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Abstract
Confrontation of climate models with observationally-based reference datasets is widespread and integral to
model development. These comparisons yield skill metrics quantifying the mismatch between simulated
and reference values and also involve analyst choices, or meta-parameters, in structuring the analysis. Here,
we systematically vary five such meta-parameters (reference dataset, spatial resolution, regridding
approach, land mask, and time period) in evaluating evapotranspiration (ET) from eight CMIP5 models in a
factorial design that yields 68 700 intercomparisons. The results show that while model–data comparisons
can provide some feedback on overall model performance, model ranks are ambiguous and inferred model
skill and rank are highly sensitive to the choice of meta-parameters for all models. This suggests that model
skill and rank are best represented probabilistically rather than as scalar values. For this case study, the
choice of reference dataset is found to have a dominant influence on inferred model skill, even larger than
the choice of model itself. This is primarily due to large differences between reference datasets, indicating
that further work in developing a community-accepted standard ET reference dataset is crucial in order to
decrease ambiguity in model skill.
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1. Introduction

A central challenge in the 21st century is to understand and
forecast the impacts of global climate change on terrestrial
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ecosystems. Numerous advances in understanding the climate
system have been driven by model intercomparison projects
(e.g., Friedlingstein et al 2006; Meehl et al 2007; Schwalm
et al 2010; Taylor et al 2012), with confidence in model
projections ultimately linked to how well climate models
replicate known past features of the climate system (Luo et al

2012, Randall et al 2007).
The process of systematically reconciling observation-

ally-driven references with climate model output fields,
termed benchmarking (Luo et al 2012), allows for the
quantification of simulation–reference mismatch and ulti-
mately improvements in model formulation (Luo et al 2012,
Schwalm et al 2010). At a minimum, benchmarking requires
a skill metric that quantifies the ‘distance’ between reference
and simulated values. More comprehensive benchmarking
frameworks track model skill over successive versions of
a given model (Gleckler et al 2008) and allow for a
quantitative evaluation of model skill across multiple fields
and models (Randerson et al 2009). While benchmarking
as a conceptual framework in model evaluation is actively
evolving and therefore can be implemented in alternate ways
(Abramowitz 2012), we define benchmarking in this study
as a systemic framework for confronting simulations with
observationally-based and independently-derived reference
products similarly scaled to simulation outputs in space and
time. This is distinct from other frameworks that confront
simulated values with results from statistical or physical
models (e.g., Abramowitz 2005, 2012).

Since their initial development, climate models have been
routinely compared to observationally-driven references but
with little consideration of how the choice of meta-parameters
in model evaluation influences inferred model skill (Gleckler
et al 2008, Jiménez et al 2011). Meta-parameters are used
here to describe analyst choices (e.g., reference dataset, spatial
resolution, regridding algorithm, land mask, time period) that
impact simulation–reference mismatch and therefore inferred
model skill (see section 2). To improve benchmarking efforts,
there is a need to understand how the choice of reference
product and other benchmarking meta-parameters influence
model skill.

Here we quantify the degree to which inferred climate
model skill for a given variable, evapotranspiration (ET), is
sensitive to the choice of benchmarking meta-parameters. We
do not, strictly speaking, evaluate climate models against
ET. Rather, our focus is on assessing how analyst choices
impact inferred model skill. Various model types (e.g., climate
models, offline land surface models) and reference products
(e.g., gross primary productivity, net radiation) are amenable
to this goal. This study presents a case study using climate
models and ET to illustrate the interdependency between
analyst choices and inferred skill. We focus on ET due to the
tight coupling of terrestrial water, energy and carbon cycles,
the importance of longer-term trends in the hydrological
cycle in modulating land sink variability (Schwalm et al

2011), and the existence of multiple observationally-based
ET references (e.g., Jiménez et al 2011; Mueller et al 2011;
Vinukollu et al 2011). Furthermore, these ET reference
products are global, potentially tightly-constrained (Vinukollu

et al 2011), multi-year, and most importantly, are analogous to
climate model output both in spatial and temporal scale. We
explore the consequences of analyst choice, with emphasis on
reference dataset, on inferred individual model skill and rank
in simulating ET.

