metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(tetraphenylphosphonium) $di-\mu$ -iodido-bis[diiodidopalladate(II)]

Frank Mulligan,^a Gary S. Nichol^{b*} and Stephanie K. Hurst^a

^aDepartment of Chemistry and Biochemistry, Northern Arizona University, Box 5698, Flagstaff, AZ 86011, USA, and ^bDepartment of Chemistry, The University of Arizona, 1306 E University Boulevard, Tucson, AZ 85721, USA Correspondence e-mail: gsnichol@email.arizona.edu

Received 13 September 2007; accepted 14 September 2007

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.012 Å; R factor = 0.032; wR factor = 0.101; data-to-parameter ratio = 15.9.

The title compound, $(PPh_4)_2[Pd_2I_6]$, was obtained unintentionally as the product of an attempted synthesis of a tripalladium sandwich complex. The molecular dimensions are unexceptional and the Pd $\cdot \cdot \cdot$ Pd distance, at 3.8183 (12) Å, is much too long for any Pd-Pd interaction. Pd has a typical square-planar coordination geometry and the centrosymmetric anion is essentially planar.

Related literature

The PPh₃Me⁺ salt has also been reported (Tonde *et al.*, 2005). For other examples of $[Pd_2I_6]^{2-}$, see Chan *et al.* (1996), Evans et al. (2002), Maassarani et al. (1987), Neve et al. (2000) and Neve & Crispini (2003). For the Cambridge Structural Database, see Allen (2002).

Experimental

Crystal data

$(C_{24}H_{20}P)_2[Pd_2I_6]$
$M_r = 1652.94$
Monoclinic, $P2_1/n$
a = 12.8951 (11) Å
b = 14.4427 (13) Å
c = 13.9409 (12) Å
$\beta = 106.613 (1)^{\circ}$

Data collection

Bruker SMART 1000 CCD diffractometer Absorption correction: Gaussian (SADABS; Sheldrick, 2007) $T_{\rm min}=0.268,\;T_{\rm max}=0.805$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.101$ S = 1.144154 reflections

V = 2488.0 (4) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 4.54 \text{ mm}^{-1}$ T = 150 (2) K $0.39 \times 0.24 \times 0.05 \text{ mm}$

15011 measured reflections 4154 independent reflections 2914 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.040$

262 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 1.19 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.98$ e Å⁻³

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL and local programs.

The work described in this paper was supported by the Northern Arizona University (NAU) Intramural Grant Program, the NAU College of Engineering and Natural Science start-up fund and the SABRE GBI program. The X-ray diffractometer was purchased with NSF grant CHE-9610374.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2142).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chan, S., Lee, S.-M., Lin, A. & Wong, W.-T. (1996). J. Organomet. Chem. 510, 219-231
- Evans, J., O'Neill, L., Kambhampati, V. L., Rayner, G., Turin, S., Genge, A., Dent, A. J. & Neisius, T. (2002). Dalton Trans. pp. 2207-2212.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Maassarani, F., Pfeffer, M. & Le Borgne, G. (1987). Organometallics, 6, 2043-2053
- Neve, F., Crispini, A. & Francescangeli, O. (2000). Inorg. Chem. 39, 1187-1194. Neve, F. & Crispini, A. (2003). CrystEngComm, 5, 265-268.
- Sheldrick, G. M. (2001). SHELXTL. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
- Tonde, S. S., Kelkar, A. A., Bhadbhade, M. M. & Chaudhari, R. V. (2005). J. Organomet. Chem. 690, 1677-1681.

Acta Cryst. (2007). E63, m2558 [doi:10.1107/S160053680704528X]

Bis(tetraphenylphosphonium) di-^{1/1}-iodido-bis[diiodidopalladate(II)]

F. Mulligan, G. S. Nichol and S. K. Hurst

Comment

The title compound, (I), was obtained unintentionally as the product of an attempted synthesis of a tripalladium sandwich complex. The $[Pd_2I_6]^{2-}$ ion lies on an inversion centre and thus the asymmetric unit is one-half of the complete chemical formula.

