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ABSTRACT

We report our efforts to constrain the form of the low-mass star and brown dwarf mass function via Bayesian
inference. Recent surveys of M, L, and T dwarfs in the local solar neighborhood are an essential component of our
study. Uncertainties in the age distribution of local field stars make reliable inference complicated. We adopt a wide
range of plausible assumptions about the rate of Galactic star formation and show that their deviations from a
uniform rate produce little effect on the resulting luminosity function for a given mass function. As an ancillary
result, we calculate the age distribution for M, L, and T spectral types. We demonstrate that late L dwarfs, in par-
ticular, are systematically younger than objects with earlier or later spectral types, with a mean age of 3 Gyr. Finally,
we use a Bayesian statistical formalism to evaluate the probability of commonly used mass functions in the light of
recent discoveries. We consider three functional forms of the mass function, including a two-segment power law,
a single power law with a low-mass cutoff, and a lognormal distribution. Our results show that at a 60% confi-
dence level the power-law index � for the low-mass arm of a two-segment power law has a value between �0.6
and 0.6 for objects with masses between 0.04 and 0.10 M�. The best-fit index is � ¼ 0:3 � 0:6 at the 60%
confidence level for a single-segment mass function. Current data require this function to extend to at least
0.05 M� with no restrictions placed on a lower mass cutoff. Inferences of the parameter values for a lognormal
mass function are virtually unaffected by recent estimates of the local space density of L and T dwarfs. We find that
we have no preference among these three forms using this method. We discuss current and future capabilities that
may eventually discriminate between mass function models and refine estimates of their associated parameter
values.

Subject headinggs: stars: evolution — stars: low-mass, brown dwarfs — stars: luminosity function, mass function

1. INTRODUCTION

The initial mass function (IMF) is one of the fundamental
distributions in modern astronomy. The IMF, �(m), describes
the number of stars born per unit mass per unit volume. The
concept was introduced by Salpeter (1955), who characterized
the distribution as a power law, �(m) / M�� , with � ¼ 2:35.
Salpeter’s analysis extended nominally to �0.3 M� but in-
cluded relatively few low mass stars. Two decades later, Miller
& Scalo (1979) used improved observations of lower lumi-
nosity stars to show that the mass function flattens at lower
masses. Subsequent analyses have generally characterized the
IMF either as a combination of power laws (with � � 1 below
�1 M� and close to Salpeter’s value at higher masses) or as
a lognormal distribution, �(m)/ exp½(logm� logm0)/

ffiffiffi
2

p
��2;

as inMiller & Scalo (1979). As yet, no direct connection has been
uncovered between the functional form and the underlying phys-
ical mechanisms of star formation.

The measurement of the substellar mass function has great
implications for the theory of star formation. Many different
theories for the formation of brown dwarfs have been proposed

to reproduce the observed frequency of brown dwarfs as field
objects, companions, and members of young clusters. Kroupa
et al. (2003) provide a good review of the different formation
arguments. At present, there are two main paradigms for brown
dwarf formation: fragmentation of molecular clouds, which is
the same process that forms stars (Briceno et al. 2002; White
& Basri 2003), and ejection of prestellar embryos (Reipurth &
Clarke 2001; Delgade-Donate et al. 2003; Sterzik & Durisen
2003). In general, the first paradigm predicts more brown dwarfs,
as a continuation of the stellar IMF, while the second predicts
fewer brown dwarfs, resulting in a sharp drop in the mass function
near the hydrogen-burning minimum mass.

Recent studies of the stellar IMF, summarized in Scalo (1986,
1998) and Kroupa et al. (2003), have shown a similar IMF in
many different environments, including the local Galactic field
and many different star formation regions. However, only in
recent years has it become possible to probe the low-mass star and
substellar regime to estimate the underlying mass function. The
majority of these analyses have centered on young (<50Myr) star
clusters. In principle, the higher luminosities of young brown
dwarfs in these clusters allow the mass function to be derived for
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masses as low as 5–15 Jupiter masses, although the theoretical
models used to calibrate the observations become increasingly
uncertain at these extremely young ages (Baraffe et al. 2002).
Nevertheless, the available measurements can be characterized
using either the power-law or lognormal formalisms. Table 1 pro-
vides a representative set of results from these studies, character-
izing the substellar mass function using the power-law index � .
All the cluster values have �< 1, indicating a flatter mass func-
tion (lower space densities) than that associated with field
M dwarfs (e.g., Reid & Gizis [1997] found �� 1). This result is
also highlighted by Kroupa (2002), whose value of � for the
average solar neighborhood is based predominantly on results
from young star clusters.

Few direct studies of the substellar IMF in the field have
been made, and Table 1 lists their results. The value of these de-
rived power-law exponents are generally greater than or equal
to those obtained from cluster studies. However, it is important
to bear in mind that the mass range sampled in the field is much
more restricted than in the clusters. Moreover, a prime scientific
driver of some M and L dwarf studies is to test whether or not
the brown dwarf frequency in the field is sufficient to contribute
significantly to local dark matter. It is now generally accepted
that the low-mass star and brown dwarf mass function is in-
compatible with an extension of the Salpeter slope and that
brown dwarfs do not constitute an appreciable fraction of the
local dark matter density (emphasized particularly in Reid et al.
[2002, hereafter RGH02]).

Chabrier (2003) has recently reanalyzed the available space
density data for stars and brown dwarfs in the field. He favors
characterizing the IMF as a lognormal distribution with m0 ¼
0:08 M�, rather than the Miller & Scalo (1979) value of m0 ¼
0:15M�. Conceptually, the lognormal distribution is equivalent
to a set of power laws, where� decreases with decreasing mass.
Thus, a lognormal distribution can match the number of brown
dwarfs predicted by a moderately steep power law (�� 1) at
m > 0:05 M�, but it predicts substantially fewer brown dwarfs
at lower masses than a single power law.

