with the Unix release of QTL 
Cartographer version 1.17d. Marker maps were prepared 
in the format (qtlcart.map) that is used by QTL Cartog- 
rapher. I used the defined maps, rather than maps esti- 
mated from the simulated cross data, such as might be 
made by Mapmaker/EXP [22,23]. The Zmapqtl module  

 
Table 1. Genetic maps. All maps have 11 markers per chromosome with 10 centimorgan (cM) intervals between markers. 

QTL 
Map-3 

(X chromosome + 2 autosomal pairs) 
(33 marker loci) 

Map-6 
(X chromosome + 5 autosomal pairs) 

(66 marker loci) 

Map-12 
(X chromosome + 11 autosomal pairs)  

(132 marker loci) 

 Linkage 
group-interval 

Map position 
(cM) 

Additive effect 
(% Va) 

Linkage 
group-interval

Map position 
(cM) 

Additive effect 
(% Va) 

Linkage 
group-interval 

Map position 
(cM) 

Additive effect 
(% Va) 

1 1-1 3.6 2.70 (13.2) 1-2 18.3 1.91 (6.6) 1-4 33.4 2.70 (13.2) 

2 1-5 47.3 1.91 (6.6) 1-6 51.9 3.81 (26.3) 3-8 71.8 4.47 (26.3) 

3 1-8 70.8 0.85 (1.3) 3-1 7.7 3.16 (13.2) 5-9 85.9 1.00 (1.3) 

4 2-2 18.1 2.24 (6.6) 3-4 39.1 1.41 (2.6) 6-5 41.0 2.24 (6.6) 

5 2-6 52.9 1.41 (2.6) 3-7 67.8 1.00 (1.3) 7-1* −5.0 1.41 (2.6) 

6 2-9 88.6 4.47 (26.3) 4-5 42.5 4.47 (26.3) 8-10† 103.0 2.24 (6.6) 

7 3-2 14.2 3.16 (13.2) 4-9 80.3 2.24 (6.6) 9-3 27.2 4.47 (26.3) 

8 3-5 46.7 1.41 (2.6) 5-7 66.7 1.00 (1.3) 10-1 9.2 3.16 (13.2) 

9 3-7 66.9 4.47 (26.3) 6-3 29.0 3.16 (13.2) 11-3 26.7 1.41 (2.6) 

10 3-10 98.3 1.00 (1.3) 6-10 96.2 1.41 (2.6) 12-10 92.2 1.00 (1.3) 

*QTL is 5 cM to the left of the first marker interval. †QTL is 3 cM to the right of the last marker interval. 
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Table 2. Mapping experiments and likelihood ratio peaks by type. Results of 1000 simulated crosses for each map and experiment. 

Genetic 
map and 

experiment* 

Cross 
size 

Number 
genotyped 

Z
m

ap
qt

l 
m

od
el

 SRmapqtl 
regression 
method† 

Pin/Pout 
(SRmapqtl)‡

Number of 
background 
markers†† W

in
do

w
 

si
ze

 (
cM

) 

Threshold 
likelihood 

ratio 

Number of significant 
likelihood map peaks in 

1000 simulated 
experiments (by peak type)‡‡ 

Proportion 
of peaks 
that are 

true 
QTL** (%)

         0 1 2 3 4  

Map-3               

a 1000 500 6 FB 0.1/0.1 6.8 0 14.7 821 4198 1848 2739 745 58.4 

b 1000 500 6 FS – all 0 14.5 614 3368 920 1451 140 66.0 

c 1000 500 6 FB 0.1/0.1 8.2 10 14.6 821 4205 1850 2744 745 58.4 

d 1000 500 6 FS – all 10 14.8 595 3335 838 1354 105 67.0 

e 5000 1000 6 FS – all 10 14.0 809 5068 1302 2685 557 61.1 

f 5000 1000 6 FS – all 0 14.2 798 5102 1193 2653 550 61.1 

Map-6               

a 2000 1000 1 – – all – 16.5 0 3574 1002 470 88 89.1 

a1 1500 1500 1 – – all – 15.8 0 4660 1176 553 23 91.0 

b 2000 1000 6 FB 0.1/0.1 12.4 0 16.4 0 5119 2468 2147 2169 63.7 

b1 1400 1400 6 FB 0.1/0.1 13.0 0 16.5 0 5890 2737 2510 2204 64.7 

c 2000 1000 6 FB 0.05/0.05 9.8 0 15.8 0 5237 2480 2258 2259 63.1 

d 2000 1000 6 FB 0.1/0.1 11.0 10 15.9 0 5120 2517 2163 2234 63.5 

Map-12               

a 1000 250 6 FB 0.1/0.1 15.8 0 21.0 0 3380 1253 1768 803 64.3 

b 1000 500 6 FB 0.1/0.1 15.4 0 19.3 0 4793 1203 2325 956 64.6 

c 1000 500 6 FB 0.05/0.05 10.8 0 18.3 0 4905 1218 2352 989 64.5 

d 1000 500 6 FB 0.1/0.1 16.4 10 18.8 0 4816 1253 2378 939 64.7 

e 1000 500 6 FS – 30 0 21.3 0 4341 1274 2297 644 65.6 

f 1000 500 6 FS – 30 10 21.1 0 4292 1358 2308 667 65.5 

g 1000 500 1 – – all – 23.4 0 2579 510 252 34 91.5 

h 2000 1000 1 – – all – 19.5 0 4575 583 560 34 89.7 

i 5000 1000 6 FS – 30 0 19.9 0 6880 1429 3400 1035 65.2 

j 5000 1000 6 FS – 30 10 19.5 0 6795 1497 3438 983 65.2 

k 10,000 1000 6 FB 0.1/0.1 19.0 0 18.3 0 7494 1332 3371 1286 65.5 

*See Table 1 for a description of genetic maps. †FB is forward-backward stepwise regression, FS is forward stepwise regression. ‡Pin and Pout are the P-values 
used by SRmapqtl to admit (forward regression) and discard (backward regression) markers when using the FB option. ††Average of five simulations in cases 
where fewer than all markers were used. ‡‡See text for explanation of likelihood ratio peak types. **Calculated as (Sum of Type 1 and Type 2 peaks)/(Total 
number of peaks). 
 