Both palladium centres have typical d^8 square-planar geometry and are bridged by two iodide ligands, with four terminal iodide ligands completing this discrete species. A search of the Cambridge Structural Database (Version 5.28 with two updates; Allen, 2002) shows that there are only 8 reported crystallographic examples of this unit. Two tetraphenylphosphonium cations balance the 2- charge. Molecular dimensions are unexceptional and the Pd…Pd distance, at 3.8183 (12) Å, is much too long for any Pd—Pd interaction.

The crystal packing consists mostly of coulombic and London forces, with the exception that the tetraphenylphosphonium cations show the typical phenyl embrace interactions usually encountered with this type of species.

Experimental

200 mg of Pd₂(dba)₃ (dba = dibenzylideneacetone) was stirred with 46 mg of C₇H₇·BF₄ and 445 mg of PPh₄I in 30 ml of CH₂Cl₂ for 30 minutes at room temperature. The solvent was removed under vacuum and the residue recrystallized by slow evaporation of an acetonitrile solution. Yield = 12%. ¹H NMR: (400 MHz, CDCl₃): δ (p.p.m.) = 7.05 – 8.05 (40 H, m, Ph). ³¹P NMR: (400 MHz, CDCl₃): δ (p.p.m.) = 24.2.

Refinement

All hydrogen atoms were initially located in a difference map and then refined using a riding model with $U_{iso}(H)=1.2U_{eq}(C)$. The C–H distances were constrained to be 0.95 Å.

Figures

Fig. 1. Twice the asymmetric unit of (I) with displacement ellipsoids at the 50% probability level and hydrogen atoms shown as small spheres. Symmetry operation a: -x + 1, -y, -z + 1.

Bis(tetraphenylphosphonium) di-µ-iodidobis[diiodidodipalladate(II)]

 $F_{000} = 1536$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.4 - 27.3^{\circ}$

 $\mu = 4.54 \text{ mm}^{-1}$

T = 150 (2) K

Plate, dark purple $0.39 \times 0.24 \times 0.05 \text{ mm}$

 $D_{\rm x} = 2.206 {\rm Mg} {\rm m}^{-3}$ Mo Kα radiation

Cell parameters from 5989 reflections

Crystal data

 $(C_{24}H_{20}P)_2[Pd_2I_6]$ $M_r = 1652.94$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn *a* = 12.8951 (11) Å b = 14.4427 (13) Å*c* = 13.9409 (12) Å $\beta = 106.613 (1)^{\circ}$ $V = 2488.0 (4) \text{ Å}^3$ Z = 2