We explore the substellar mass function through extensive
modeling and statistical analysis of the available data for the
nearby field population of late M, L, and T dwarfs. Burgasser
(2004) has recently undertaken a similar study using Monte
Carlo techniques, and these results will be compared to ours;
Muench et al. (2000) have probed similar issues through obser-
vations of young clusters and associations. The data for the
present study are compiled from a volume-limited sample of
late M and L dwarfs (Cruz et al. 2003; K. L. Cruz et al. 2005, in
preparation), combined with initial estimates of the local space
density of late T dwarfs (Burgasser 2002). We refer to this
compilation as the KCAB data set. We examine three different
models of the underlying substellar mass function. We first
consider a two-segment power law,

�(m) /
m�1:05; m � m12;

m�� 2 ; m < m12;

�
ð1Þ

wherem is the mass in solar units and �2 andm12 are the power-
law exponent and the segment-joining mass, respectively, as
defined in Allen et al. (2003, hereafter A03). The value ofm12 is
limited by the mass range of the Burrows et al. (2001) models,
which we use to construct our model luminosity functions, to
values between 0.001 and 0.15 M�. The power-law exponent
for masses greater than m12 is set equal to the value determined

by Reid & Gizis (1997). We next consider a single power law
with a low-mass cutoff,

�(m) /
m�� 2 ; m � mcut;

0; m < mcut;

�
ð2Þ

where mcut is the cutoff mass in solar masses. This form was
suggested by Kroupa et al. (2003). They determined that an
abrupt end to the low-mass star mass function was consistent
with the data. Finally, we examine a lognormal distribution,

�(logm) / exp
( logm� logm0)

2

2 �2

� �
; ð3Þ

where logm0 gives the center of the distribution and � controls
the width. A recent lognormal fit to objects between a few M�
and the stellar-substellar limit yields logm0 ¼ �1:1 � 0:1 and
� ¼ 0:69 � 0:05 (Chabrier 2003). In this paper we compare the
predictions of these models to the data using a Bayesian sta-
tistical approach. The Bayesian method provides a rigorous and
elegant statistical comparison between disparate data sets and
models (Press 1997).
The present paper is organized as follows. Section 2 reviews

our derivations of theoretical luminosity functions, as previ-
ously discussed in A03, and examines the morphology of the
new synthetic field luminosity functions. Section 3 describes
the KCAB data set and the Bayesian statistical method, in-
cluding tests and final analysis. Section 4 considers the ways in
which future observations can better constrain the field IMF.
Finally, x 5 summarizes our conclusions.

2. MODEL FIELD LUMINOSITY FUNCTIONS

The study of the substellar IMF is more complicated than the
stellar IMF because, unlike stars, brown dwarf temperatures
and luminosities evolve rapidly as a function of time.Moreover,
brown dwarfs of different masses follow almost identical tracks
in the H-R diagram and evolve through the same sequence of
observable features regardless of mass. This leads to a degen-
eracy between mass and age; for example, a mid–type L dwarf
could be a several Gyr old 0.07M� object or a young (<50Myr)
�0.02 M� object. There are two methods of handling this de-
generacy: surveys of young stellar clusters, where age is a

TABLE 1

Power-Law Mass Function Estimates

Location �

Age

(Myr) Reference

� Ori........................................ 0.8 � 0.4 �5 1

� Per ....................................... 0.59 � 0.05 �90 2

Pleiades ................................... 0.60 � 0.11 �120 3

M35......................................... 0.18 � 0.12 �160 4

Taurus...................................... �0.4 �1 5

IC 348 ..................................... �0 �2 6

Orion Nebula cluster............... �0 �3 7

‘‘Average field’’ ...................... 0.3 � 0.7 . . . 8

Field M and L dwarfs............. 1.5 � 0.5 . . . 9

Ultracool field M dwarfs ........ <2 . . . 10

Field T dwarfs......................... 0.75 � 0.25 . . . 11

References.—(1) Béjar et al. 2001; (2) Barrado y Navascués et al. 2002;
(3) Moraux et al. 2003; (4) Barrado y Navascués et al. 2001; (5) Briceno et al.
2002; Luhman 2004; (6) Luhman et al. 2003; (7) Muench et al. 2002; (8)
Kroupa 2002; (9) Reid et al. 1999; (10) Reid et al. 2002; (11) Burgasser 2002.
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known parameter, and statistical analysis of the field distribu-
tion. A03 studied the young clusters, whereas our paper covers
the statistical inference of the field IMF.

The brown dwarf age-mass degeneracy means that there
is not a unique transformation between the observed luminos-
ity function and the underlying mass function for a mixed-age
population. Instead, we invert the transformation. Starting with
mass and age distributions, we derive theoretical luminosity
functions via the Burrows et al. (2001) evolutionary models of
low-mass dwarfs, the same models used in A03 (see that paper
or Burgasser [2004] for a comparison with other evolutionary
models). By varying the underlying physical distributions, we
obtain the combination of mass and age distribution that best
reconstructs the observed luminosity function.

2.1. The Age Distribution of the Field

The age distribution of stars in the local solar neighborhood
is difficult to determine because most age indicators work best
at young ages (<1–2 Gyr). Estimates have been derived using a
variety of techniques, including analysis of the distribution of
chromospheric activity in nearby G and M dwarfs (Soderblom
et al. 1991; Gizis et al. 2002), modeling the color-magnitude
diagram in the solar neighborhood (Hernandez et al. 2000), and
using observations of distant galaxies to infer star formations
rates as a function of redshift (Pascual et al. 2001). Among
these studies, only Soderblom et al. (1991) explicitly cite un-
certainties in the derived star formation rates; we take those
values (�20%) as characteristic of this type of analysis.

Figure 1 compares four representative empirically derived
age distributions for field stars against three idealized distri-
butions. Each distribution indicates the probability of a field star
having a particular age. Most empirical measurements, despite

large apparent excursions, are broadly consistent with a con-
stant star formation rate. We use three idealized cases to test the
effect that the underlying age distribution has on the output
luminosity functions and Teff distributions. The idealized age
distributions are as follows: decreasing star formation (fewer
stars formed today than early in the galaxy’s history), with a
slope of 0.02 Gyr�1; increasing star formation (more formation
today than 10 Gyr ago), with a slope of �0.02 Gyr�1; and uni-
form star formation. All age distributions span 0–10 Gyr, with 0
as the present and 10 as 10 billion years ago. As illustrated in
Figure 1, these three idealized models cover the extreme range
of trends suggested by the empirical estimates.

2.2. Bolometric Luminosity Functions and Teff Distributions

The various IMF forms and assumed age distributions de-
scribed in the previous sections are combined to create con-
tinuous distributions of objects as functions of mass and age.
Each model mass-age distribution is normalized such that the
space density of 0.10M� objects is equal to 0.35 stars pc�3M�1

�
(Reid & Gizis 1997). Finally, the Burrows et al. (2001) low-
mass star and brown dwarf evolutionary models are used to
assign values of bolometric luminosity and effective tempera-
ture at each point in the mass-age distribution. Luminosity
functions and Teff distributions are derived from this distribution
by summing the number of objects in an interval of luminosity
or Teff.

The substellar nature of brown dwarfs leads to a character-
istic structure in the luminosity and Teff distributions. As a base-
line reference, we use a two-segment power-law mass function
with �2 ¼ 1:0 and m12 ¼ 0:09 M� (essentially a continuation
of the low-mass star IMF) throughout the paper unless other-
wise noted. Figure 2 shows the luminosity functions and Teff

Fig. 1.—Four empirically derived field age distributions: (a) high-z star for-
mation (Pascual et al. 2001), (b) stellar activity in G and K stars (Soderblom
et al. 1991), (c) stellar activity in M dwarfs (Gizis et al. 2002), and (d ) statis-
tical derivation from the color-magnitude diagram of nearby early-type stars
(Hernandez et al. 2000) (solid lines). Plotted over these are three idealized age
distributions: uniform ( flat dotted line), decreasing (dotted line with negative
slope), and increasing (dotted line with positive slope) star formation rates. The
age is plotted such that 10 is 10 billion years ago and 0 is the present. Each dis-
tribution yields the probability of a field star having a particular age.