2. Data and methods

We compare six different reference ET products (supple-
mentary table 1 available at stacks.iop.org/ERL/8/024028/
mmedia) to simulated ET from eight coupled carbon–climate
models (supplementary table 2 available at stacks.iop.org/
ERL/8/024028/mmedia) participating in the Coupled Model
Intercomparison Project phase 5 (CMIP5) (Taylor et al

2012) and using the Earth System Model historical natural
experiment (esmHistorical). CMIP5 output is chosen because
of its availability and use in the IPCC AR5 framework, as well
as its widespread application in climate impact studies. The
esmHistorical CMIP5 experiment is selected due to its focus
on simulating and evaluating historical conditions (Taylor
et al 2012). For six of the eight CMIP5 models, only a single
esmHistorical realization is available; for those two models
with multiple realizations only the first is used.

Of the six ET reference products there is no clear
standard. Despite some regional agreement (Mueller et al

2011) and consistency with ground measurements (Fisher
et al 2008, Jung et al 2011, Vinukollu et al 2011),
the gridded ET reference products show disagreement
in global annual ET flux (supplementary table 1), with
large cross-product variability (Mueller et al 2011) and
associated differences in latitudinal gradients and seasonal
cycles (figure 1). This absence of convergence on a single
‘best’ ET product stems from the absence of a conclusive
ET product intercomparison, though efforts are underway
to resolve this (e.g., GEWEX LandFlux/LandFlux-EVAL
(Mueller et al 2011)). Nonetheless, this lack of benchmark
dataset consensus allows us to assess the impact of reference
dataset selection on model evaluation.

In addition to varying the choice in ET reference
product, we systematically vary: (1) spatial resolution
(all model/reference grids as well as uniform 1� and
5� grids); (2) regridding algorithm (nearest neighbor, bi-linear
interpolation, and box averaging); (3) land-water mask
(all possible combinations of two land cover maps; either
IGBP (Loveland et al 2001) or SYNMAP (Jung et al

2006); and three different per cent land-cover cutoffs for
defining land cells); and (4) ten-year analysis period (all
possible ten-year periods from 1980 to 2005). All values
for each meta-parameter are given in supplementary table
3 (available at stacks.iop.org/ERL/8/024028/mmedia). The
result is 68 700 individual model–reference benchmarking
experiments (approximately 8500 for each CMIP5 model)
based on all possible combinations of meta-parameter and
CMIP5 model. In each experiment model simulations and
references are translated to a common target grid and land
mask with the chosen regridding algorithm (supplementary
table 3). Each experiment represents one model evaluation
scenario, i.e., a combination of analyst choices. Collectively,
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Figure 1. Spatial and temporal patterns in ET. Reference product
ET displayed as (a) latitudinal gradients; and (b) a mean seasonal
cycle. Values reference land surface excluding ice covered areas.

the experiments represent all possible, and equally plausible,
combinations of specified meta-parameters used to quantify
model skill of the eight CMIP5 models, based on their ability
to simulate ET. Note that some combinations are not possible
due to ET dataset temporal coverage, and because regridding
using box averaging is used only for upscaling from fine to
coarse spatial scales.

For each of the 68 700 benchmarking experiments, we
quantify model skill using the root mean squared error
(RMSE) and correlation coefficient (⇢) in space and time.
These metrics are common in model–data intercomparisons
(Blyth et al 2011, Cadule et al 2010, Schwalm et al 2010,
Schaefer et al 2012, Soares et al 2012) although more
sophisticated metrics also exist (Braverman et al 2011). We
also evaluate distributional agreement (Stime), the degree of
overlap between reference and simulated distributions using
discretized probability density functions (Perkins et al 2007).
This is not as widespread in model evaluation studies but
is relevant as the CMIP5 runs evaluated here are initialized
several decades before the evaluation period and do not
perforce track unforced internal climate variability.

The spatial metrics (⇢space and RMSEspace) are area-
weighted and based on the modeled and reference long-term
mean by grid cell:
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where y
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are the average observed and simulated values
for a grid cell across a given decade (i.e., long-term monthly
mean by grid cell), n is the number grid cells, and µ
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are the spatial means of y
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calculated across n grid cells.
Weights are given by w

i

; a weighting factor that sums to unity
and is based on grid cell area.

The temporal skill metrics (⇢time and RMSEtime) use
area-integrated global monthly time series:
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where y

i

and ŷ

i

are observed and simulated global ET in
monthly time series for a given decade, n is the number of
months (n = 120), and µ

y

and µ
ŷ

are mean values across
the full time series. For temporal correlation (equation (3))
we focus on anomalies, with the mean seasonal cycle over
the period 1990–1994 removed (time period common to
all references/models). For equations (3) and (4) the global
values y

i

and ŷ

i

are based on area-integration using w

i

as a
weighting factor.