Data collection

Bruker SMART 1000 CCD diffractometer	4154 independent reflections
Radiation source: sealed tube	2914 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.040$
T = 150(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
thin–slice ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: Gaussian (SADABS; Sheldrick, 2007)	$h = -15 \rightarrow 15$
$T_{\min} = 0.268, \ T_{\max} = 0.805$	$k = -17 \rightarrow 17$
15011 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H-atom parameters constrained
$wR(F^2) = 0.101$	$w = 1/[\sigma^2(F_o^2) + (0.0253P)^2 + 19.5288P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.14	$(\Delta/\sigma)_{\rm max} = 0.001$
4154 reflections	$\Delta \rho_{max} = 1.19 \text{ e} \text{ Å}^{-3}$
262 parameters	$\Delta \rho_{min} = -0.98 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
I1	0.59662 (4)	0.06678 (3)	0.59089 (4)	0.02764 (15)
I2	0.58538 (5)	-0.07752 (5)	0.24562 (5)	0.0469 (2)
13	0.78898 (4)	0.05801 (4)	0.43871 (4)	0.03281 (16)
Pd	0.59643 (5)	-0.00576 (4)	0.41867 (4)	0.02353 (16)
Р	0.81570 (15)	0.11432 (13)	0.04585 (14)	0.0193 (4)
C1	0.7167 (6)	0.1895 (5)	0.0730 (6)	0.0223 (17)
C2	0.6358 (6)	0.2255 (5)	-0.0063 (7)	0.0301 (19)
H2	0.6321	0.2096	-0.0733	0.036*
C3	0.5600 (7)	0.2853 (6)	0.0138 (7)	0.037 (2)
H3	0.5036	0.3098	-0.0398	0.044*
C4	0.5662 (7)	0.3091 (6)	0.1103 (7)	0.036 (2)
H4	0.5149	0.3510	0.1231	0.043*
C5	0.6462 (8)	0.2728 (7)	0.1890 (8)	0.047 (3)
Н5	0.6500	0.2892	0.2559	0.056*
C6	0.7203 (7)	0.2128 (6)	0.1700 (6)	0.037 (2)
H6	0.7749	0.1870	0.2243	0.044*
C7	0.7644 (6)	-0.0016 (5)	0.0212 (5)	0.0220 (17)
C8	0.8366 (7)	-0.0763 (5)	0.0443 (6)	0.0265 (18)
H8	0.9119	-0.0664	0.0730	0.032*
С9	0.7950 (7)	-0.1646 (5)	0.0240 (6)	0.032 (2)
H9	0.8425	-0.2162	0.0406	0.038*
C10	0.6872 (7)	-0.1793 (6)	-0.0193 (6)	0.031 (2)
H10	0.6604	-0.2406	-0.0336	0.037*
C11	0.6170 (7)	-0.1048 (6)	-0.0423 (6)	0.034 (2)
H11	0.5420	-0.1150	-0.0726	0.040*
C12	0.6551 (6)	-0.0169 (5)	-0.0216 (6)	0.0264 (18)
H12	0.6065	0.0340	-0.0366	0.032*
C13	0.9359 (6)	0.1100 (5)	0.1492 (5)	0.0220 (16)
C14	1.0305 (7)	0.1553 (6)	0.1453 (6)	0.0313 (19)
H14	1.0316	0.1896	0.0875	0.038*
C15	1.1226 (7)	0.1500 (6)	0.2262 (6)	0.032 (2)
H15	1.1874	0.1794	0.2229	0.039*
C16	1.1208 (6)	0.1026 (5)	0.3110 (6)	0.0275 (18)