Fig. 2.—Model bolometric luminosity functions and Teff distributions derived
using three different age distributions: uniform (solid line), decreasing (dotted line),
and increasing (dot-dashed line), and a two-segment power law with �2 ¼ 1.
Regions inMbol and Teff that correspond to spectral types M, L, and Tare delimited
by vertical slashed rectangles. The cutoff in the luminosity function and Teff dis-
tribution at bright magnitudes and high temperature is due to the upper mass cutoff
of the Burrows et al. (2001) models, and the cutoff at low temperatures and faint
magnitudes, to the low-mass cutoff of the Burrows models.
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distributions derived for the baseline model, coupled with the
three idealized age distributions described in x 2.1. In each case,
the bolometric luminosity function exhibits three prominent
features: a rise to bright magnitudes (A), a deep trough (B), and
a large clump at faint magnitudes (C). Feature A is composed
of predominantly main-sequence stars, together with a small
number of young brown dwarfs; the sharp cutoff at high lu-
minosities stems from the upper mass limit of the Burrows
models (0.15M�). Brown dwarfs account for almost all sources
with Mbol > 12, and their characteristic evolution accounts for
features B and C. The rate of cooling and consequent fading in
luminosity increases with decreasing mass and age, whereas for
all masses it decreases with decreasing temperature. Brown
dwarfs decrease rapidly in luminosity and Teff, leading to rela-
tively small numbers of luminous brown dwarfs and creating
trough B. As the rate of cooling decreases for older brown
dwarfs, objects accumulate at lower luminosities, leading to
feature C. Note that the cutoff after feature C is due to the low-
mass edge of the Burrows models. Overall, the luminosity func-
tions in Figure 2 have morphologies similar to those computed
for young clusters in A03 (see Fig. 3 of that paper). The main
difference is the absence of the transient peak D, a spike in the
luminosity function produced by brown dwarfs that burned
deuterium. Peak D does not appear in the field luminosity func-
tion because the solar neighborhood includes few very young
brown dwarfs.

The general shape of the Teff distribution is similar to that of
the bolometric luminosity function (Fig. 2, bottom). The ef-
fective temperature regimes marked for M, L, and T spectral
types are based on those given by Golimowski et al. (2004).
Trough B is centered in the L dwarf regime,�2300–1450 K. As
noted above, the substellar objects in that effective temperature
range evolve particularly rapidly (see Fig. 8 of Burrows et al.
2001). Moreover, the models indicate that only stars less mas-
sive than m < 0:082 M� enter the L dwarf regime, whereas the
coolest hydrogen-burning objects reach temperatures of�1800K
(spectral type L3–L4). Thus, the L dwarf population is composed
of brown dwarfs that spend very little of their lifetimes as L dwarfs
and main-sequence stars drawn from a very limited mass range.

There are only limited differences in the predicted luminos-
ity functions despite the widely varied age distributions used
in their construction. Those differences are restricted to two re-
gions: 15 < Mbol < 18:5, or late L and T dwarfs, andMbol >25,
well beyond known T dwarfs. The increasing star formation
model predicts more young objects, with correspondingly higher
numbers of L and early T dwarfs, whereas the decreasing star
formation model predicts more older objects and larger num-
bers of late T and cooler dwarfs. Given the results shown in
Figure 2 and the current observational uncertainties, we adopt a
uniform age distribution (constant star formation rate) as the
reference distribution throughout the rest of the present study.

Figure 3 shows the predicted Mbol distributions for three
power-law IMF models, with �2 set to 0.0, 0.5, and 1.0. Note
that the variations through the L dwarf regime are smaller than
the fluctuations produced by varying the star formation history
(Fig. 2), whereas there are more substantial, systematic changes
in the predicted T dwarf number densities. We therefore con-
clude a priori that L dwarf luminosity function data are unlikely
to provide strong constraints on the underlying mass function.
T dwarf data are essential to obtain a reliable estimate of the
substellar mass function.

The synthetic luminosity and Teff distributions produced by
Burgasser (2004) were generated using a different statistical
approach (Monte Carlo) but with similar evolutionary models

(Burrows et al. 1997) and assumptions on the IMF and age
distribution. Consequently, there are few differences between
Burgasser’s models and ours. Burgasser finds responses in the
luminosity function similar to variations in the age distribution
as found in this paper. In Burgasser’s Figure 10, several model
luminosity functions and Teff distributions are displayed. His
models show the same decrease in space density for mid-L
through early T dwarfs for an age distribution weighted toward
old objects such as that seen in our Figure 2. Changes in the
power-law index � also produce similar results for these two
works. In Figure 4 of Burgasser, we see model bolometric mag-
nitude luminosity functions for several values of � , which is
similar to our Figure 3. The location of the bottom of trough B is
consistent for the figures atMbol � 14:5. In addition, the size of
the low-mass end of the luminosity function (C) grows with
increasing � in a similar way for the two works. The good
agreement between our analysis and Burgasser’s independent
analysis suggests that these results are representative of current
theoretical models.

2.3. Broadband Luminosity Functions
and Bolometric Corrections

Empirical surveys derive a luminosity function either in a
particular bandpass (Ic, J, or K ) or as a function of spectral
type (an observational surrogate for Teff), not the bolometric lu-
minosity provided by the evolutionary models. Consequently,
the predicted bolometric luminosity functions must be trans-
formed to broadband luminosity functions to be compared with
observations. We have adopted the bolometric corrections of
Golimowski et al. (2004) to transform the bolometric luminos-
ity function to the K band and the M band. Figure 4 compares
the Golimowski et al. (2004) K-band bolometric corrections
with the relation adopted in A03, on the basis of data from
Dahn et al. (2002). We have used IJH colors for late M, L, and
T dwarfs from several sources (Leggett et al. 2002a, 2002b;
Dahn et al. 2002; Knapp et al. 2004) to derive bolometric cor-
rections in those bands. The same methods are employed here

Fig. 3.—Three bolometric luminosity functions comparing model mass
functions for �2 ¼ 0:0, 0.5, and 1.0 and m12 ¼ 0:09M�, with the same spectral
type boundaries as in Fig. 2 (top). Observable variations in the underlying mass
function are most apparent in the T dwarf regime.
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as in A03 to carry out the conversion using the newer bolo-
metric corrections.

