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Abstract
Policies for climate mitigation on land rarely acknowledge biophysical factors, such as
reflectivity, evaporation, and surface roughness. Yet such factors can alter temperatures much
more than carbon sequestration does, and often in a conflicting way. We outline a framework
for examining biophysical factors in mitigation policies and provide some best-practice
recommendations based on that framework. Tropical projects—avoided deforestation, forest
restoration, and afforestation—provide the greatest climate value, because carbon storage and
biophysics align to cool the Earth. In contrast, the climate benefits of carbon storage are often
counteracted in boreal and other snow-covered regions, where darker trees trap more heat than
snow does. Managers can increase the climate benefit of some forest projects by using more
reflective and deciduous species and through urban forestry projects that reduce energy use.
Ignoring biophysical interactions could result in millions of dollars being invested in some
mitigation projects that provide little climate benefit or, worse, are counter-productive.
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Policies are being proposed and implemented to influence
forestry and land-management practices for climate change
mitigation [1, 2]. The proposed Lieberman–Warner bill, for
example, establishes a US CO2 market that allows corporations
to offset up to 30% of their emissions through forestry and
land-management activities. Many countries are already using
forestry credits in voluntary carbon markets trading billions of
dollars each year. Forest conservation will also likely play
an important role in the second commitment of the Kyoto
Protocol.

Planting forests and avoiding deforestation can help to
slow increases in CO2 concentrations and global temperatures.
However, in addition to altering the carbon balance and
emissions of other greenhouse gases, forest projects come
with an additional suite of biophysical changes (figures 1(A)
and (B)). They often darken the land surface compared
to pastures, agricultural lands, and snow-covered surfaces
(figures 1(A)–(C)). This effect leads to higher sunlight
absorption that can warm the land regionally. Other
biophysical changes alter the amount of water that evaporates
from plants and the soil, the roughness or unevenness of the
vegetation canopy, and the production of convective clouds
and rainfall (figures 1(A) and (B)). Overall, such biophysical
changes can affect local to regional climate much more than
the accompanying carbon sequestration does—and sometimes
in a conflicting way [3–7].

Unlike reducing fossil fuel combustion, where the
effect on greenhouse gas emissions is dominant, the net
climate impact of a forest has dimensions beyond carbon
storage alone. For forests, which mitigation activities
will have biophysical changes that reinforce or negate the
benefits of carbon sequestration? What if a forest offset
activity cools the Earth globally but warms it locally—
or alters the regional hydrologic balance—exacerbating the
regional impacts of climate change? This paper outlines a
framework for examining such interactions and provides some
recommendations based on that framework.

Biophysical influences on air temperature depend on
where sequestration activities occur. In the tropics, forests
cool regionally by increasing the evaporation of water from
land to air (figures 1(A) and (B)). This added water vapor can
help to form clouds that contribute to additional cooling by
reflecting sunlight back to space [3, 8–11]. In this case the
biophysics and carbon sequestration of forest cover change
are usually aligned; the best science indicates that avoided
deforestation and forest establishment in the tropics cools
the climate through evapotranspiration, cloud feedbacks, and
slowing the buildup of CO2 in air.

Boreal forests provide a different extreme. Rates of carbon
storage there are much slower than in the tropics because of
colder temperatures, less sunlight, and other factors that limit
tree growth. Boreal lands are also covered in snow and ice
for extended periods each year. Replacing snow with a surface
that absorbs more sunlight, such as an evergreen spruce or pine
canopy, warms the area at spatial scales of hundreds or even
thousands of kilometers [12, 13]. As a result, planting forests
in northern countries will help to stabilize global atmospheric
CO2 but may accelerate climate warming regionally, further
speeding the loss of snow and ice cover.

The greatest uncertainties lie in temperate forests [6, 14].
While their rates of carbon sequestration are well established,
much less is known about how accompanying biophysical
changes influence climate. A number of climate model studies
suggest that replacing forests with agriculture or grasslands
in temperate regions cools surface air temperatures [14–17].
Other studies show the opposite—that temperate forests cool
the air compared with grasslands and croplands [18–20]. In
warm-temperate areas, such as the southeastern US or northern
Argentina, surface temperatures of forests are often 1–5 ◦C
cooler than adjacent grasslands or croplands (figure 1(D)).
This local cooling is caused by more evapotranspiration
and a more efficient coupling between the land and the
atmosphere in forests attributable to increased roughness.
Paradoxically, these forests also deliver more heat to the
atmosphere because they are darker and absorb more sunlight
(figure 2). The fate of this added heat within the atmosphere—
both in the form of air temperatures and water vapor—is
poorly understood. In some temperate and tropical regions
additional water vapor may form clouds that contribute to
surface cooling and increased rainfall in nearby areas. In other
regions where water availability is relatively scarce, such as
the southwestern US, forest plantations may warm regional
climate by absorbing more sunlight without substantially
increasing evapotranspiration.