of QTL Cartographer was used to produce likelihood 
maps. I used the Model 1 and Model 6 options in 
Zmapqtl. Both models implement composite interval 
mapping. They differ in that Model 1 uses all markers to 
control genetic background effects, whereas Model 6 is 
intended to be used with a subset of conditioning back- 

ground markers that are selected by the SRmapqtl mod- 
ule. For Model 6, I used both the forward stepwise and 
forward-backward regression methods for selecting 
background markers, and used varying P-values for ac- 
cepting and retaining markers in the regression models. 
Zmapqtl Model 6 also requires that the user specify the 
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maximum number of background markers and the win- 
dow size to be used in the analysis. The window is used 
to exclude nearby markers from the set of markers used 
to control background effects. For example, suppose the 
interval currently being tested for QTL is between mark- 
ers at positions 30 and 40. If the window size is 10 cM, 
then any markers between positions 20 - 30 and 40 - 50 
will be excluded from the set of background markers. 
The intent is to prevent the effect of a QTL in the interval 
being tested from being “disguised” by a nearby back- 
ground marker that may also be in strong linkage dis- 
equilibrium with the QTL. The output from Zmapqtl 
includes several different likelihood ratio test statistics 
(hypothesis tests). In this paper, I report only results for 
the overall test for a QTL, referred to as H3/H0 [15]. 

Threshold levels for assessing the significance of 
likelihood map peaks were set by “standard” permutation 
tests that were done with Unix shell scripts based on the 
Permute.csh script that is provided with the QTL Car- 
tographer package. For each mapping analysis (i.e., each 
combination of cross size, sample size, genetic map, and 
SRmapqtl and Zmapqtl options), 500 permutations were 
done for each of five different simulated crosses. Final 
threshold levels were obtained by averaging the likeli- 
hood ratio values corresponding to the experiment-wise 
95th percentile for each set of permutations. Thus, the 
nominal Type I experiment-wise error rate was 5%. 

Each mapping analysis was performed on 1000 simu- 
lated crosses. It would have been prohibitively time 
consuming to repeat the permutation analysis for each of 
the 1000 data sets. Therefore, I used the mean threshold 
significance levels that were based on permutations of 
five data sets, as described. In practice, there was little 
variation in threshold significance levels obtained from 
the five replicate crosses that were permuted. The Eqtl 
module of QTL Cartographer was used to extract sig- 
nificant likelihood map peaks from each of the 1000 rep- 
licates for each mapping analysis.  

2.3. Assessment of Map Honesty 

Likelihood map peaks that exceeded the significance 
threshold for each analysis were assigned to five catego- 
ries. Type 1 peaks correspond to QTL assigned to the 
proper marker interval. Type 2 peaks correspond to QTL 
assigned to an interval next to the correct interval. In 
order for a peak to be classified as Type 2, there could 
not also have been a Type 1 peak in an adjacent interval. 
Type 1 and 2 peaks are taken to represent “true” or hon- 
est QTL. They define the power of the mapping analysis. 

A common problem in interval mapping is the pres- 
ence of shadow or “shoulder” likelihood peaks. These 
are maxima that occur in intervals that do not contain a 
QTL, but are on either side of an interval that does con- 

tain a QTL and that also has a significant likelihood peak. 
It might be expected that the likelihood ratio associated 
with a shadow peak will be lower than the ratio for the 
neighboring “true” peak. That expectation will be evalu- 
ated. Shadow peaks are classed as Type 3. Both Type 2 
and Type 3 peaks occur in intervals next to intervals with 
QTL. They differ in that Type 3 peaks are always adja- 
cent to Type 1 peaks, whereas Type 2 peaks are never 
adjacent to Type 1 peaks. Significant likelihood peaks 
that were not adjacent to an interval with a QTL were 
classed as Type 4. Type 4 peaks are considered here to be 
unambiguously false QTL. Type 3 peaks are also mis- 
leading in that they suggest the presence of two different 
QTL in neighboring intervals. Because I constrained the 
genetic maps to not have QTL in adjacent intervals, Type 
3 peaks may also be considered false QTL in the context 
of these simulations. Likelihood peaks that could not be 
assigned to Types 1-4, were Type 0. In practice, Type 0 
peaks occurred only in the analysis of Map-3 which had 
a pair of QTL that were separated by a single interval: 
Peaks that occurred in the intervening interval were am- 
biguous. 

2.4. Bootstrapping 

For each of the three maps that were simulated, 15 
crosses (out of 1000 analyzed for a particular cross and 
sample size and set of Zmapqtl parameters) were 
non-randomly selected for bootstrap analysis. In each 
case, I chose five simulated crosses that resulted in like- 
lihood maps with a relatively high incidence of faults 
(Type 4 and Type 3 peaks); five crosses that had low 
power to detect QTL but were not otherwise problematic; 
and five crosses that correctly identified a relatively high 
number of QTL and were generally free of faults. For 
convenience, I refer to these as “fault-prone”, “low 
power”, and “high power” data sets, respectively. One 
thousand bootstrap samples of each data set were interval 
mapped in exactly the same manner as the “actual” data 
(i.e., with the same likelihood ratio significance thresh- 
old, same option choices for Zmapqtl, etc.). Bootstrap 
analysis was automated with shell scripts based on the 
Bootstrap.csh script that is distributed with QTL Cartog- 
rapher. 

The results of each bootstrap analysis were summa- 
rized graphically in a manner that is superficially similar 
to a likelihood map. In this case, however, the horizontal 
axis denotes marker intervals rather than map positions, 
and the vertical axis represents the frequency of signifi- 
cant likelihood peaks that occurred in each marker inter- 
val, summed over 1000 replicate bootstraps (Figure 1). 
These “bootstrap maps” are multimodal and each mode 
(above a threshold frequency) was evaluated for corre- 
spondence to a QTL. Modes were classified in the same 
way as likelihood map maxima; except that there was no  
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Figure 1. Likelihood (top) and bootstrap (bottom) maps for a representative high power replicate of the Map-3b experiment (repli- 
cate #208). Likelihood map maxima (top) and bootstrap distribution modes (bottom) are labeled to indicate associated QTL or arti- 
facts: The number in parentheses is the peak type (see Materials and Methods). The broken line on the likelihood map indicates the 
experiment-wise threshold value established by permutation test. The diamonds on that line indicate the true positions of the QTL. 
The broken line on the bootstrap map is the arbitrary threshold of 50 replicates below which bootstrap map modes are disregarded. 
 
such thing as a Type 3 (shadow) mode because, except in 
the case of equal frequencies, it is not possible for two 
consecutive intervals of a frequency distribution to both 
be modal. The mean and standard deviation of map posi- 
tion was computed for each modal interval, using all 
significant likelihood peaks that occurred within that 
interval over the 1000 bootstrap analyses. 