Figure 5 compares the field bolometric luminosity function
for a uniform age distribution to the corresponding broadband
luminosity functions. The overall morphology is generally pre-
served, with the main differences lying in the magnitude range
spanned by the luminosity function and the width and depth
of trough B. The one distinct difference between A03 and this
work is that a feature in the K-band luminosity function at
MK ¼ 14, which we attributed to the onset of methane absorp-
tion, has disappeared. This feature was introduced by a kink in
the A03 bolometric corrections close to the L-T transition. The
new Golimowski et al. (2004) results provide a smoother rela-
tion through the transition, removing the extra dip (see Fig. 4).
Given the absence of empirical data at MJ > 16, we are forced
to extrapolate the bolometric corrections to temperatures lower
than�700 K (spectral types later than T8). Thus, these features
have larger uncertainties than brighter sections in the broad-
band luminosity functions at the corresponding absolute mag-
nitudes (Fig. 5, arrows).

2.4. Age and Mass Distributions as a Function of Spectral Type

In general, the age distribution for a particular substellar
spectral type is not flat even if a uniform star formation rate is
assumed. The theoretical models discussed here can be used to
predict mass or age distributions of objects as a function of
spectral type. Figure 6 shows illustrative results from our nom-
inal model. We show the predicted probability density distri-
butions (i.e., the likelihood per unit mass or age that an object
has a certain mass or age) for spectral types M6, L0, L5, late L,
early T, and late T. Figure 6 (top) plots the age distributions,
Figure 6 (bottom) plots the mass distributions, and Table 2 lists
the average age and mass of each spectral type. Given the un-
certainties inherent in the models at very young ages, we have
discarded all model results for ages less than 20 Myr (0.2% of
the sample for a constant star formation history).

Fig. 4.—Comparison of the K-band bolometric corrections used in A03
(solid line; after Dahn et al. 2002) and those used here (dashed line; from
Golimowski et al. 2004). Note the smoother transition around 1300 K (the L-
T transition) provided by the Golimoski corrections compared to that by the
Dahn corrections.

Fig. 5.—IJHKM-band and bolometric magnitude field luminosity functions
for a uniform age distribution with �2 ¼ 1:0 and m12 ¼ 0:09M�. The extra dip
or leveling of the broadband luminosity functions at faint magnitudes (arrows)
is caused by the end of the empirical bolometric corrections in the T dwarf
regime and the beginning of our extrapolation. Consequently, the shape and
features in the broadband luminosity functions at magnitudes fainter than the
arrows indicate larger uncertainties than brighter features.

Fig. 6.—Predicted age and mass distributions as a function of spectral type
for the local field population, derived from the Burrows et al. (2001) models and
our nominal model mass-age distribution, for spectral types M6, L0, L5, late L
(L6–L8), early T (T0–T4), and late T (T5–T8). See Table 2 for the average age
and mass of each distribution.
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We examine the features of these mass and age distributions
to better understand the physical properties of the underlying
substellar population. The M6 age distribution is essentially
flat. This reflects the overwhelming predominance of hydrogen-
burning stars. In our baseline model, M6 dwarfs form at a
uniform rate over the 10 Gyr spanned by the simulations and
settle rapidly onto the main sequence with little subsequent evo-
lution. In contrast, the relative proportion of young (<2 Gyr)
dwarfs increases and the average age decreases as one pro-
gresses down the L and T dwarf spectral sequence (see Table 2).
This behavior stems partly from the decreasing contribution of
hydrogen-burning stars and partly from rapid cooling of brown
dwarfs through these temperature regimes. Late-type T dwarfs,
however, exhibit a much flatter age distribution, albeit still de-
creasing with increasing age. The constant birthrate of new brown
dwarfs, coupled with the slower cooling rate at these tempera-
tures (�1250–700 K), when compared to L dwarfs, yields an
approximately constant density of late T dwarfs as a function of
age. This is reflected in the average age of �5 Gyr, comparable
to that of stellar-mass M6 dwarfs.

The mass distribution as a function of spectral type changes
significantly as one crosses the stellar-substellar boundary. As
can be seen in Figure 6 (bottom), the mostly stellar M6 mass
distribution has a well-defined mass range with a shallow tail.
The L0 and L5 mass distributions are strongly peaked at masses
near the hydrogen-burning limit, reflecting the long main-
sequence lifetimes of stellar L dwarfs. The distribution broad-
ens for late L and early T dwarfs, both of which include only
substellar-mass objects. Nevertheless, higher mass brown dwarfs,
which spend long periods of time as L and early T dwarfs, are
the majority constituent in both cases. The average mass is lower
for early T dwarfs, since the highest mass brown dwarfs (m >
0:055M�) in the Galactic disk have not had sufficient time to cool
to temperatures below �1300 K. Much longer cooling times in
the late T temperature range lead to a very broadmass distribution,
although one should note that most of the lowest mass brown
dwarfs have dropped below TeA � 700 K, the lower temperature
limit for this bin.

3. BAYESIAN INFERENCE OF THE FIELD
MASS FUNCTION

3.1. The Bayesian Approach

In developing and presenting a Bayesian approach to the
study of the mass function, we hope to encourage the applica-
tion of more rigorous statistical methods to this field. As noted
by Press (1997), the state of most statistical approaches to as-
tronomical data analysis is lamentably simple. Using standard
freshman lab statistics, one can overemphasize a result because
of incorrect uncertainties or be baffled by apparently incom-

patible data sets. A Bayesian approach is able to cope with such
problems and to quantify the relative degree of belief of one
model over another. We use this method here to evaluate in-
ferences about the substellar mass function on the basis of re-
cent observations.
The core of this method is Bayes’s rule:

P(�jD) / P(Dj�)P(�); ð4Þ

where � indicates the model; D indicates the data; P(� |D), the
posterior distribution, is the probability of the model given
the data; P(D|�), the likelihood function, is the likelihood of
the data given the model; and P(�), the prior distribution, is the
initial probability of the model (Sivia 1996). The output pos-
terior distribution provides a wealth of information on the model
parameters, from the best-fit parameter set to correlations between
parameters. Using Bayes’s rule, we calculate the probability that
the data would have been measured given a hypothesized model
(the likelihood function). However, we wish to know the proba-
bility that a hypothesized model is true, given the measured data
(the posterior distribution). The power of Bayes’s rule lies in the
simple relation of these two quantities.
The specification of a prior distribution remains the most

controversial aspect of Bayesian analyses and must be con-
sidered carefully. The prior folds previous observational and
theoretical evidence into the analysis in more than one manner.
One technique uses the posterior distribution from a previous
analysis. This enables the same analysis to be performed in the
light of new and improved data. In this way, one can iterate over
multiple data sets, thereby incorporating them into the analysis
of a single set of models to provide one unified result. This is
ideal for the study of the field substellar mass function because
there is no single data set for all low-mass stars and brown
dwarfs and new data is continually made available. Priors can
also be constructed if no previous knowledge of the problem
exists. In this case the prior distribution should not impart a bias
on any parameter value under consideration. These types of
priors fall under the broad heading of conjugate distributions.
The prior distributions used here are constructed from previous
estimates of the substellar mass function.