Distributional agreement (Stime) also uses area-integrated
global monthly time series:

Stime =
bX

i=1

minimum(Z
ŷ,i, Z

y,i) (5)

where Z

ŷ,i and Z

y,i are the frequency of values in a given bin
for simulated (y

i

) and reference (ŷ
i

) ET in global monthly
anomaly time series, and b is the number of bins. Stime is
the cumulative minimum value of two distributions across
each bin and is a measure of common area between two
distributions (Perkins et al 2007). Bins are determined using
equal spacing across the combined range of simulated and
reference values for the target decade. Stime values are
largely insensitive across a broad range of bin numbers, thus
a value of b = 12 is used throughout. A value of unity
indicates perfect overlap (identical distributions); whereas
zero indicates completely disjoint distributions. This is a
weaker test than the temporal ⇢ and RMSE metrics in
the sense that an exact temporal matching is not required.
Stime tracks only if the number of events, e.g., a global
monthly anomaly of ET in a given range or bin, that occur
over the targeted time period is similar in reference and
simulation.

For all metrics both n and w

i

are, within a given
benchmarking experiment, constant and reference terrestrial
vegetated grid cells only. Across benchmarking experiments
both n (for spatial metrics only) and w

i

change based on which
of the six land masks is used. In addition to skill metrics,
we also generate model rankings based on inferred skill, i.e.,
the lowest RMSE and highest ⇢ or Stime values have the
‘best’ or lowest ranks. By doing so, we are able to investigate
the downstream impacts of benchmarking meta-parameter
choices on the often-asked question: ‘what is the best model?’
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Figure 2. Skill metrics by model. Smoothed histograms for (a) spatial correlation, ⇢space; (b) spatial RMSE, RMSEspace; (c) temporal
correlation, ⇢time; (d) temporal RMSE, RMSEtime; and (e) distributional similarity, Stime. Distributions are displayed as probability density
functions and share the same scale within each panel. Colored symbols give percentiles. Median, black square; interquartile range
(25–75 percentiles), blue triangles; and 2.5–97.5 percentiles, red circles.

Finally, we use all benchmarking experiments for a given
model to quantify uncertainty in model skill and rank. Skill
metrics, similar to the reference and simulated values, are
not fixed and known without error. As uncertainty for these
variables is typically not available to be propagated into a skill
metric, we derive uncertainty (confidence intervals) in model
skill and rank by grouping all skill results by CMIP5 model
and extracting relevant percentiles, e.g., a model-specific 95%
confidence interval for a given skill metric is derived using the
2.5 and 97.5 percentiles across all benchmarking experiments
for that same model.

We quantify the influence of each meta-parameter, as
well as the impact of the examined climate model itself,
on inferred model skill with a decision tree (Breiman et al

1984). These are built by sequentially splitting the data (model
skill metrics across all combinations of meta-parameter and
climate model in this study) into homogeneous groups. The
resulting hierarchy of groups, i.e., the decision tree, is then
used to calculate the importance of each meta-parameter
and that of the climate models themselves (Breiman et al

1984). As the scale for importance is non-intuitive, we derive
relative importance by scaling the sum of raw importance
scores to 100. Ideally, climate model should have the greatest
‘importance’, i.e., the greatest impact on inferred model
skill, while meta-parameter and climate model choice in
the benchmarking experiments should have only a marginal
influence on inferred model skill. Such a result would
indicate that inferred model rank is robust to the choice of
meta-parameters.

3. Results

Inferred model skill varies substantially across the examined
climate models, meta-parameters, and metrics (figure 2).
Spatial correlation between model and reference product
(⇢space) ranges from 0.20 to 0.97 (figure 2(a)). The spatially-
weighted RMSE (RMSEspace) varies from 0.25 to 1.5 mm d�1

(figure 2(b)); a wide range given the spread in reference
ET fluxes (supplementary table 1) from 1.3 to 1.8 mm d�1.
Temporal correlation (⇢time) ranges from �0.36 to +0.53
(figure 1(c)), i.e., for some sets of meta-parameters reference
and simulation are anti-correlated. RMSEtime (figure 2(d)),
which is generally less than RMSEspace, varies between 0.08
and 1.0 mm d�1 or 5 and 65% of the mean reference value.
Distributional agreement (Stime) for monthly anomalies shows
uniformly higher levels of model skill (figure 2(e)) than their
correlation (⇢time). This is expected as Stime is a weaker test,
i.e., high skill levels require only congruence in the number of
occurrences in a given range or distributional bin as opposed
to the exact temporal sequencing needed for ⇢time. While these
large observed ranges in model skill suggest multiple skill
levels for a given model, it is noteworthy that these ranges are
solely attributable to how the intercomparison is performed.

