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Abstract 

In this paper we consider Wakimoto free field realizations of simple affine Lie algebras, a subject 
already much studied. We present three new sets of results. (i) Based on quantizing differential 
operator realizations of the corresponding Lie algebras we provide general universal very simple 
expressions for all currents, more compact than has been established so far. (ii) We supplement the 
treatment of screening currents of the first kind, known in the literature, by providing a direct proof 
of the properties for screening currents of the second kind. Finally (iii) we work out explicit free 
field realizations of primary fields with general non-integer weights. We use a formalism where 
the (generally infinite) multiplet is replaced by a generating function primary operator. These 
results taken together allow setting up integral representations for correlators of primary fields 
corresponding to non-integrable degenerate (in particular admissible) representations. @ 1997 
Elsevier Science B.V. 
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1. Introduct ion  

Since the work by Wakimoto [1] on free field realizations of  affine SL(2)  current 
algebra much effort has been made in obtaining similar constructions in the general 

case, a problem in principle solved by Feigin and Frenkel [2] and further studied by 
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many groups [3-13].  Free field realizations enable one in principle to build integral 

representations for correlators in conformal field theory [ 14-17]. In a recent series of 

papers we have carried out such a study for affine SL(2) [ 18,19]. It turns out that 
screening operators of both the first and the second kinds are crucial for being able 
to treat the general case of degenerate representations [20] and admissible representa- 

tions [21 ]. It is also necessary to be able to handle fractional powers of free fields. We 

have established well-defined rules for that [ 18,19]. We were particularly interested in 

this technique because of its close relationship with two-dimensional quantum gravity 

and string theory [ 22,23 ], although many other applications may be envisaged, see e.g. 
Ref. [24]. 

In this paper we provide the ingredients for generalizations to affine algebras based 
on any simple Lie algebra. That would enable one e.g. to treat the case of W-matter 
coupled to W-gravity. 

Our new results consist first in presenting very explicit universal compact expressions 

for the affine currents. We use techniques based on "triangular" parameters on a repre- 

sentation spaces to treat in an efficient way any representation. Some of these expressions 
are new. Second, we have provided a proof of the properties of the screening currents 

of the second kind proposed without proof by Ito [7] in addition to the better known 

ones of the first kind. Our proof for the validity of this second kind so far works only 
for S L ( N )  but it seems natural to expect the result to hold in general [25]. Finally, we 

have generalized the very compact form of the primary field used in Refs. [ 16,18,19] to 
the general case. A number of these results were given in preliminary form in Ref. [26]. 
Primary fields for integrable representations are described in Ref. [2]. Our treatment 

holds also for non-integrable, degenerate (including admissible) representations. The 

compactness of our result is due to the use of triangular parameters. 

The paper is organized as follows. In Section 2 we fix our notation which we keep 
rather general. We define our "triangular" coordinates and we introduce a crucial matrix 
depending on them in the adjoint representation of the underlying algebra. All our 
explicit results are given in a very simple way in terms of that matrix. 

In Section 3 we present differential operator realizations of simple Lie algebras. This 
technique is well known. The new aspect is that we work out in great detail certain 
Gauss decompositions of relevant group elements. These are the key to our explicit 
formulas. We then discuss differential operators later to become essential counterparts 
of the screening currents of both kinds. We provide several non-trivial polynomial 
identities later to be used. 

In Section 4 we quantize the differential operator realization of a simple Lie algebra to 
a Wakimoto free field realization of the corresponding affine Lie algebra in the standard 
way. The non-trivial part is to take care of multiple contractions (or in other words the 
normal ordering) by adding anomalous terms to the lowering operators. These terms 
were recently discussed in the general case by de Boer and Feh6r [ 13]. Our result again 
is somewhat more explicit. We end the section by listing further polynomial identities 
following from the quantum realization, to be used later on. 

In Section 5 we discuss the screening currents. First, we review the known results 
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for screening currents of  the first kind and for completeness write them down in our 

notation and indicate an explicit straightforward proof. The new result concerns our 

proof  of  the properties of  screening currents of  the second kind, generalizing the idea 
of  Ref. [27] from SL(2)  to any simple algebra [7].  In the case of  SL(N)  we prove 

that our explicit expression fulfills the required properties. 

In Section 6 we give a thorough discussion of primary fields using the formalism 
based on the "triangular" parameters. We derive simple and general free field realizations 

of  primary fields with arbitrary, possibly non-integral weights, i.e. non-integer Dynkin 

labels and non-integer level. 
Section 7 contains concluding remarks. 

2. Notation 

[hi, hi] 

[hi, ej] 

where Aij is 

[hi, e~] 

and 

Let g be a simple Lie algebra of  dim g = d and rank g = r. h is a Cartan subalgebra 

of  g. The set of  (positive) roots is denoted (za+) A, and we write a > 0 if a E ,5+. 

The simple roots a r e  {ai)i=l ....... 0 is the highest root, while a v = 2 a / a  2 is the root 

dual to a .  Using the triangular decomposition 

g = g _  • h • g + ,  (1) 

the raising and lowering operators are denoted e~ E g+ and f a  C g_,  respectively with 

E A+, and hi E h are the Cartan operators. We let ja denote an arbitrary Lie algebra 

element. For simple roots we sometimes write ei = eai, f i  = fai .  The 3r generators 
ei, hi, f i  are the Chevalley generators. Their commutator relations are 

= 0 ,  [ei, f j] = 6ijhj, 

= Aoe j, [hi, f j] = - a i j f j ,  (2)  

the Cartan matrix. In the Cartan-Weyi basis we have 

= ( a ' / , a ) e a ,  [hi, f , , ]  = - ( a v , a ) f , , ,  (3) 