3. RESULTS 

 OPEN ACCESS 

3.1. Honesty (False Positives) 

In most cases, and especially when using SRmapqtl to 
select background markers, the false positive rate far 
exceeded the nominal 5% experiment-wise error rate (50 
replicates with one or more falsely significant likelihood 
ratio peaks per 1000 simulated experiments) (Table 2). 
That was true even when the false positive rate was 
measured only by Type 4 peaks. Larger sample sizes 
increased the number of false positives (e.g., compare 

Map-3 experiment d vs e; and Map-12 experiment a vs 
b). The false positive rate also differed among the three 
simulated maps, although comparisons are problematic. 
For a given sample size, and when using all markers to 
control genetic background, Map-12 gave the fewest 
false positives and Map-3 the most. That seems reason- 
able given that all Map-12 QTL were on separate linkage 
groups, whereas Map-3 had 3-4 QTL per linkage group 
(Table 1).  

The number of false positive likelihood peaks was 
strongly dependent on, and inversely proportional to, the 
number of markers used to control genetic background 
effects (Table 2). When all markers were used to control 
background, the false positive rate, as measured by Type 
4 peaks, approached or bettered the nominal 5% experi- 
ment-wise error rate, especially for Map-6 and Map-12 
(e.g., Map-6 experiment a, and Map-12 experiments g 
and h). When SRmapqtl was used to select background 
markers, the false positive rate by Type 4 peaks often 
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approached, and sometimes exceeded, one per simulated 
experiment. The false positive rate was especially high 
for Map-6 (>2 Type 4 peaks per simulated cross) when 
the number of markers used to control genetic back- 
ground was ≤13 (Map-6 experiments b, b1, c, and d). 
Type 4 peaks were non-randomly distributed: most fre- 
quently they were two intervals removed from QTL of 
large effect. For example, for Map-3 experiment b, all 
140 Type 4 peaks occurred in intervals 1-10 (interval 10 
on chromosome 1) and 2-4, each of which is two inter- 
vals from QTL in 1-8, and 2-2 and 2-6. Similar results 
were obtained for other experiments with Map-3, and 
with Map-6 and Map-12. One exception occurred for 
Map-6 experiment a: 57 of 88 Type 4 peaks occurred at 
the right end of chromosome 1 (X chromosome), which 
was four intervals from the nearest QTL (Table 1). Evi- 
dence suggests that this anomaly is due to X-linkage. A 
similar bias was not observed for Map-6 experiment a1, 
in which chromosome 1 was an autosome. 

The number of Type 3 (shadow) peaks always ex- 
ceeded the number of Type 4 peaks (Table 2). As was the 
case for Type 4 peaks, the number of Type 3 peaks in- 
creased with sample size, was greatest for Map-3 and 
least for Map-12, and was inversely proportional to the 
number of background markers. However, even when all 
markers were used to control genetic background, the 
number of Type 3 peaks was about an order of magnitude 
greater than 50 per 1000 simulated crosses (e.g., Map-3 
experiment b, Map-6 experiment a, and Map-12 experi- 
ment h). Type 3 peaks were most likely to be associated 
with QTL of large effect. For example, for Map-3 ex- 
periment b, 84.7% of the Type 3 peaks were associated 
with QTL 6 or 9, each of which accounted for 26.3% of 
the additive genetic variance (Table 1). Similar results 
were obtained for other maps and experiments.  

For most QTL that had companion shadows, the 
shadow peak was usually lower than the true peak (i.e., 
the peak in the correct interval). This suggests that it is 
possible to make an educated guess about which of a pair, 
or triplet, of adjacent peaks identifies the correct marker 
interval. However, every mapping experiment will be 
different, and even within experiments there may be dif- 
ferences among the QTL. For example, for Map-3 ex- 
periment b, seven QTL had 10 or more shadow peaks 
over the 1000 simulated crosses. For six of those seven, 
the true peak was higher than the shadow peak more than 
50% of the time (from 99.7% of the time for QTL 6 to 
59.1% for QTL 5). However, for QTL 10, in only 1/61 
cases (=1.6%) was the true peak higher than its shadow. 
QTL 10 is in the right—most interval (interval 10) of 
chromosome 3. It is a QTL of small effect and is located 
three intervals away from a locus of large effect, QTL 9 
(Table 1). That raises the possibility that many of the 
peaks obtained in interval 9 were actually Type 4 peaks 

attributable to QTL 9, rather than shadows of QTL 10 
(and rather than Type 2 peaks associated with QTL 10, 
which would also occur in interval 9). Incorrect char- 
acterization of the peaks in interval 9 is further sup- 
ported by the anomalously high power of the analysis to 
detect QTL 10 in Map-3 (Table 3), given its small effect 
(Table 1). For Map-6 and Map-12, it was also generally 
true that shadow peaks were lower than their associated 
true (Type 1) peaks (data not shown). 

Within the scope of these experiments, the window 
size used for Model 6 of Zmapqtl, and the regression 
method and Pin/Pout values used by SRmapqtl had little 
effect on the false positive rate (e.g., Map-3 experiment a 
vs c, Map-6 experiment b vs c, and Map-12 experiment b 
vs c vs d).  

3.2. Power 

The power to detect QTL, as measured by Type 1 and 
Type 2 peaks, was inversely proportional to the number 
of markers used to control genetic background effects 
(Table 2). When all markers were used to control back- 
ground, the power to detect autosomal QTL that ac- 
counted for less than 3% of the phenotypic variance was 
generally low (Map-3 experiment b, Map-6 experiments 
a and a1, Map-12 experiments g and h) (Table 3). When 
SRmapqtl was used to select a subset of conditioning 
markers, power to detect QTL of small effect was con- 
siderably higher (e.g., Map-6 experiment b vs a, and 
Map-12 experiment c vs g) (Table 3). As expected, 
power increased with experiment size (e.g., Map-3 ex- 
periment e vs d, Map-12 experiment h vs g) (Table 2). 
When a restricted set of markers was used to control 
background and at least 1000 individuals were genotyped, 
power was very good: autosomal QTL that accounted for 
3% or more of the phenotypic variance were detected 
100% of the time in some experiments (Map-6 experi- 
ments b, b1, and c; Map-12 experiments i and k) (Table 
3). 