H16	1.1838	0.0997	0.3666	0.033*
C17	1.0267 (7)	0.0591 (6)	0.3149 (6)	0.0299 (19)
H17	1.0258	0.0264	0.3738	0.036*
C18	0.9347 (7)	0.0619 (6)	0.2357 (6)	0.0297 (19)
H18	0.8708	0.0314	0.2397	0.036*
C19	0.8461 (6)	0.1608 (5)	-0.0624 (6)	0.0218 (16)
C20	0.8435 (6)	0.1058 (5)	-0.1451 (6)	0.0251 (17)
H20	0.8225	0.0426	-0.1463	0.030*
C21	0.8716 (6)	0.1431 (5)	-0.2253 (6)	0.0275 (18)
H21	0.8693	0.1061	-0.2822	0.033*
C22	0.9033 (6)	0.2357 (5)	-0.2223 (6)	0.0245 (17)
H22	0.9238	0.2614	-0.2769	0.029*
C23	0.9050 (6)	0.2901 (5)	-0.1407 (6)	0.0250 (17)
H23	0.9264	0.3532	-0.1396	0.030*
C24	0.8760 (6)	0.2540 (5)	-0.0612 (6)	0.0255 (18)
H24	0.8763	0.2920	-0.0055	0.031*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0230 (3)	0.0257 (3)	0.0314 (3)	-0.0031 (2)	0.0033 (2)	-0.0049 (2)
I2	0.0438 (4)	0.0617 (4)	0.0314 (3)	0.0086 (3)	0.0049 (3)	-0.0113 (3)
13	0.0272 (3)	0.0357 (3)	0.0363 (3)	-0.0050 (2)	0.0104 (2)	0.0038 (3)
Pd	0.0214 (3)	0.0206 (3)	0.0261 (3)	0.0017 (2)	0.0028 (3)	0.0014 (3)
Р	0.0183 (10)	0.0181 (9)	0.0213 (10)	-0.0010 (8)	0.0054 (8)	-0.0025 (8)
C1	0.017 (4)	0.022 (4)	0.030 (4)	-0.004 (3)	0.011 (3)	-0.003 (3)
C2	0.031 (5)	0.026 (4)	0.036 (5)	0.003 (4)	0.014 (4)	0.005 (4)
C3	0.032 (5)	0.033 (5)	0.051 (6)	0.016 (4)	0.022 (4)	0.025 (5)
C4	0.040 (5)	0.023 (4)	0.057 (6)	0.003 (4)	0.032 (5)	-0.002 (4)
C5	0.044 (6)	0.053 (6)	0.050 (6)	0.000 (5)	0.023 (5)	-0.025 (5)
C6	0.039 (5)	0.042 (5)	0.029 (5)	0.007 (4)	0.009 (4)	-0.003 (4)
C7	0.029 (4)	0.017 (4)	0.019 (4)	-0.003 (3)	0.005 (3)	0.003 (3)
C8	0.026 (4)	0.022 (4)	0.029 (4)	-0.001 (3)	0.005 (4)	-0.006 (4)
С9	0.045 (5)	0.022 (4)	0.031 (5)	0.007 (4)	0.013 (4)	0.000 (4)
C10	0.034 (5)	0.022 (4)	0.033 (5)	-0.009 (4)	0.002 (4)	-0.004 (4)
C11	0.028 (5)	0.028 (4)	0.038 (5)	-0.008 (4)	-0.002 (4)	0.000 (4)
C12	0.014 (4)	0.023 (4)	0.037 (5)	-0.003 (3)	-0.001 (3)	-0.002 (4)
C13	0.021 (4)	0.023 (4)	0.021 (4)	-0.004 (3)	0.005 (3)	-0.006(3)
C14	0.031 (5)	0.027 (4)	0.034 (5)	-0.001 (4)	0.007 (4)	0.005 (4)
C15	0.023 (4)	0.038 (5)	0.034 (5)	-0.010 (4)	0.007 (4)	-0.007 (4)
C16	0.015 (4)	0.031 (4)	0.032 (4)	0.004 (3)	-0.002 (3)	-0.007 (4)
C17	0.038 (5)	0.028 (4)	0.023 (4)	0.005 (4)	0.008 (4)	-0.001 (4)
C18	0.029 (5)	0.034 (5)	0.027 (4)	-0.005 (4)	0.011 (4)	-0.010 (4)
C19	0.020 (4)	0.023 (4)	0.023 (4)	0.003 (3)	0.009 (3)	0.000 (3)
C20	0.022 (4)	0.020 (4)	0.031 (4)	-0.001 (3)	0.004 (3)	0.000 (4)
C21	0.029 (5)	0.029 (4)	0.024 (4)	0.004 (4)	0.007 (4)	0.001 (4)
C22	0.022 (4)	0.025 (4)	0.027 (4)	0.003 (3)	0.007 (3)	0.010 (4)
C23	0.025 (4)	0.023 (4)	0.026 (4)	0.000 (3)	0.007 (3)	0.003 (4)