3.2. Checking the Method

To check that our Bayesian method is correctly implemented,
we attempt to reproduce the results of RGH02 for the nearby
stellar mass function. RGH02 compiled observations of M
dwarfs from catalogs, supplemented the available distance es-
timates with Hipparcos parallaxes, included Hipparcos data on
G and K stars, and selected all objects within specific distance
and absolute magnitude limits. Those data, coupled with an
empirically derived mass-luminosity relation, enabled them to
fit the stellar mass function from 1 to �0.1 M�. We take their
mass estimates and perform our own analysis using a Bayesian
method.
To begin, a model must be constructed to compare with the

data. We use a power-law mass function model with only one
free parameter, � , the power-law index. We set the resolution to
�� ¼ 0:01 and allow � to vary from 0.0 to 2.0, consistent with
the range of values given in Table 1. Each computation is
normalized to match the density given by the sum of the three
highest RGH02 mass function bins. The likelihood and prior
distributions also need to be specified. Since the RGH02 data
set is well defined and contains large numbers, a standard

TABLE 2

Spectral Type Physical Parameters

Spectral Type

Mean Age

(Gyr)

Mean Mass

(M� )

M6................................................ 5.3 0.093

L0 ................................................. 4.1 0.074

L5 ................................................. 3.3 0.067

Late L........................................... 2.9 0.063

Early T ......................................... 3.1 0.058

Late T........................................... 4.8 0.048
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Gaussian functional form is used for the likelihood function
(Sivia 1996)

P(Dij�i) / exp � (�i � Di)
2

2�2
i

� �
; ð5Þ

whereDi is the ith bin in themeasuredmass function, �i is the ith
bin in the model mass function, and �i is the uncertainty in the
measurement of the ith data point. The prior distribution used is
based on the average of the estimates of � listed in Table 1 and
their uncertainties and is given the shape of a Gaussian:

P(� ) ¼ 1ffiffiffiffiffiffi
2�

p
��

exp � (� � �0)
2

2�2
�

� �
; ð6Þ

where �0 ¼ 0:8 and �� ¼ 0:9. The calculation to determine the
posterior distribution can now be carried out and has the fol-
lowing functional form:

P(� jDRGH) /
Y
i

exp � �i(� )� Di½ �2

2�2
i

( )
P(� ); ð7Þ

where the product is over every bin in the mass function. We
assume that each data point is independent. This allows the in-
dividual ith distributions to be multiplied to obtain the final pos-
terior distribution for � (Sivia 1996).

We find a best-fit power-law mass function with � ¼ 1:09 �
0:017, consistent with the value of 1:15 � 0:2 derived directly
by RGH02. The best-fit model mass function is displayed with
the data in Figure 7a, and the resultant Bayesian posterior
distribution, with the input prior distribution, for � is shown in
Figure 7b. We see that the posterior distribution is Gaussian, is
centered at a significantly different value than the prior distri-
bution (1.15 instead of 0.8), and is more tightly constrained than
the prior. Since we have reproduced the earlier results and the
resultant posterior distributions are well behaved, we believe

that our Bayesian method is correctly constructed. Therefore,
we use it to understand the substellar mass function.

3.3. Model Fits to the Substellar Mass Function

We now extend the above demonstration of the utility of a
Bayesian approach to include the substellar mass function of
the local field. As described in x 1, we use number counts of
M7–L8 dwarfs taken from Cruz et al. (2003; K. L. Cruz et al.
2005, in preparation) and space densities of T5–T8 dwarfs
taken from Burgasser (2002) to study the field substellar mass
function. We combine those data into a joint J-band luminosity
function to compare them to our models. Cruz et al. provide a
J-band luminosity function directly (although it is known to be
incomplete for M7 dwarfs [MJ <11]). However, the Burgasser
(2002) T dwarf data provide for space density as a function of
spectral type. We have used the T dwarfMJ –spectral type rela-
tion from Vrba et al. (2004) to transform the spectral type distri-
bution to a J-band luminosity function,

MJ ¼ 15:04� 0:533 SpTð Þ þ 0:091 SpTð Þ2; ð8Þ

whereMJ is the absolute J-band magnitude and SpT is a spectral
type index (T0 T8 ¼ 0 8). Combining those results with the
Cruz et al. data gives the empirical KCAB J-band luminosity
function listed in Table 3.

The MJ–spectral type relation is double valued for spectral
types between�L5 and T5, reversing its direction at around the
L-T transition, with early-type T dwarfs and late-type L dwarfs
having similarMJ values (Vrba et al. 2004). Survey data for this
absolute magnitude regime (14:0 � MJ � 15:5) are incomplete.
This reflects both known incompleteness in the Cruz et al.
survey for L5–L8 dwarfs and the absence of published den-
sity estimates for T0–T4 dwarfs. Thus, the space densities be-
tween MJ ¼ 14 and 15.5 listed in Table 3 are lower limits, and
these data are not used to constrain the field substellar mass
function.

As outlined in x 1, three different mass function models are
used to fit the data: a two-segment power law (as used in x 2 and
A03), a lognormal mass function, and a single power law with a

Fig. 7.—(a) Best-fit model mass function (histogram) to the RGH02 data (triangles), with� ¼ 1:09 � 0:017; (b) Bayesian posterior distribution on� for the RGH02
data fit (solid line) and the input prior distribution (dotted line).
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low-mass cutoff. The segmented power-law (Kroupa et al.
2003; Reid et al. 1999) and the lognormal distribution (Chabrier
2003) mass functions have long-standing traditions. The third
formulation is chosen because the field data may be consistent
with a mass function that continues through the stellar-substellar
boundary and then abruptly cuts off (Kroupa et al. 2003). There-
fore, we consider this formulation and compare the resultant
luminosity function to those generated by the two more standard
forms of the mass function.

3.3.1. Two-Segment Power-Law Mass Functions

As with the test case, we must first set the range of the model
parameters to be probed and construct functional forms for the
distributions on the right-hand side of equation (4). For the two-
segment power law, as described in x 2, the modeled region is
�1:5 � �2 � 1:5, both to sample the range given in Table 1
and to allow for a sharp drop in the mass function. The value of

m12 is limited to 0:01 M� � m12 � 0:1 M�, lying in the range
of masses potentially probed by the KCAB data set and within
the Burrows et al. (2001) models.
The prior distributions for �2 and m12 are straightforward.