The anomalously high power to detect QTL 10 on 
Map-3, which accounted for only 0.7% of the phenotypic 
variance (Tables 1 and 3), was perhaps due to mischar- 
acterization of peaks in interval 3-9 as Type 2 rather than 
as Type 4, as previously discussed. Type 2 peaks were 
taken to indicate QTL 10, whereas Type 4 peaks would 
have been false positives from the strong QTL 9 which 
was located in interval 3-7. In fact, for Map-3 experiment 
b, Type 2 peak support for QTL 10 outweighed Type 1 
support by 559 to 62 in 1000 simulated crosses, as would 
be expected if Type 2 peaks were really mischaracterized 
Type 4 peaks.   

X-linked QTL were detected with much lower power 
than autosomal QTL (Table 3). That is presumably a re- 
sult of the absence of X chromosome crossing over in 

1 males and hemizygosity of F2 males. F 
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Table 3. QTL effects and power to detect QTL. For example, for Map-3, experiment a, QTL 5 and 8 each accounted for 1.3% of Vp 
and were detected in 54.2% of simulated crosses. 

QTL effect (%Vp)
†—autosomal loci QTL QTL effect (%Vp)

†—X-linked loci QTL Genetic map and  
experiment* 

0.7 1.3 3.3 6.6 13.2 0.7 1.3 3.3 6.6 13.2 

Map-3           

 QTL 10 QTL 5, 8 QTL 4 QTL 7 QTL 6, 9 QTL 3  QTL 2 QTL 1  

a 69.8 54.2 81.4 98.1 100.0 4.4 – 17.2 12.9 – 

b 62.1 25.6 35.8 73.2 100.0 1.8 – 1.6 3.1 – 

e 92.9 69.5 90.0 100.0 100.0 4.4 – 5.3 5.4 – 

Map-6           

 QTL 5, 8 QTL 4,10 QTL 7 QTL 3, 9 QTL 6   QTL 1  QTL 2

a 3.4 21.9 71.4 98.7 100.0 – – 3.7 – 34.7 

a1 4.9 31.9 84.2 100.0 100.0 – – 27.3‡ – 98.7‡ 

b 37.9 76.5 100.0 100.0 100.0 – – 4.4 – 98.5 

b1 41.1 79.0 100.0 100.0 100.0 – – 97.4‡ – 100.0‡

c 43.1 77.8 100.0 100.0 100.0 – – 5.2 – 98.7 

Map-12           

 QTL 3,10 QTL 5, 9 QTL 4, 6 QTL 8 QTL 2, 7    QTL 1  

b 9.5 33.6 92.8 99.6 100.0 – – – 22.0 – 

c 11.7 36.2 94.8 100.0 100.0 – – – 20.0 – 

d 11.1 33.3 93.0 100.0 100.0 – – – 23.7 – 

e 7.1 24.1 84.7 99.2 100.0 – – – 19.2 – 

g 0.8 3.8 26.0 68.3 89.0 – – – 1.8 – 

h 3.2 19.8 79.0 99.9 100.0 – – – 12.2 – 

i 45.4 81.9 99.9 100.0 100.0 – – – 73.4 – 

k 58.5 94.6 100.0 100.0 100.0 – – – 75.6 – 

*See Tables 1 and 2 for descriptions of genetic maps and experiments. †Percent phenotypic variance (%Vp) based on 50% heritability. ‡Crosses simulated with 
the Rcross module of QTL Cartographer. All chromosomes are autosomes—there is no X-chromosome. 
 
3.3. Rcross Simulations 

Crosses simulated with the Rcross module of QTL Car- 
tographer yielded essentially the same results as crosses 
simulated with my own programs, except for analysis of 
chromosome 1 (Tables 2 and 3: compare Map-6, ex- 
periments a1 vs a, and b1 vs b). Rcross treated chro- 
mosome 1 as an autosome, and so had greater power to 
detect QTL on chromosome 1 (Table 3, Map-6 experi- 
ments a1 vs a, and b1 vs b). 

3.4. Bootstrap Analyses 

Map-3 experiment b, Map-6 experiment a, and Map-12 
experiment h were chosen for bootstrap analysis because 
they yielded some of the best interval mapping results for 

each map, as measured by a relatively low incidence of 
false positives (Table 2). I illustrate the bootstrap analy- 
sis using representative results for one high power, one 
low power, and one fault-prone simulated cross for Map- 
3, together with their corresponding likelihood maps 
(Figures 1-3). For Map-3, bootstrap map modes that had 
a frequency greater than or equal to an arbitrarily chosen 
threshold of 50 were evaluated for corresponddence to 
QTL. 

For the high power data set, the bootstrap map re- 
vealed two more QTL than the likelihood map (QTL 1 
and QTL 8), at the expense of generating one false posi- 
tive result (Figure 1). Although QTL 4 barely exceeded 
the significance threshold on the likelihood map, it had 
strong bootstrap support: it exceeded the threshold like- 
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Figure 2. Likelihood (top) and bootstrap (bottom) maps for a representative low power replicate of the Map-3b experiment (replicate 
#486). See Figure 1 caption for explanation. 
 
lihood ratio in the same interval in 697 out of 1000 boot- 
strap samples (69.7% support). Although there was a 
maximum on the likelihood map that corresponded to 
QTL 8, it was only about half the threshold value, and 
would not have been given serious consideration as a 
true QTL. However, it was supported by 16.8% of the 
bootstrap samples, albeit placed in an adjacent interval 
(Type 2 mode). QTL 10 was more clearly revealed by the 
bootstrap map than by the likelihood map, although in 
both cases assigned to the wrong interval.  

For the low power data set, bootstrapping revealed 
four additional QTL, three of which were placed in the 
correct interval (Type 1 modes) and one in an adjacent 
interval (Type 2 mode) (Figure 2). All four appeared as 
sub-threshold peaks on the likelihood map. The mini- 
mum bootstrap support for these additional QTL was 
31.2%. Bootstrapping also generated one false positive 
(16.2% support). The likelihood map also had two sha- 
dow maxima (Type 3 peaks). These appear simply as 
lower frequency neighbors to Type 1 modal intervals on 
the bootstrap map. 

