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Melioidosis is an emerging infectious disease caused by the soil bacterium Burkholderia pseudomallei. In diagnostic and forensic
settings, molecular detection assays need not only high sensitivity with low limits of detection but also high specificity. In a di-
rect comparison of published and newly developed TaqMan PCR assays, we found the TTS1-orf2 assay to be superior in detect-
ing B. pseudomallei directly from clinical specimens. The YLF/BTFC multiplex assay (targeting the Yersinia-like fimbrial/Burk-
holderia thailandensis-like flagellum and chemotaxis region) also showed high diagnostic sensitivity and provides additional
information on possible geographic origin.

Melioidosis is an emerging infectious disease caused by the
Gram-negative soil bacterium Burkholderia pseudomallei

(13). Infection is usually via cutaneous inoculation or inhalation,
and disease presentations range from asymptomatic, to localized
skin infection or pneumonia, to disseminated disease with ab-
scesses in multiple organs, resulting in fulminant sepsis with mor-
tality rates of �50% (9). Increasing numbers of cases are being
observed globally, likely reflecting both improved diagnostics (12)
and a true increase in cases in those living in or traveling from
regions where melioidosis is endemic (11, 16, 17). Culture re-
mains the “gold standard” for diagnosis of melioidosis, but is
problematic due to sensitivity issues, lack of familiarity with B.
pseudomallei in laboratories in areas where the disease is nonen-
demic (17), and poor specificity of biochemical tests (18). Subse-
quent delayed diagnosis can result in life-threatening delays in
appropriate antimicrobial therapy (9).

Other diagnostic techniques for B. pseudomallei detection in-
clude antigen detection by immunofluorescence microscopy (34)
or latex agglutination (3); however, these suffer from reduced sen-
sitivity or dependence on an initial culture step, delaying time to
diagnosis (1). Culture is also required for matrix-assisted laser
desorption ionization–time of flight (MALDI-TOF) mass spec-
trometry (14). Serological diagnosis is unreliable due to back-
ground antibody levels in areas of endemicity and low sensitivity
and specificity (10, 33).

While high-throughput sequencing technologies are not yet
feasible for routine diagnostics (23), various other molecular plat-
forms have been developed for rapid identification of B. pseu-
domallei. These include DNA microarrays (25), gene sequencing
(15, 32), isothermal DNA amplification (7), and real-time PCR
assays targeting specific regions of the B. pseudomallei genome (2,
5, 19–21, 26–30) (see Table S1 in the supplemental material).

Despite this abundance of published assays, the techniques
used for validating criteria vary substantially between studies. Fur-
thermore, few have been evaluated directly on clinical samples (8,
20, 27, 28). Thus, it is difficult to determine which of these assays
would perform best in a diagnostic or forensic setting, in which

high specificity and sensitivity with a low limit of detection (LoD)
are paramount.

The aim of this study was to focus on real-time TaqMan PCR
assays and assess the best available genomic target to date for B.
pseudomallei detection in clinical samples. Seven real-time PCR
assays were directly compared by assessing their analytical and
diagnostic specificities and sensitivities (4, 6).

Based on superior reported specificity and LoD (see Table S1 in
the supplemental material), four previously published real-time
TaqMan PCR assays were included, namely, TTS1-orf2 (22) and
TTS1-orf11 (29) targeting the type III secretion (TTS) system gene
cluster, lpxO (19) and 8653 (27) (Table 1). The mprA target based
on a previously published PCR assay (21) was validated with a
TaqMan probe (Primer Express 3.0 software; Life Technologies).
A multiplex TaqMan assay targeting the Yersinia-like fimbrial/
Burkholderia thailandensis-like flagellum and chemotaxis (YLF/
BTFC) region (31) was also assessed, together with a newly
developed dual-probe assay, 266152, which targets the methylma-
lonate-semialdehyde dehydrogenase locus and differentiates be-
tween B. pseudomallei and B. thailandensis (Table 1).