The �2 prior discussed in x 3.2 is used again, since it is based on
empirical estimates (Table 1). However, there is no previous
knowledge aboutm12, so care must be taken not to impart a bias
on the posterior distribution. We use a maximum-entropy ar-
gument to determine the prior distribution on m12. To do so, we
need to define the constraints to which the distribution of m12 is
subject. The only constraint on the probability distribution of
m12 is an invariance to changes in scale; i.e., the units of mass
can be changed from solar masses to Jupiter masses with no
effect on the outcome. This means that m12 is a scale parameter,
and the most ‘‘ignorant’’ prior distribution is given by P(m12) /
1/m12 (Sivia 1996). Therefore, the two-dimensional prior dis-
tribution is given by the following:

P(�2; m12) /
1ffiffiffiffiffiffi
2�

p
��

exp � (� � �0)
2

2�2
�

� �
1

m12

: ð9Þ

The KCAB data set is limited by small numbers since there
are no more than 15–20 objects in the largest magnitude bin,
with most bins having fewer than 10 objects. Consequently,
unlike in x 3.2, a Poisson form is used for the likelihood
function, since a Poisson distribution is best suited for small
numbers of objects (Sivia 1996). The Poisson form is given by
P / rateð ÞNdet exp �Nobs rateð Þ½ �, where ‘‘rate’’ is the predicted
model space density;Ndet, the detected number of objects, is the
product of the observed density and the volume searched; and
Nobs, the number of observations, is the volume observed.
Hence, the likelihood function is given by the following
form:

P(Dij�i) / �i(�2; m12)
DiVi exp �Vi�i �2; m12ð Þ½ �; ð10Þ

TABLE 3

Field Space Density Data

MJ

Space Density

(10�3 pc�3)

Volume Observed

( pc3)

(10.75)a............................. 2.50 � 0.60 13400

11.25................................. 1.49 � 0.33 13400

11.75................................. 0.97 � 0.27 13400

12.25................................. 0.75 � 0.24 13400

12.75................................. 0.37 � 0.17 13400

13.25................................. 0.25 � 0.13 13400

13.75................................. 1.00 � 0.30 13400

(14.25)a............................. 1.70 � 1.42 13400

(14.75)a............................. 2.31 � 1.43 13400

(15.25)a............................. 1.90 � 0.90 3000

15.75................................. 2.00 � 1.50 1250

16.25................................. 4.70 � 3.00 660

a These data not used in the analysis because of incompleteness.

Fig. 8.—Bayesian posterior distribution for the two-segment power-law mass function parameters, �2 and m12, fits to the KCAB data set. White indicates high
probability, and black, low. The contours are 10% confidence intervals.
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where the subscript i represents each absolute J-magnitude bin
in the luminosity function; Di and Vi are the measured space
density and the volume explored in each magnitude bin of the
KCAB data set, respectively; and �i is the model space density
for the ith J-magnitude bin. The final unnormalized posterior
distribution is given as the natural logarithm of the product over
each magnitude bin of equation (10):

ln P �2; m12jDð Þ½ � / ln P �2; m12ð Þ½ �
þ
X
i

DiVi ln �i �2; m12ð Þ½ � � Vi�i(�2; m12)f g:

ð11Þ

The prior distribution is outside the summation because it is in-
variant with respect to the specific data point under consideration.

To calculate the posterior distribution, we generate a series of
mass-age distributions and transform them to the observational
plane via the brown dwarf models, as described in x 2. The res-
olution of the mass function model parameters are��2 ¼ 0:05
and �m12 ¼ 0:001 M�. We normalize each iteration to match
the space density for objects with MJ ¼ 11–12.5 in the KCAB
luminosity function. These data sample the most luminous ul-
tracool dwarfs and are likely to provide the most reliable space
density estimates.

Figure 8 displays the resultant two-dimensional posterior distri-
bution for �2 and m12. The most probable solution is �2 � 0:0
and M12 � 0:08 M�, with large uncertainties. We also test the
effect that varying the �2 prior distribution has on the output
posterior distribution. Figure 9 displays four one-dimensional
posterior distributions derived from four prior distributions for�2:
the nominal case, a shifted case, a wider case, and a narrower case.
The overall shape and peak location of the posterior distribution
remain largely the same despite the variations of the prior distri-
bution. The narrow prior distribution produces the biggest dif-
ferences. However, all the posterior distributions cover similar
ranges in �2 with similar amplitudes. Although the posterior
distributions differ substantially from their priors, they are still
affected by them and only weakly constrain model parameter
values. Consequently, the different output posterior distributions
all fit the data equally well.

3.3.2. Cutoff Power-Law Mass Functions

The choice of a two-segment power law is not clearly re-
quired, so we also fit the data with other forms of the mass
function in an effort to determine which, if any, provides the
best fit to the KCAB data set. Kroupa et al. (2003) suggest that
the field mass function may be consistent with a cutoff (a steep
drop in number density) at or near the stellar-substellar bound-
ary. We test this hypothesis using our Bayesian formulation,

Fig. 9.—Four Bayesian posterior (solid line) and prior (dotted line) distri-
butions from the KCAB data set fit for the two-segment power-law mass
function parameter �2. The different prior distributions are (a) nominal,
�20 ¼ 0:8 and �� ¼ 0:9; (b) shifted, �20 ¼ 0:2 and �� ¼ 0:9; (c) widened,
�20 ¼ 0:8 and �� ¼ 1:8; and (d ) narrowed, �20 ¼ 0:8 and �� ¼ 0:45.

Fig. 10.—Bayesian posterior distribution for the low-mass cutoff power-law mass function parameters, �2 and mcut, fits to the KCAB data set. White indicates high
probability, and black, low. The contours are 10% confidence intervals.
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which uses likelihood functions and prior distributions identical to
those given in x 3.3.1, with new mass function models given by
equation (2). Figure 10 displays the resultant two-dimensional
posterior distribution. The maximum is at the lower edge of the
mcut range, 0.01M�, with�2 � 0:25.Our results agree betterwith
the Kroupa et al. (2003) mass function that includes no lower
mass cutoff rather than a cutoff near the hydrogen-burning limit;
0.05M� is the highest cutoff mass that is consistent with our anal-
ysis. This upper limit is approximately the lowest mass probed by
average field T dwarfs.

The posterior distribution for the cutoff model peaks more
narrowly than the posterior distribution of the two-segment
power law, and it too is not strongly dependent on the prior
distribution. Figure 11 displays the same four altered prior dis-
tributions and their resultant posterior distributions as in x 3.3.1
except for the cutoff power-law mass function. The posterior
distributions show behavior similar to that of the two-segment
power-law mass function. The Bayesian result of this mass func-
tion formulation is similar to that of the previous one, namely, that
the data weakly constrain the model parameter values.