Using clusters of grid cells (e.g., geographic region, plant
functional types, climatic zones) to control for land surface
heterogeneity does not lessen the range in inferred model
skill (e.g., ⇢space; supplementary figure 1 available at stacks.
iop.org/ERL/8/024028/mmedia) and we therefore limit our
discussion to global results. Similarly, although the decadal
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Figure 3. Skill rank by model. Histograms for ranked (a) spatial correlation, ⇢space; (b) spatial RMSE, RMSEspace; (c) temporal correlation,
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time periods overlap, suggesting a loss in degrees of freedom
in estimating confidence bounds, we find the distributions
for overlapping and non-overlapping decades highly similar
(supplementary figure 2 available at stacks.iop.org/ERL/8/
024028/mmedia). As only four of the six ET references
extend to multiple (i.e., two) non-overlapping decades, the
use of overlapping decades allows for a ten-fold increase in
benchmarking experiments. We therefore retain all possible
overlapping decades in our discussion.

To identify plausible bounds of model skill, 95%
confidence intervals (2.5 and 97.5 percentiles) and the
interquartile range (25 and 75 percentiles) for inferred
model skill are derived assuming all sets of meta-parameters
are equally valid (figure 2). The 95% confidence intervals
overlap across all climate models for each of the five
examined metrics, precluding clear ranking of the models.
In some cases, the model with the ‘best’ 95% confidence
interval upper limit (high ⇢ and Stime or low RMSE) is
not the same as the model with the ‘best’ interquartile
range upper limit (e.g., INM-CM4 and MIROC-ESM for
RMSEspace (figure 2(b))). As a result, a clear determination
of ranking in model skill is not possible. Even though the
95% confidence intervals are obviously narrower than the full
range of inferred skill, these ranges are too wide to address
model skill. This ambiguity is problematic for benchmarking,
where the ultimate aim is to diagnose shortcomings in
model characteristics. A model simultaneously showing
high and low levels of agreement across equally plausible

benchmarking meta-parameter choices hampers any efforts at
diagnosing model deficiencies.

Consistent with the inferred model skill results, the
inferred rank of individual models also varies dramatically
across meta-parameter choices (figure 3), precluding the
assignment of a single rank to any model. For 35 of the
40 climate model ⇥ metric combinations, all ranks are
observed. Nevertheless, some models generally do better
(rank distribution mode of 1, e.g., IMN-CM4 for ⇢time rank
(figure 3(c)) and Can-ESM2 for Stime (figure 3(e))) or worse
(mode of 8, e.g., MIROC-ESM for ⇢space and RMSEspace
ranks (figures 3(a) and (b) respectively)) for some metrics.
Such tendencies are however not consistent for a given model
across all metrics (e.g., IPSL-CM5A-LR for RMSEspace
versus Stime ranks (figures 3(b) and (e) respectively)). This
implies that although qualitative comparisons between models
for specific metrics may be possible in some cases, model rank
is best represented by a discrete probability mass function
rather than by a scalar value.

As with the raw metric values, we use the 95% confidence
intervals and interquartile range to identify plausible bounds
on model rank. Across the 40 combinations of metrics and
climate models, all but three combinations span ranks 3
through 6 at the 95% confidence level, and all but ten
combinations span ranks 2 through 7. The interquartile
ranges for model rank are substantially narrower, however,
ranging from a single plausible rank (e.g., HadGEM2-ES
and INM-CM4 for ⇢space) to five plausible ranks (e.g.,
BCC-CSM1.1 and Can-ESM2 for ⇢time).
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Averaging ranks across all five metrics (figure 4(a))
provides a more complete view of model skill. This type
of composite metric generalizes to multiple variables with
variable weights. For this case study we use a composite
rank based on equal weighting. This generally yields more
symmetric distributions, but even the interquartile ranges on
rank do not converge on a single inferred overall rank for
any model. This suggests that both the basic question ‘what
is the best model?’ and the more specific question ‘how
much confidence can be placed in model simulations?’ do not
have clear answers given the observed uncertainty in inferred
model skill.