The likelihood map for the fault-prone data set had 11 

significant maxima: five QTL (two Type 2), four shad- 
ows (Type 3), one false positive (Type 4), and one inde- 
terminate peak (Type 0) that was in the interval between 
QTL 8 and 9 (Figure 3). The bootstrap map yielded eight 
QTL (minimum bootstrap support 12.0%), and one false 
positive (62.4% support). Four of the QTL were assigned 
to intervals next to the correct ones. In this instance, 
bootstrapping “lost” one of the QTL on the likelihood 
map (QTL 10), while revealing four QTL not on the like- 
lihood map (QTL 1, 2, 4, and 5), for a net gain of three. 
The bootstrap procedure eliminates shadow peaks in 
general, and in this case all three QTL that had shadows 
on the likelihood map (two shadows for QTL 6) were 
placed in the correct interval by bootstrap map mode. 

After brief inspection, I set the bootstrap support 
threshold at 200 (20%) for analysis of Map-6 experi- 
ment b and Map-12 experiment h. Considering all 45 
bootstrapped data sets, bootstrapping revealed an ad- 
ditional 2.6 QTL (Type 1 and Type 2), on average (Table 
4). That represents an increase in power from 47.1% to 
73.1%. In general, bootstrap map modes placed QTL in 
the same interval as did the likelihood map. Of the 170 
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Figure 3. Likelihood (top) and bootstrap (bottom) maps for a representative fault-prone replicate of the Map-3b experiment (replicate 
#345). See Figure 1 caption for explanation. 
 
correctly placed QTL on the 45 likelihood maps, only 
five were moved to an adjacent interval on the boot- 
strap maps. In each of those five cases, there was also a 
shadow peak on the likelihood map: so these are actually 
instances in which a shadow peak (Type 3) “captured” a 
Type 1 peak and converted it to a Type 2 bootstrap mode. 
On the other hand, one Type 2 QTL (of 42) on the like- 
lihood maps was moved to the correct interval by boot- 
strapping. 

Because it is impossible for two bootstrap map modes 
to occur in adjacent intervals, bootstrapping resolves 
Type 3 peaks (shadows) on the likelihood maps into ei- 
ther Type 1 or Type 2 modes. Of the 32 Type 3 likelihood 
ratio peaks in these 45 data sets, 27 were subsumed by 
their neighboring Type 1 peaks when bootstrapped, and 
thus were correctly resolved as Type 1 modes. The five 
incorrectly resolved Type 3 peaks were those just men- 
tioned in the preceding paragraph. Type 3 peaks were 
more likely to be incorrectly resolved on the bootstrap 
map if their likelihood ratios were greater than the ratios 
of their partner Type 1 peaks: all three such pairs were 
incorrectly resolved. On the other hand, of the 29 pairs in 

which the Type 1 likelihood ratio was greater than that of 
its shadow, only two were incorrectly resolved. Thus, 
bootstrapping did a good job of “choosing” between true 
QTL peaks and shadows on the likelihood maps. 

The number of false positives increased as a result of 
bootstrapping: on average, there was slightly more than 
one additional Type 4 peak per data set. Increasing the 
thresholds for bootstrap support would have decreased 
the false discovery rate (sensu [10]), as expected (Table 
5), and also reduced power. For Map-12 experiment h, 
about half the bootstrap modes with frequencies between 
200 - 399 were false positives (Table 5). That suggests 
that a more appropriate threshold value for that experi- 
ment might have been 300, rather than 200. On the other 
hand, a threshold of only 10 (1% support) would have 
worked quite well for Map-3 experiment b: perhaps be- 
cause with that map—10 QTL distributed over 30 in- 
tervals—there were only three intervals that could possi- 
bly have produced Type 4 bootstrap modes. At the other 
extreme, for Map-12, with 10 QTL and 120 intervals, 
many intervals were candidates for Type 4 modes. It is 
worth noting that a few false positive Type 4 modes had 
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Table 4. Comparison of analyses of actual and bootstrapped samples for three categories of simulated crosses. Each table entry (ex- 
cept the rightmost column) is the mean of five simulated crosses. The bootstrap analysis of each simulated cross is based on 1000 
bootstrap samples. 

Map-3 expt. b* Map-6, expt. a† Map-12 expt. h† Mean

 
High 

power‡ 
Low 

power‡ 
Fault-prone‡ High 

power‡
Low 

power‡ Fault-prone‡ High 
power‡ 

Low 
power‡ 

Fault- prone‡  

QTL (Type 1 peaks)           

Actual 4.6 2.0 2.8 6.0 3.0 2.8 6.8 2.4 3.6 3.78

Bootstrap 5.8 4.2 4.6 6.2 5.4 3.4 7.8 4.4 5.2 5.22

QTL (Type 2 peaks)           

Actual 1.2 0.0 1.6 1.4 0.0 1.8 0.8 0.6 1.0 0.93

Bootstrap 2.0 2.2 2.6 2.2 1.2 3.4 0.8 1.8 2.6 2.09

Shadows (Type 3 peaks)           

Actual 0.0 1.0 2.8 0.0 0.0 1.4 0.0 0.2 1.0 0.71

False positives (Type 4 peaks)           

Actual 0.0 0.4 0.8 0.0 0.0 1.4 0.0 0.0 1.8 0.49

Bootstrap 1.2 1.0 1.2 1.0 0.4 2.2 3.0 1.6 2.4 1.56

Power, % (Type 1 and 2 peaks)           

Actual 58.0 20.0 44.0 74.0 30.0 46.0 76.0 30.0 46.0 47.11

Bootstrap 78.0 66.0 72.0 84.0 66.0 68.0 86.0 62.0 78.0 73.33

Proportion of QTL in correct 
interval 

          

Actual 0.80 1.00 0.64 0.81 1.00 0.60 0.90 0.80 0.76 0.81

Bootstrap 0.75 0.65 0.66 0.74 0.83 0.50 0.91 0.74 0.68 0.72

Proportion of peaks that are true 
QTL (Type 1 and 2 peaks) 

          