3.3.3. Lognormal Mass Functions

We apply our Bayesian analysis to a third set of model lumi-
nosity functions based on a lognormal mass function. As with
the power-law analyses, there are two free parameters: the char-
acteristic mass m0, which is allowed to span the range �1:4 <
logm0 < �0:4, and the width �, which spans 0.35–1.35. The
nominal prior distribution uses the values of those parameters
given by Chabrier (2003; logm0 ¼ �1:1 � 0:1 and � ¼ 0:69�
0:05). The lognormal mass functions generate luminosity func-
tions similar to those from power-law mass function models
through the T dwarf regime, but they diverge at faintermagnitudes
(see x 3.3.4). As noted above, this stems from the turnover in the
lognormal mass functions at low masses.

The Bayesian analysis of this mass function model yields re-
sults similar to those outlined in the previous sections. Figure 12
displays the posterior distributions on logm0 for four variations
of the m0 prior distribution. Unlike the previous analyses, the
posterior distribution strongly mirrors the input prior distribution,
which means that we cannot constrain the mass function in this
case. The reason for this is that the KCAB data are not at the peak

Fig. 11.—Four Bayesian posterior (solid line) and prior (dotted line) distri-
butions from the KCAB data set fits for the low-mass cutoff power-law mass
function parameter �2. The different prior distributions are identical to those
used with the two-segment power law (Fig. 9).

Fig. 12.—Four different posterior (solid line) and prior (dotted line) distri-
butions for a lognormal mass function model parameter logm0 fit to the KCAB
data set. The different prior distributions are (a) nominal Chabrier (2003) result,
logm0 ¼ �1:1 and �lm ¼ 0:1; (b) shifted, logm0 ¼ �0:8 and �lm ¼ 0:1; (c)
widened, logm0 ¼ �0:8 and �lm ¼ 0:3; and (d ) narrowed, logm0 ¼ �0:8 and
�lm ¼ 0:05.

Fig. 13.—Joint KCAB observed luminosity function plotted with best-fit
J-band luminosity function models for the three model mass functions: (a) two-
segment power-law mass function with �2 ¼ 0:0 and m12 ¼ 0:08 M�, (b) low-
mass cutoff power-law mass function with �2 ¼ 0:25 and mcut ¼ 0:01 M�, and
(c) lognormal mass function with logm0 ¼ �1:1 and � ¼ 0:69. The histograms
display themodels, the triangular pointswith error bars show the data used in the fit,
and the open circles show data points not used in the fit because of incompleteness
(Table 3).
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of the lognormal distribution. This effectively means that we try to
fit the falling slope of the mass function. The result is that a wide
range of possible parameter values is consistent with the data. To
properly fit a lognormal mass function, we need to include data
from masses at the peak and above (>0.10 M�).

3.3.4. Model Discussion

All three mathematical representations of the mass function
match the data with similar accuracy. Figure 13 shows the best-
fit models from each of the theoretical forms matched against
the empirical KCAB densities. All three luminosity functions
are nearly identical to MJ � 17; only there do they begin to di-
verge. The two-segment power-law model has slightly higher
densities than the lognormal model, whereas the abrupt stop in
the cutoff model is the result of the low-mass cutoff. These
differences are all well below the current detection limit, imply-
ing that it is very difficult to tell the difference between these
models. This is what our Bayesian output told us. The posterior
distributions on the model parameters either are not well con-
strained or are completely dependent on the prior distribution.

Two properties of the calibrating KCAB data set contribute to
the weak constraints on the model parameter values. First, the
measurements for late M to mid-L dwarfs (Cruz et al. 2003;
K. L. Cruz et al. 2005, in preparation), although the most reli-
able density determinations, fall within trough B of the lumi-
nosity function (Fig. 13). This region is highly insensitive to
changes in the value of the model parameters (Fig. 3). Second,
while the number densities of late L and T dwarfs depend strongly
on the slope of the underlying mass function (see x 2.2), their
measured space densities have substantial uncertainties. Conse-
quently, a wide range of parameter values fit the data, and,with the
data currently in hand, it is possible only to place weak constraints
on the form of the substellar mass function.

4. THE FUTURE: IMPROVED CONSTRAINTS
ON THE FIELD SUBSTELLAR

MASS FUNCTION

Since the field substellar mass function is weakly constrained
with the existing data, further observational efforts must be
undertaken. There are both current and future projects that can
improve the mass function constraints. Follow-up observations
of either Sloan Digital Sky Survey (SDSS) or Two Micron All
Sky Survey (2MASS) sources account for nearly all the currently
known T dwarfs, and that work is continuing (e.g., Burgasser
2004). With a substantial fraction of both surveys analyzed and
their lower apparent magnitude detection limits fully probed,
neither survey will extend coverage to significantly lower lu-
minosities. However, they will continue to bolster the statistics
of late L and T dwarfs. The Spitzer Space Telescope is capable
of carrying out wide-angle surveys for T dwarfs and discover-
ing even cooler objects. The predicted mid-infrared colors of
L dwarfs, T dwarfs, and cooler objects are distinctive (Burrows
et al. 2003; Marley et al. 2002). Although Spitzer is not a survey
instrument, several current programs provide large sky coverage.
In particular, two Legacy programs, the Spitzer Wide-area In-
frared Extragalactic Survey (SWIRE) and the Galactic Legacy
Infrared Mid-Plane Survey Extraordinaire (GLIMPSE), survey
70 and 240 deg2, respectively (Lonsdale et al. 2003; Benjamin
et al. 2003).

We use the modeling techniques outlined in x 2 to predict the
likely number of T and cooler dwarfs detectable by these two
Legacy surveys. The Infrared Array Camera (IRAC) on Spitzer
provides data in four passbands, at 3.6, 4.5, 5.4, and 8.0�m(Fazio
et al. 2004). The luminosity functions we generate in x 2.3 for the

M band (4.8 �m) are roughly equivalent to IRAC channel 2. To
generate a rough estimate of ultracool dwarf detections rates in the
SWIRE and GLIMPSE Legacy surveys, the differences between
the M-band results and those of IRAC channel 2 are not signifi-
cant enough to compromise our results. The expected magnitude
limits (5�) in IRACchannel 2 for SWIRE andGLIMPSE are 18.8
(5.3 �Jy) and 15 (185 �Jy), respectively.

We calculate the volume limits at each absolute magnitude to
estimate the number of T dwarf and cooler objects likely to be
detected by each survey. The apparent magnitude limits of the
two surveys set the effective distance limit and hence, the vol-
ume searched. We limit analysis to T (approximate limits of
11:5 < MM < 13:5) and cooler (MM > 13:5) dwarfs and exam-
ine two possible underlying mass functions; an optimistic two-
segment power law with �2 ¼ 0:8 and a pessimistic one with
�2 ¼ 0:0, both for m12 ¼ 0:09 M�. With the optimistic model,
SWIRE finds �1100 objects and with the pessimistic, �800.
This difference is large enough that SWIRE may be able to per-
form some rudimentary mass function studies just from the num-
ber counts of possible very cool brown dwarfs.