C24	0.025 (4)	0.021 (4)	0.028 (4)	-0.003 (3)	0.004 (4)	-0.008 (4)
Geometric paran	neters (Å, °)					
II DA		26188(8)	Cl	0 C11		1 384 (11)
		2.0188 (8)		0—C11		0.050
II—Pd ⁴		2.6081 (8)	CI	I—HII		0.950
12—Pd		2.5920 (9)	CI	I—C12		1.362 (11)
13—Pd		2.5874 (8)	Cl	2—Н12		0.950
Pd—I1 ¹		2.6080 (8)	C1	3—C14		1.399 (11)
PC1		1.796 (8)	C1	3—C18		1.396 (11)
Р—С7		1.797 (7)	C1-	4—H14		0.950
P-C13		1.790 (8)	C1	4—C15		1.387 (11)
P-C19		1.795 (8)	C1	5—H15		0.950
C1—C2		1.386 (11)	C1	5—C16		1.372 (11)
C1—C6		1.382 (11)	C1	6—H16		0.950
С2—Н2		0.950	C1	6—C17		1.381 (11)
C2—C3		1.392 (11)	C1	7—H17		0.950
С3—Н3		0.950	C1	7—C18		1.371 (11)
C3—C4		1.369 (12)	C1	8—H18		0.950
C4—H4		0.950	C1	9—C20		1.392 (10)
C4—C5		1.377 (13)	C1	9—C24		1.399 (10)
C5—H5		0.950	C2	0—H20		0.950
C5—C6		1.371 (12)	C2	0—C21		1.379 (11)
С6—Н6		0.950	C2	1—H21		0.950
С7—С8		1.400 (10)	C2	1—C22		1.396 (11)
C7—C12		1.382 (10)	C2	2—Н22		0.950
C8—H8		0.950	C2	2—С23		1.378 (11)
С8—С9		1.382 (11)	C2	3—Н23		0.950
С9—Н9		0.950	C2	3—C24		1.371 (11)
C9—C10		1.365 (11)	C2-	4—H24		0.950
C10—H10		0.950				
Pd—I1—Pd ⁱ		93.86 (2)	C1	0—С11—Н11		119.9
I1—Pd—I1 ⁱ		86.14 (2)	C1	0—C11—C12		120.2 (8)
I1—Pd—I2		177.03 (3)	H1	1—C11—C12		119.9
I1 ⁱ —Pd—I2		91.12 (3)	C7-			120.1 (7)
I1—Pd—I3		90.53 (3)	C7-	—С12—Н12		119.9
I1 ⁱ —Pd—I3		176.65 (3)	C1	1—С12—Н12		119.9
12—Pd—13		92 21 (3)	P	-C13C14		121.1 (6)
C1 - P - C7		1110(3)	P	-C13-C18		119.5 (6)
C1 - P - C13		110.8 (3)	C1	4—C13—C18		119.6 (0)
C1 - P - C19		106.9 (3)	C1	3—C14—H14		120.1
C7 - P - C13		108.0(3)	C1	3—C14—C15		119.8 (8)
C7—P—C19		110.1 (3)	H1	4—C14—C15		120.1
C13—P—C19		110.1 (3)	Cl	4—C15—H15		119.8
P-C1-C2		118.5 (6)	C1	4—C15—C16		120.4 (8)
P-C1-C6		121.8 (6)	H1	5-C15-C16		119.8
C2-C1-C6		119.7 (7)	C1	5—C16—H16		120.2
C1—C2—H2		120.5	C1	5—C16—C17		119.5 (7)
						× /