Actual 1.00 0.63 0.51 1.00 1.00 0.63 1.00 1.00 0.63 0.82

Bootstrap 0.87 0.87 0.85 0.90 0.95 0.77 0.90 0.95 0.77 0.87

Bootstrap “confidence interval” 
size (cM)†† 

7.24 7.03 7.80 5.78 6.88 6.05 5.55 5.76 6.03 6.46

Proportion of QTL within ± x SD 
of mean bootstrap position‡‡ 

          

x = 2 0.72 0.56 0.63 0.68 0.83 0.65 0.77 0.65 0.52 0.67

x = 3 0.82 0.71 0.79 0.89 1.00 0.74 0.88 0.81 0.74 0.82

x = 4 0.82 0.77 0.84 0.93 1.00 0.86 0.95 0.87 0.87 0.88

*Threshold for bootstrap support was 50 significant likelihood ratio peaks in the same interval (5%). †Threshold for bootstrap support was 200 significant like- 
lihood ratio peaks in the same interval (20%). ‡See text for explanation of these categories of simulated data sets. ††The “confidence interval” size is calculated 
as four standard deviations (±2 SD) of peak location based only upon likelihood ratio peaks that occur within the modal interval for bootstrap map modes asso- 
ciated with QTL (Type 1 and Type 2 modes). ‡‡Mean bootstrap position and standard deviation are calculated only from likelihood ratio peaks that occur within 
the modal interval for bootstrap modes associated with QTL (Type 1 and Type 2 modes). 
 
very high bootstrap support, e.g., >60% (Table 5). Also, 
bootstrapping did not “correct” Type 4 peaks on the like- 
lihood map: For only one of these 45 data sets was the 
number of Type 4 bootstrap modes less than the number 
of Type 4 likelihood ratio peaks.   

The nominal “confidence interval” widths for QTL 
position ranged from 5.55 to 7.80 cM (Table 4). Be- 
cause they are based only on likelihood ratio peaks that 
occurred within modal bootstrap intervals, they underes- 
timate the true 95% confidence intervals for some QTL. 
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Table 5. Level of support for bootstrap map modes and false 
discovery rate. Percent of bootstrap modes that were false posi- 
tives (Type 4) as a function of support level. Number in paren- 
theses is the total number of bootstrap modes with the indicated 
level of support, summed over 15 bootstrapped data sets for 
each map (see text). 

Support level* 
Map-3  

experiment b 
Map-6  

experiment a 
Map-12  

experiment h

10 - 49 25.0 (16) — — 

50 - 199 29.2 (24) — — 

200 - 399 9.5 (21) 29.0 (31) 49.1 (55) 

400 - 599 14.8 (27) 18.5 (27) 27.8 (18) 

600 - 799 11.8 (17) 10.3 (29) 12.5 (24) 

≥800 5.6 (36) 2.5 (40) 0.0 (51) 

*The number of above-threshold likelihood map peaks that occurred in the 
same marker interval and that comprised a bootstrap map mode (per 1000 
bootstrap samples of a given data set). 
 
However, this procedure avoids the difficulty of decide- 
ing exactly which and how many likelihood ratio peaks 
in the bootstrapped data are to be included in the calcula- 
tion of the confidence interval for a given QTL. And 
when the modal bootstrap interval included the true QTL 
position (Type 1 mode), this “confidence interval” work- 
ed reasonably well for Map-3 and Map-6: It included the 
true QTL position about 90% of the time. It did not work 
as well for Map-12 (approximately 82% inclusion), per- 
haps because two of the ten QTL on that map were out- 
side any marker interval. When the “confidence interval” 
was doubled in size (±4 SD), it included the true QTL 
position about 88% of the time on average, regardless of 
whether the modal bootstrap interval included the true 
QTL position (Table 4). 

4. DISCUSSION 

Different genetic maps and different experiment sizes 
will inevitably yield different mapping power and dif- 
ferent levels of honesty. There are limits to the extent 
that we can generalize from the experimental design, 
experiment sizes, and the three maps simulated here. 
Nevertheless, under the assumption that honesty is an 
important consideration in composite interval mapping, 
the present simulations suggest a useful strategy. First, as 
many markers as feasible should be used to control ge- 
netic background effects. Significant likelihood peaks 
obtained in such an analysis have a relatively high prob- 
ability of being true QTL—the realized experiment-wise 
Type I error rate based on Type 4 peaks may approach, or 
even be less than, the nominal rate established by per- 
mutation tests; and will be much, much lower than the 
rate obtained when only a limited set of markers are used 
to control background. This procedure can also greatly 

reduce the frequency of problematic shadow (Type 3) 
peaks. Second, the mapping analysis should be repeated 
on a large number of bootstrapped data sets. The result- 
ing bootstrap maps (frequency distributions) can reveal 
additional QTL, and will also give bootstrap support lev- 
els for “new” QTL as well as those that appear on the 
likelihood map of the actual data set. Bootstrapping will 
also give approximate confidence intervals for QTL lo- 
cation. Third, mapping experiments should be supported 
by an extensive set of simulations. That is, using the 
same marker map, crossing design, and mapping popula- 
tion size as for the actual experiment, several different 
QTL maps should be simulated and bootstrapped. Such 
simulations would provide useful information about the 
power and honesty of the particular experiment under 
analysis, and give some guidance for setting bootstrap 
support thresholds. The mapping strategy proposed here 
is similar in intent to the classification scheme proposed 
by Lander and Kruglyak [9] and to the FDR-control 
methods proposed by Weller et al. [10] and others. All 
three approaches attempt to give a quantitative, or at 
least relative, measure of the confidence that significant 
marker–phenotype associations are “real”. In the present 
case, higher levels of bootstrap support are correlated 
with lower false discovery rates (Table 5). 

These results show very clearly that the usefulness of 
permutation tests for setting likelihood ratio significance 
thresholds depends critically on the number of markers 
used to control genetic background. On reflection, this is 
not surprising. The permutation procedure, which ran- 
domizes phenotypes over multilocus marker genotypes, 
is simulating the null hypothesis in which there are no 
QTL anywhere in the genome. We should expect that the 
threshold likelihood ratio will be most valid if the inter- 
val mapping procedure tries to mimic a situation in 
which there are no QTL outside of the interval currently 
being tested. This is most nearly approximated when all 
markers are used to control background, i.e., Zmapqtl 
Model 1 (see also [1]). The power that is lost by using a 
large number of background markers is mostly, if not 
completely, regained by bootstrapping; with the bonus 
that we also obtain the level of bootstrap support for each 
putative QTL, which is positively correlated with the 
probability that a bootstrap map mode is a true QTL (Ta- 
ble 5). 