Figure 14 displays the expected number of detections (Fig. 14,
top left) and the distance limits (Fig. 14, bottom left) for the
SWIRE survey, as a function ofMM. Most of the objects (�1000
of 1100) found are T dwarfs. Moreover, the overwhelming ma-
jority of both Tand cooler dwarfs have distances exceeding 50 pc,
rendering follow-up observations difficult with currently available
instruments. For example, a bright dwarf cooler than type Twith
MM ¼ 13:5 and MJ ¼ 17 has an apparent magnitude of mJ ¼
20:5 at 50 pc. Even with the NIRSPEC instrument on the Keck
telescope, it takes several hours to obtain a near-infrared spectrum
with a signal-to-noise ratio of 5 (McLean et al. 1998).

Figure 14 (right) displays a similar analysis for GLIMPSE
coverage and sensitivity. We predict a total of �20 objects for
the optimistic model and�13 for the pessimistic, most of which
are expected to be T dwarfs with one or two cooler dwarfs,
significantly fewer than in SWIRE. The GLIMPSE estimates
are much lower because of the shallower sensitivity, and the
larger areal coverage does not make up for that loss.

Fig. 14.—Expected brown dwarf coverage of the SWIRE (left) and GLIMPSE
(right) Spitzer Legacy surveys for two underlying model mass functions. The
solid-line histogram is for an optimistic two-segment power-law mass func-
tion with �2 ¼ 0:8, and the dotted-line histogram is derived from a much
shallower mass function with�2 ¼ 0:0. Top, Number of objects predicted given
IRAC channel 2 5 � sensitivity limits of 18.8 mag for SWIRE and 15 mag for
GLIMPSE; bottom, distance coverage of each magnitude bin. The dashed line at
MM � 13:5 marks the expected transition from spectral type T to as yet unob-
served cooler dwarfs.
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An all-sky, moderately deep, mid-infrared survey must be
undertaken to find large numbers of easily recoverable, cool
brown dwarfs. This type of survey offers the prospect of find-
ing hundreds of nearby, extremely cool brown dwarfs. TheWide-
field Infrared Survey Explorer (WISE; Wright et al. 2004) is
one such mission that has already been proposed, surveying the
entire sky at 3.5, 4.7, 12, and 23 �m. WISE makes use of the
extremely red 3.5–4.7 �m color of very cool dwarfs to distin-
guish them from other sources. The predicted 4.7 �m sensitivity
will be similar to the SWIRE Spitzer Legacy survey but will
cover the entire sky, not just 70 deg2. Overall, WISE will detect
over 270,000 T dwarfs and 40,000 cooler objects, including
hundreds within 20–30 pc of the Sun.

In the near future, upcoming ground-based facilities will
provide the capability of detecting significant numbers of T
and cooler objects. For example, the VISTA collaboration will
have a wide-field near-infrared imager behind a 4 m class tele-
scope in Chile within 2 years. Much of the time (75%) will be
allocated to surveys. This instrument will probe 5–6 mag deeper
than 2MASS or DENIS, enabling a larger sample of late T dwarfs
to be compiled and possibly cooler objects to be detected.

In the interim, the conjunction of the completed 2MASS
survey and the ongoing SDSS provide the best prospects for
further understanding of the substellar mass function. While
SDSS does not cover the whole sky as 2MASS does, it supplies
critical color information that allows easier extraction of late L and
early T dwarfs. The 2MASS colors of late L and early T dwarfs
fall into a very crowded area of the color-magnitude diagram.
Selection criteria for early T dwarfs becomemuch cleaner with the
addition of short-wavelength SDSS photometry (Fig. 15). In this
way, we obtain preliminary space densities for late L and T dwarfs
before a definitive project, such as WISE, is carried out.

5. CONCLUSIONS

This paper presents newmodels of the luminosity function of
field brown dwarfs. Through these models, we explore the role
of the rapid evolution of brown dwarfs on the luminosity and

Teff distributions and find that those distributions are surpris-
ingly insensitive to changes in the underlying age distribution.
Our main goal is to use our Bayesian statistical method to
constrain the field substellar mass function using data on late M,
L, and T dwarfs (KCAB).
We present results that demonstrate that the extant data provide

modest constraints on parameter values for the substellar mass
function and do not discriminate between commonly used func-
tional forms. The Bayesian constraints on the three forms of the
underlying substellar mass function are as follows:

1. Two-segment power law. Weak constraints on model pa-
rameters with the 60% confidence limits, yielding a range of
�0.5 to 0.5 for �2 and 0.04 to 0.10 M� for m12.
2. Low-mass cutoff power law.Equallyweak fit comparedwith

that of the two-segment power law but consistent with a single
power-law mass function from 0.10 M� with �2 ¼ 0:3 � 0:6.
3. Lognormal mass function. Existing data do not provide

any further constraint on the characteristic mass (logm0).

Through the use of these three model mass functions and our
Bayesian analysis, we demonstrate that the field substellar mass
function cannot be well constrained with existing data. This is for
two reasons: (1) The best quality data, the L dwarf space densities,
fall in a trough of the luminosity function that is insensitive to
changes in the underlying mass function and age distribution
models, rendering model constraints using L dwarfs weak at
best. (2) The more parameter-sensitive late L and T dwarfs do
not yet have well-defined space densities, because of small num-
ber statistics and the lack of a volume-complete sample. There-
fore, we conclude that improved constraints on the field substellar
mass function require further data on cool brown dwarfs.
We predict the cool brown dwarf sensitivities in two Spitzer

Legacy surveys with the space densities that we obtain from our
model luminosity functions. SWIRE will detect hundreds of
T dwarfs and dozens of cooler dwarfs, while GLIMPSE will see
only�20 T dwarfs and at most one cooler object. However, most
of these discoveries will lie at distances greater than 50 pc and thus

Fig. 15.—(a) J vs. J � K color-magnitude diagram for a 1� field from 2MASS (small dots) and known L (triangles) and T (circles) dwarfs with trigonometric
parallaxes (Knapp et al. 2004) shifted to 20 pc (apparent magnitude is absolute magnitude+ 1.51). Note that the T dwarfs are highly contaminated by background
sources. (b) Color-magnitude diagram z vs. z� J for the same field as (a) but using the 2MASS objects that have Sloan z-band photometry. The combination of these
surveys provides for a cleaner selection of L and T dwarfs.
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be too faint for existing instruments to recover efficiently.We con-
clude that the best constraints on the field substellar mass function
will require large sky surveys at mid-infrared wavelengths that
will find hundreds of nearby T and cooler dwarfs.
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