Despite the lack of a single representative model rank,
some models are more likely to perform better than others.
For example, HadGEM2-ES is the only model with a 95%
confidence interval that includes an aggregated rank of one
(figure 4(a)). Other models (e.g., MIROC-ESM) have both a
high probability of a poor ranking, and a low probability of
a good ranking. Such probabilistic information allows for a
fuller characterization of model skill and can only be obtained
through a factorial approach to benchmarking as applied here.

The decision tree analysis (figure 4(b)) shows that the
choice of reference dataset is the most important factor in
determining inferred model skill. This is primarily because
differences in reference datasets (range: 60–85 103 km3 yr�1)
are large relative to differences in climate model estimates
(range: 66–87 103 km3 yr�1). This holds for all metrics
except ⇢time (figure 4(b)), where model and time period
choice are more important than reference dataset. Second in
overall importance, and considerably more important than
the remaining meta-parameters, is the choice of model. This

applies to all metrics except ⇢space (figure 4(b)) where land
mask ranks only behind reference dataset in importance.

Although reference dataset is the key determinant for
model skill distributions, the overall variability in model
skill is not attributable to a specific reference product itself.
We show this by holding both CMIP5 model and reference
product constant for model skill (figure 5) and rank (figure 6).
Generally there is a single reference product that alone spans
the full range, or nearly so. This is more pronounced for
spatial skill metrics (figure 5) and ranks (figure 6). For
temporal skill metrics and Stime this feature is less prominent
but even here there is substantial overlap in skill distribution.
In no case are any distributions completely disjoint; Stime
for CAN-ESM2, GFDL-ESM2G, and GFDL-EMS2M and
⇢time for INM-CM4 have the lowest distributional overlap,
i.e., nearly disjoint distributions (figure 5). Also, where a
one-number summary of skill, i.e., the median value, would
indicate a gradient in skill attributable to reference (e.g.,
HadGEM2-ES for RMSEtime (figure 5) or GFDL-ESM2G for
Stime rank (figure 6)) the full distributions show extensive
overlap in skill and rank. Overall, even though reference is the
largest mode of model skill variability, other meta-parameters
are associated with significant variation in skill.

4. Conclusion

Confronting models with observationally-based references
as a means to assess model skill is an integral part of
model development. Here we show that, across multiple
sets of plausible benchmarking meta-parameters, that inferred
model skill and rank are highly variable and uncertain.
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This is problematic in a benchmarking context as a
model simultaneously showing multiple levels of model
skill/rank across equally plausible meta-parameters precludes
a diagnosis of model deficiencies. For this case study, the main

driver of uncertainty in model skill is the reference ET dataset
chosen for the evaluation.

This study does not include estimates of uncertainty
from the models or the reference data products, as these
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estimates are not universally available. However, doing so
would broaden the range of plausible model skill or model
rank for any given chosen reference. As a result, this study
represents a conservative assessment of our ability to rank
models based on their skill level relative to a single reference
data product or a suite of reference data.

A key implication from this study for future model in-
tercomparison projects and community benchmarking efforts,
such as ILAMB (International Land Model Benchmarking
project; http://ilamb.org/) and the WGNE/WGCM (Working
Group on Numerical Experimentation and Working Group
on Coupled Modeling, respectively) Climate Model Metrics
Panel (www-metrics-panel.llnl.gov/wiki), is that the choice
of reference dataset could potentially have more influence on
inferred model skill or rank than the model being evaluated.
Furthermore, our results strongly suggest that model skill
is partially decoupled from intrinsic model characteristics.
While the benchmarking experiments here focus solely on
ET, we expect similar ambiguity for other biogeochemical
and biophysical variables where multiple reference products
are available. This indicates that substantial time and
effort must be spent in developing community-accepted
standard reference datasets with emphasis on quality con-
trol and robust uncertainty quantification (e.g., GEWEX
LandFlux/LandFlux-EVAL (Mueller et al 2011)). More
generally, evaluating the reference datasets themselves is a
critical step towards decreasing the ambiguity in inferred
model skill and/or ranks.

Finally, given the large variability in inferred model
skill/rank, one-number summaries of model–data mismatch
may be misleading and erroneous. Instead, model rank and
skill should be presented probabilistically rather than as single
summary values. Although point estimates of skill or rank
may have value in characterizing the central tendency of
model skill, because of the sensitivity of inferred skill/rank
to benchmarking choices, it is inadvisable to rely solely on
such scores to inform model development.
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