For analytical sensitivity and specificity, real-time PCR was
carried out as previously reported (5). In brief, PCR mixtures
consisted of 10 �l of 900 nM primers, 200 nM probe, 1� Applied
Biosystems genotyping master mix (Life Technologies), and 0.5
ng template DNA. Thermal cycling was performed on an AB
7900HT sequence detection system (Life Technologies) at 50°C
for 2 min, 95°C for 10 min, and 40 cycles of 95°C for 15 s and 58°C
for 1 min. The 266152 assay was performed with 1� Applied
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Biosystems universal master mix and 300 nM primers. The LoD
was defined as the lowest possible template concentration detect-
able with 95% probability with at least 61/64 positive replicates (4,
6). Specificity was evaluated by screening 365 B. pseudomallei
strains and 115 non-B. pseudomallei strains (with 71 Burkholderia
spp. and 44 bacterial species of differential diagnostic importance
[see full list in the supplemental material]). A threshold cycle (CT)
value of 40 was the declared cutoff for a positive result.

Clinical evaluation was performed by screening each assay
across 50 clinical specimens (22 sputum, 20 blood, and 8 urine
samples) from 22 patients with acute melioidosis, 59% of whom
presented with pneumonia and 18% with genitourinary infection,
with 55% overall being bacteremic. These samples were part of a
study comparing DNA extraction techniques for molecular detec-
tion of B. pseudomallei in clinical specimens (24); while all samples
were from culture-confirmed melioidosis cases, not every speci-
men from each patient was cultured for B. pseudomallei. Blood
samples from 22 healthy volunteers were used as negative con-
trols. DNA was extracted using the QIAamp DNA minikit (Qia-
gen, Australia) and PureGene blood core kit B (Qiagen). PCR
conditions were as previously described (24), using the 1� Ap-
plied Biosystems environmental master mix. Samples were de-
clared positive if 2/2 duplicates had CT values of �40.

All assays showed high analytical specificity, with the TTS1-
orf2, 8653, mprA and 266152 assays being 100% specific for both
B. pseudomallei and nontarget strains (Table 2). The lpxO assay
showed reduced specificity as it also amplified 14/23 Burkholderia
mallei DNA targets. The TTS1-orf2 and YLF/BTFC assays had the
lowest LoD of 5 genome equivalents (GE) per reaction (Table 2).
Variations from previously reported LoD were apparent from our
data and are likely due to the strict LoD definition we used to
determine the lowest possible template concentration detectable
with 95% probability (4, 6). The low LoD of TTS1-orf2 and YLF/
BTFC assays was also reflected in their high diagnostic sensitivity.
Of the 43 clinical samples that tested positive for B. pseudomallei
by one or more assays, 42 were positive by several assays and one
only by TTS1-orf2. The mprA assay performed least well in the
clinical evaluation and had a significantly lower detection rate
than the TTS1-orf2, YLF/BTFC, and lpxO assays (McNemar’s test
for paired samples, P � 0.001 for all, 2-tailed) (Table 2).

These data support the TTS1-orf2 assay as the best-performing
assay to date for direct detection of B. pseudomallei in clinical
specimens. The YLF/BTFC multiplex assay also performed well
and in addition to B. pseudomallei detection provides information
on the potential geographic origin of the tested isolate, with BTFC
being common in Australia (88%) but rare in Thailand (2%) (31).
As the YLF locus was also found in some close relatives of B.
pseudomallei (A. Tuanyok, unpublished data), this assay should be
used with caution on environmental samples.

As an additional informative assay, we included a dual-probe
assay discriminating between B. pseudomallei and B. thailandensis.
This assay was designed for screening culture isolates and showed
high specificity. No differences in clinical detection rates were
found when including both probes or only the B. pseudomallei-
specific probe. Due to cross-hybridization, this assay should be
used with caution on environmental samples where potentially
both B. pseudomallei and B. thailandensis could be present.

Although the probe chemistry was tested as in the original pub-
lications, the PCR conditions were not adjusted to the original
optimized conditions for each assay; we used an adaptation of theT
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TaqMan universal PCR protocol (Life Technologies), with the
same conditions for all assays. The inferior performance of the
mprA assay in the clinical evaluation may reflect that the original
assay was not probe based and had an annealing temperature of
68°C, which differs from the conditions we used.

In summary, we have shown that the TTS1-orf2 assay provides
the best available molecular target to date for B. pseudomallei de-
tection directly from clinical samples. Furthermore, the YLF/
BTFC multiplex assay, which provides additional information on
the possible geographic origin of a B. pseudomallei isolate, also
showed high diagnostic sensitivity.
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