While the science of biophysical interactions is still
emerging, some recommendations for best practices in climate
protection are possible. Based on decades of research
in carbon sequestration and biophysics, we suggest that
avoided deforestation, forest restoration, and afforestation in
the tropics provide the greatest value for slowing climate
change. Tropical forests combine rapid rates of carbon storage
with biophysical effects that are beneficial in many settings,
including greater convective rainfall [8–11]. Forestry projects
in warm-temperate regions, such as the southeastern US, can
also help reduce warming, but large uncertainties remain
for the net climate effects of forestry projects in temperate
regions. Forestry projects in boreal systems are less likely to
provide climate cooling at local to global scales because of
the strong snow-cover feedback [5, 12, 13]. Thus, incentives
for reforesting boreal systems should be preceded by thorough
analyses of the true cooling potential before being included in
climate policies.

Policies could also be crafted to provide incentives for
beneficial management practices. For instance, urban forestry
provides the opportunity to reduce energy use directly; in
temperate regions deciduous trees block sunlight in summer,
reducing the energy needed to cool buildings, but they allow
sunlight to warm buildings in winter. In addition to choosing
appropriate deciduous species, foresters could also select trees
that are ‘brighter’, such as poplars, with albedos relatively
close to those of the grasses or crops they replace (figure 2).
Additionally, forest planting and restoration can be used
to reclaim damaged lands, reducing erosion and stabilizing
streambanks [23].

However, some trade-offs and unintended consequences
are possible when forests are included in climate policies.
Eucalypts, for instance, grow quickly and have a fairly bright
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Figure 1. Examples of various biophysical factors in a grassland or cropland (A) and forest (B). Because of a grassland or cropland’s higher
reflectivity (albedo), it typically reflects more sunlight than the forest does, cooling surface air temperatures relatively more. In contrast, the
forest often evaporates more water and transmits more heat to the atmosphere (latent and sensible heat, respectively), cooling it locally
compared to the grassland or unirrigated cropland. More water vapor in the atmosphere can lead to a greater number and height of clouds as
well as to increased convective rainfall. In addition, the forest has a more uneven canopy (surface roughness) that increases mixing and
upwelling of air. ((C) and (D)) Comparison of shortwave albedo and surface skin temperature for 215 grassland and forest stands across
Argentina and Uruguay. The satellite data were assessed using 180 km × 180 km Landsat images (2000–2005) on seven dates for the
Corrientes and Concordia regions of Argentina and three dates for the Rivera region of Uruguay. The Landsat scenes were geometrically and
atmospherically corrected and correspond to images 226/80 (path and row) for Corrientes, 225/82 for Concordia, and 223/82 for Rivera. In
general, measurements at sites within a region compared adjacent grassland, pine, and eucalypt stands.

albedo, but they are fire-prone [24] and often use more
water than native vegetation [19]. Because forestry projects
can appropriate scarce water resources, they may be poor
choices in semi-arid regions [19, 25]. Applying fertilizers in
forest sequestration projects helps trees grow more quickly
but also increases the emissions of nitrous oxide, a potent
greenhouse gas [26]. Finally and perhaps most importantly,
forests provide a wide range of important services, including
preserving biodiversity, wildlife habitat, and freshwater supply.
Policies focused solely on managing vegetation to cool local
or global temperatures may jeopardize other key ecosystem
services.

In the coming decades, policies for forest carbon
sequestration and offset activities will create a multi-billion-
dollar industry. The biophysical consequences of forest
cover change and other co-effects of these activities can
be large at regional scales [27, 28] and may sometimes
reduce or even cancel the benefits of carbon sequestration.
Biophysical interactions should therefore be factored into
climate mitigation strategy in at least two ways—in designing
carbon sequestration projects to achieve the greatest climate
benefit and in comparing the costs and benefits of terrestrial
carbon sequestration with those of other mitigation activities.
Successful policy should account for the different ways that
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Figure 2. Satellite observations of monthly shortwave surface albedo for dominant US land cover types in the Northwest (a), Northeast (b),
Southwest (c), and Southeast (d). In all regions, albedo in croplands is substantially higher than in nearby forests. In the Northeast and
Southeast, deciduous broadleaf forests have higher albedo values than evergreen needleleaf forests during summer. The data from 2004 were
obtained from MODerate resolution Imaging Spectroradiometer (MODIS) measurements of black sky albedo (MCD43C3 version 5) [21].
The albedo observations were averaged within International Geosphere-Biosphere Program (IGBP) land cover classes (MOD12C1 version 4)
developed using concurrent MODIS surface reflectance observations [22]. All 0.05◦ × 0.05◦ grid cells comprised of >80% of a single IGBP
land cover type were included in the analysis. The borders of the four regions were: 40◦N to 50◦N and west of 105◦W for the Northwest,
40◦N to 50◦N and east of 90◦W for the Northeast, 30◦N to 40◦N and west of 105◦W for the Southwest, and 30◦N to 40◦N and east of 90◦W
for the Southeast.

forests interact with climate. It also needs to acknowledge
factors beyond climate science, including trade-offs with other
ecosystem services and the demand for and economics of
land use.

Currently, no formal mechanism accounts for biophysics
in climate policy. Adding biophysical effects into frameworks
for evaluating carbon sequestration programs is a challenge,
but simple rules (or mechanisms to adjust carbon prices)
can be developed to encourage best practices. Ignoring this
challenge could result in millions of dollars invested in some
mitigation projects that provide little climate benefit or, worse,
are counter-productive.
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