C1—C2—C3	119.0 (8)	H16—C16—C17	120.2
H2—C2—C3	120.5	C16—C17—H17	119.2
С2—С3—Н3	119.8	C16—C17—C18	121.5 (8)
C2—C3—C4	120.5 (8)	H17—C17—C18	119.2
H3—C3—C4	119.8	C13—C18—C17	119.3 (8)
C3—C4—H4	119.8	C13-C18-H18	120.4
C3—C4—C5	120.5 (8)	C17-C18-H18	120.4
H4—C4—C5	119.8	PC19C20	121.6 (6)
С4—С5—Н5	120.3	PC19C24	118.4 (6)
C4—C5—C6	119.5 (9)	C20-C19-C24	120.0 (7)
Н5—С5—С6	120.3	С19—С20—Н20	120.1
C1—C6—C5	120.9 (9)	C19—C20—C21	119.9 (7)
С1—С6—Н6	119.6	H20—C20—C21	120.1
С5—С6—Н6	119.6	C20—C21—H21	120.2
Р—С7—С8	119.3 (6)	C20—C21—C22	119.6 (7)
P	120.4 (6)	H21—C21—C22	120.2
C8—C7—C12	120.3 (7)	C21—C22—H22	119.8
С7—С8—Н8	120.9	C21—C22—C23	120.4 (7)
С7—С8—С9	118.1 (7)	H22—C22—C23	119.8
Н8—С8—С9	120.9	С22—С23—Н23	119.8
С8—С9—Н9	119.3	C22—C23—C24	120.4 (7)
C8—C9—C10	121.4 (8)	H23—C23—C24	119.8
Н9—С9—С10	119.3	C19—C24—C23	119.7 (7)
C9—C10—H10	120.1	C19—C24—H24	120.2
C9—C10—C11	119.9 (7)	C23—C24—H24	120.2
H10-C10-C11	120.1		
Pd ⁱ —I1—Pd—I1 ⁱ	0.0	C8—C7—C12—C11	-0.5 (12)
Pd ⁱ —I1—Pd—I2	23.0 (6)	C1—P—C13—C14	-106.1 (7)
Pd ⁱ —I1—Pd—I3	-179.59 (3)	C1—P—C13—C18	72.9 (7)
C7—P—C1—C2	-81.2 (7)	C7—P—C13—C14	132.1 (7)
C7—P—C1—C6	99.7 (7)	C7—P—C13—C18	-48.9 (7)
C13—P—C1—C2	158.9 (6)	C19—P—C13—C14	11.9 (8)
C13—P—C1—C6	-20.3 (8)	C19—P—C13—C18	-169.1 (6)
C19—P—C1—C2	39.0 (7)	P-C13-C14-C15	-179.4 (6)
C19—P—C1—C6	-140.2 (7)	C18—C13—C14—C15	1.6 (12)
P-C1-C2-C3	-178.7 (6)	C13-C14-C15-C16	-1.6 (12)
C6—C1—C2—C3	0.5 (12)	C14—C15—C16—C17	0.8 (12)
C1—C2—C3—C4	0.8 (12)	C15-C16-C17-C18	0.2 (12)
C2—C3—C4—C5	-1.3 (13)	C16-C17-C18-C13	-0.2 (12)
C3—C4—C5—C6	0.4 (14)	P-C13-C18-C17	-179.7 (6)
C4—C5—C6—C1	1.0 (14)	C14—C13—C18—C17	-0.7 (12)
P-C1-C6-C5	177.7 (7)	C1—P—C19—C20	-129.3 (6)
C2—C1—C6—C5	-1.4 (13)	C1—P—C19—C24	52.6 (7)
C1—P—C7—C8	-150.3 (6)	C7—P—C19—C20	-8.7 (7)
C1—P—C7—C12	30.7 (7)	C7—P—C19—C24	173.3 (6)
C13—P—C7—C8	-28.6 (7)	C13—P—C19—C20	110.2 (6)
C13—P—C7—C12	152.4 (6)	C13—P—C19—C24	-67.8 (7)
C19—P—C7—C8	91.6 (7)	P-C19-C20-C21	-177.4 (6)

C19—P—C7—C12	-87.4 (7)	C24—C19—C20—C21	0.6 (11)
Р—С7—С8—С9	-179.7 (6)	C19—C20—C21—C22	0.6 (11)
C12—C7—C8—C9	-0.7 (12)	C20—C21—C22—C23	-1.1 (11)
C7—C8—C9—C10	1.5 (12)	C21—C22—C23—C24	0.3 (11)
C8—C9—C10—C11	-1.0 (13)	C22—C23—C24—C19	1.0 (11)
C9—C10—C11—C12	-0.2 (13)	P-C19-C24-C23	176.7 (6)
C10-C11-C12-C7	0.9 (13)	C20-C19-C24-C23	-1.4 (11)
P	178.5 (7)		
Symmetry codes: (i) $-x+1$, $-y$, $-z+1$.			