It is interesting, and disconcerting, that the number of 
false positives increased with mapping population size, 
at least for Map-3. I suggest that that result arises from 
interactions between the marker and QTL maps that 
cannot be completely controlled by interval mapping (at 
least as implemented by QTL Cartographer). That sug- 
gestion is supported by the fact that false positives (Type 
4 peaks) were strongly non-randomly distributed on all 
three maps (see Results). Increasing experiment size 
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does increase the power to detect QTL, as expected. 
However it does not provide much, if any, protection 
against false positives (Table 2), and may actually in- 
crease the “power” to detect false positives that arise 
from interactions between marker and QTL maps. 

Li et al. [8] suggest a modification of composite in- 
terval mapping based upon the method for selecting and 
using background markers. They showed that their 
method, called inclusive composite interval mapping 
(ICIM), had better power to detect QTL and a lower false 
positive rate than composite interval mapping as imple- 
mented by QTL Cartographer (Zmapqtl Model 6), at 
least for the maps and crossing design that they simu- 
lated. Under ICIM, only a subset of all possible markers 
is used to control background effects, as is the case with 
Zmapqtl Model 6. Comparisons between Li et al. [8] and 
the current study are problematic because different maps 
and crossing designs were used in the two studies, they 
did not use selective genotyping, and false positives were 
defined differently. However, with a map that included 
10 QTL distributed over six linkage groups, each 150 cM 
long with 16 evenly-spaced markers, they obtained more 
than three false positive likelihood peaks per simulated 
cross (their Figure 4 and their Table 5). Their map cor- 
responds most closely with Map-6 of this study, and their 
false positive frequency was similar to that obtained in 
this study when only a subset of conditioning markers 
was used (Table 2, Map-6 experiments b, b1, c, and d), 
and was much greater than was obtained in this study 
when all markers were used to control background ef- 
fects (Map-6 experiments a and a1).  

I used selective genotyping throughout these simula- 
tions, except where the Rcross module of QTL cartogra- 
pher was used to generate simulated crosses. Selective 
genotyping produced essentially the same results as 
complete genotyping of somewhat larger samples (Ta- 
bles 2 and 3, Map-6 experiments a1 vs a, and b1 vs b). 
The present results show that selective genotyping is 
appropriate for use with composite interval mapping. 
Furthermore, conclusions about the effectiveness of the 
“standard” permutation procedure for setting experiment- 
wise Type I error rates do not appear to be affected by 
selective genotyping. The one respect in which the non- 
selectively-genotyped simulations generated by Rcross 
did differ from the selectively-genotyped simulations 
was in regard to power to detect QTL on chromosome 1. 
As I have already argued, that result is most likely due to 
the fact that Rcross treated chromosome 1 as an auto- 
some, rather than as an X chromosome.   

It is apparent from these simulations that the power to 
detect QTL is much lower for X-linked than for auto- 
somal loci, at least in an F2 intercross mapping design. 
This fact does not seem to be widely appreciated, but has 

important implications for species with chromosomal sex 
determination, particularly when one of the sex chromo- 
somes accounts for a significant portion of the total ge- 
nome, as is the case with Drosophila melanogaster. Noor 
et al. [24] simulated QTL mapping specifically with the 
D. melanogaster genome. They also found lower power 
to detect X-linked than autosomal QTL. However, they 
attributed the “small X-effect” to the fact that the D. 
melanogaster X chromosome has a lower density of 
genes per centimorgan than do the two major autosomes. 
My results suggest that it is a much more general phe- 
nomenon.  

Based on the results of this study and those of Li et al. 
[8] it seems likely that false QTL are a common feature 
of composite interval mapping studies that have used 
Zmapqtl Model 6 of QTL Cartographer. The false posi- 
tive frequency may be much, much higher than the 
nominal experiment-wise Type I error rate that is estab- 
lished by the usual permutation tests. In some cases, it 
may be argued that a high number of false positives is an 
acceptable trade-off for higher power to detect true QTL. 
Alternatively, I suggest a protocol that proceeds from 
more stringent (better control of Type I error) to less 
stringent analyses, that includes bootstrapping as a 
means of QTL discovery, and that provides quantitative 
bootstrap support for putative QTL. It would be ex- 
tremely useful if QTL mapping experiments were ac- 
companied by at least a modest set of simulations. Those 
simulations should reproduce the crossing design, marker 
map, sample sizes, and mapping analysis that are used in 
the actual experiment under consideration. Although in 
principle an open-ended project, it would probably suf- 
fice to simulate only two or three different QTL maps on 
the known marker map; or a single QTL map but with 
different degrees of additive, dominance and epistatic 
effects. The simulations would provide much more in- 
sight into the probable power and honesty of the analysis 
of the experimental data than can any generalizations 
based on this or other studies. For relatively simple situa- 
tions, the necessary programs and shell scripts for simu- 
lations are already included within the QTL Cartographer 
package. More complicated situations, such as chromo- 
somal sex determination or lack of crossing over in one 
sex, will require additional software. 

5. ACKNOWLEDGEMENTS 

This work was supported by contract number 0176 from the Arizona 

Biomedical Research Commission. Work on this project was started 

while the author was on sabbatical leave in the Department of Biology, 

University of Washington, Seattle, WA. I thank especially Ray Huey 

and Tom Daniel of that department. At Northern Arizona University, I 

thank Larry MacPhee and Rich Posner for providing access to a num- 

ber of computers. From North Carolina State University, Chris Basten 

Copyright © 2013 SciRes.                                                                       OPEN ACCESS 



P. M. Service / Open Journal of Genetics 3 (2013) 127-140 

Copyright © 2013 SciRes.                                                                      

140 

gave advice on installing and running QTL Cartographer on my com- 

puters. 

 

 OPEN ACCESS 

REFERENCES 

[1] Zeng, Z.-B. (1994) Precision mapping of quantitative trait 
loci. Genetics, 136, 1457-1468. 

[2] Beavis, W.D. (1995) The power and deceit of QTL ex- 
periments: Lessons from comparative QTL studies. Pro- 
ceedings of the Forty-ninth Annual Corn and Sorghum 
Industry Research Conference ASTA, Washington, 252- 
268. 

[3] Curtsinger, J.W. (2002) Sex-specificity, lifespan QTLs, 
and statistical power. Journal of Gerontology. Series A, 
Biological Sciences and Medical Sciences, 57, B409- 
B414. doi:10.1093/gerona/57.12.B409 

[4] Darvasi, A. and Soller, M. (1992) Selective genotyping 
for determination of linkage between a marker locus and 
a quantitative trait locus. Theoretical and Applied Genet- 
ics, 85, 353-359. doi:10.1007/BF00222881 

[5] Churchill, G.A. and Doerge, R.W. (1994) Empirical 
threshold values for quantitative trait mapping. Genetics, 
138, 963-971. 

[6] Zou, F., Xu, Z. and Vision, T. (2006) Assessing the sig- 
nificance of quantitative trait loci in replicable mapping 
populations. Genetics, 174, 1063-1068. 
doi:10.1534/genetics.106.059469 

[7] Doerge, R.W. and Churchill, G.A. (1996) Permutation 
tests for multiple loci affecting a quantitative character. 
Genetics, 142, 285-294. 

[8] Li, H., Ye, G. and Wang, J. (2007) A modified algorithm 
for the improvement of composite interval mapping. Ge- 
netics, 175, 361-374. doi:10.1534/genetics.106.066811 

[9] Lander, E. and Kruglyak, L. (1995) Genetic dissection of 
complex traits: Guidelines for interpreting and reporting 
linkage results. Nature Genetics, 11, 241-247.  
doi:10.1038/ng1195-241 

[10] Weller, J.I., Song, J.Z., Heyen, D.W., Lewin, H.A. and 
Ron, M. (1998) A new approach to the problem of multi- 
ple comparisons in the genetic dissection of complex 
traits. Genetics, 150, 1699-1706. 

[11] Benjamini, Y. and Yekutieli, D. (2005) Quantitative trait 
loci analysis using the false discovery rate. Genetics, 171, 
783-790. doi:10.1534/genetics.104.036699 

[12] Lee, H., Dekkers, J.C.M., Soller, M., Malek, M., Fer- 
nando, R.L. and Rothschild, M.F. (2002) Application of 
the false discovery rate to quantitative trait loci interval 
mapping with multiple traits. Genetics, 161, 905-914. 

[13] Bennewitz, J., Reinsch, N., Guiard, V., Fritz, S., Thom- 
sen, H., Looft, C., Kühn, C., Schwerin, M., Weimann, C., 
Erhardt, G., Reinhardt, F., Reents, R., Boichard, D. and 

Kalm, E. (2004) Multiple quantitative trait loci mapping 
with cofactors and application of alternative variants of 
the false discovery rate in an enlarged granddaughter de- 
sign. Genetics, 168, 1019-1027. 
doi:10.1534/genetics.104.030296 

[14] Basten, C.J., Weir, B.S. and Zeng, Z.-B. (1994) Zmap— 
A QTL cartographer. In: Smith, C., Gavora, J.S., Benkel, 
B., Chesnais, J., Fairfull, W., Gibson, J.P., Kennedy, B. 
W. and Burnside, E.B., Eds., 5th World Congress on Ge- 
netics Applied to Livestock Production: Computing Stra- 
tegies and Software, Organizing Committee, 5th World 
Congress on Genetics Applied to Livestock Production, 
Guelph, 65-66. 

[15] Basten, C.J., Weir, B.S. and Zeng, Z.-B. (2003) QTL 
cartographer, version 1.17. Department of Statistics, Nor- 
th Carolina State University, Raleigh. 

[16] Leips, J. and Mackay, T.C.F. (2000) Quantitative trait 
loci for life span in Drosophila melanogaster: Interactions 
with genetic background and larval density. Genetics, 155, 
1773-1788. 

[17] Forbes, S.N., Valenzuela, R.K., Keim, P. and Service, 
P.M. (2004) Quantitative trait loci affecting life span in 
replicated populations of Drosophila melanogaster. I. 
Composite interval mapping. Genetics, 168, 301-311.  
doi:10.1534/genetics.103.023218 

[18] Visscher, P.M., Thompson, R. and Haley, C.S. (1996) 
Confidence intervals in QTL mapping by bootstrapping. 
Genetics, 143, 1013-1020. 

[19] Lebreton, C.M. and Visscher, P.M. (1998) Empirical 
nonparametric bootstrap strategies in quantitative trait 
loci mapping: Conditioning on the genetic model. Genet- 
ics, 148, 525-535. 

[20] Bennewitz, J., Reinsch, N. and Kalm, E. (2002) Improved 
confidence intervals in quantitative trait loci mapping by 
permutation bootstrapping. Genetics, 160, 1673-1686. 

[21] Lynch, M. and Walsh, B. (1998) Genetics and analysis of 
quantitative traits. Sinauer Associates, Inc., Sunderland. 

[22] Lander, E.S., Green, P., Abrahamson, J., Barlow, A., 
Daley, M.J., Lincoln, S.E. and Newburg, L. (1987) Map- 
maker: an interactive computer package for constructing 
primary genetic linkage maps of experimental and natural 
populations. Genomics, 1, 174-181.  
doi:10.1016/0888-7543(87)90010-3 

[23] Lincoln, S., Daley, M. and Lander, E. (1992) Construct- 
ing genetic maps with Mapmaker/Exp 3.0. 3rd Edition, 
Whitehead Institute, Cambridge. 

[24] Noor, M.A.F., Cunningham, A.L. and Larkin, J.C. (2001) 
Consequences of recombination rate variation on quanti- 
tative trait locus mapping studies: Simulations based on 
the Drosophila melanogaster genome. Genetics, 159, 581- 
588. 

 
 
 
 

http://dx.doi.org/10.1093/gerona/57.12.B409
http://dx.doi.org/10.1007/BF00222881
http://dx.doi.org/10.1534/genetics.106.059469
http://dx.doi.org/10.1534/genetics.106.066811
http://dx.doi.org/10.1038/ng1195-241
http://dx.doi.org/10.1534/genetics.104.036699
http://dx.doi.org/10.1534/genetics.104.030296
http://dx.doi.org/10.1534/genetics.103.023218
http://dx.doi.org/10.1016/0888-7543(87)90010-3