[ea, f,~] = ha = GiJ ( av,eeV) hj, (4)  

where the metric Gij is related to the Caftan matrix as Aij = a v • a j  = ( c r v , a j )  = 
2 Gijaj /2 ,  while the Cartan-Kil l ing form (denoted by K and tr) is 

2 8 t r ( ja jb)  = Kab, K,,,_# = K(eafo)  = -~  ,,,~, K 0 = K(hihj) = G 0. (5) 

The Weyl vector p = 1 ~--]a>0 a satisfies p .  a v = 1. We use the convention f _ a _ a  -y  = 
- f~ t~  y. The Dynkin labels Ak of  the weight A are defined by 

A = AI, A (k), Ak = (o t~ ,A) ,  (6)  
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where {A ~k) }k=-l ...... is the set of fundamental weights satisfying 

(o~,  a (k)) = ~/k. (7) 

Elements in g+ (or g_ ) or vectors in representation spaces (see below) are parametrized 
using "triangular coordinates" denoted by x% one for each positive root. We introduce 
the Lie algebra elements 

e ( x )  = x % .  E g+, f ( x )  = x~ fa  E g_, (8) 

and the corresponding group elements g+(x)  and g_ (x)  by 

g+(x)  = e "(x), g _ ( x )  = e f(x). (9) 

Also we introduce the matrix representation, C ( x ) ,  of e ( x )  in the adjoint representation, 

C~'(x) = C ( x ) .  b = (x#C~)~ b = - x #  f ~  I' (10) 

and use the following notation for the (block) matrix elements: 

( C + +  0 0 )  
c = Co + o o . ( l l )  

c _  + c _  ° c _ -  

c+  + etc. are matrices themselves. In C+ + both row and column indices are positive 
roots, in C_ ° the row index is a negative root and the column index is a Cartan algebra 
index, etc. One easily sees that (leaving out the argument x for simplicity) 

(C~)+ + = (C++)  ~, 

(C")o + = C0+(C++) "-~ , 

( C " ) _  ° = ( C _ -  ) " - I C _  °, 

( C " ) _ -  = ( C _ - )  n, 

n--I n--2 
( c n ) _  + = Z ( C _ - ) l c _ + ( C + + )  n - l - I  @ Z ( C _ - ) l c _ ° C o + ( C + + )  n- l -2 ,  

1-.-.-.~ l=O 

0= (C")+° = ( C " ) + -  = (C")o° = (C")0- .  (12) 

We shall use repeatedly that Cf f (x )  vanishes unless a < /3, corresponding to C+ + 
being upper triangular with zeros in the diagonal. Similarly, C _ -  is lower triangular. 
It will turn out that we shall be able to provide remarkably simple universal analytic 
expressions for most of the objects we consider using the matrix C ( x ) .  This will be 
one of the new results in this paper. 

For the associated affine algebra, the operator product expansion, OPE, of the associ- 
ated currents is 

Kabk faoCJc(w) 
J a ( Z ) J b ( W )  - - -  + "  , (13)  

(z - w) 2 z - w 
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where regular terms have been omitted, k is the central extension and k v = 2k /O 2 is the 

level. In the mode expansion 

o o  

J ~ ( z )  = y ~  - " -~  Ja,nZ , (14) 
n = ~ O 0  

we use the identification 

Ja.o --  ja. (15) 

The Sugawara energy momentum tensor is 

1 Kab:JaJb  : (Z)  
T ( Z )  = 0 2 ( k  v + hV ) 

1 1 
= - : ~ > 0 t  ( E , ~ F ~ + F ~ E , ~ ) + ~ ( H , H ) : ( z ) ,  (16) 

where we have introduced the parameter 

02 
t = -~- (k v + h v) (17) 

and where h v is the dual Coxeter number. This tensor has central charge 

kVd  
c - - -  (18) 

k v + h v" 

The standard free field construction [ 1-3,5-11 ] consists in introducing for every 

positive root a > 0, a pair of  free bosonic ghost fields ( f l~ ,y" )  of  conformal weights 

(1 ,0 )  satisfying the OPE 

~ J  (19) B ' ~ ( z ) ~ ( w )  = z - w" 

The corresponding energy-momentum tensor is 

r ~  =: a y ~ / ~  : (20)  

with central charge 

c#~ = d - r. (21) 

We will understand "properly" repeated root indices as in (20) to be summed over the 

positive roots. 
For every Caftan index i = 1 . . . . .  r one introduces a free scalar boson ~oi with 

contraction 

~i(  z )~oj( w)  = Gij ln(  z - w ) .  

The energy-momentum tensor, 

1 1 

V t  

(22) 

(23) 
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has central charge 

hVd 
c ,  = r kV + h r .  (24) 

This follows from the Freudenthal-de Fries strange formula p2 = hVO2d/24. The total 
free field realization of the Sugawara energy-momentum tensor is T = Tar + T, as is 
well known (see also Ref. [13]) .  

The vertex operator 

( 'a )  VA(z)-- :exp ~ .q~(z) :, 

A . ~o( z ) = Ai~oj( z )G ij (25) 

has conformal weight 

1 A A(VA) = ~ - ~ ( , A + 2 p ) .  (26) 

It is also affine primary corresponding to highest weight A. A new result in this paper will 
be the explicit general construction of the full multiplet of primary fields, parametrized 
by the x ~ coordinates in Section 6. 

3. Differential operator realizations 

Following an old idea (see e.g. Ref. [28] ), elaborated on in Refs. [2,5,7,8,11], we 
here discuss a differential operator realization of a simple Lie algebra g on the poly- 
nomial ring C [ x'~]. We introduce the lowest weight vector in the (dual) representation 
space, 

(Alf~ = O, (A[h i  = hi(A]. (27) 

An arbitrary vector in this representation space is parametrized as 

(A,x[ = (alg+(x).  (28) 

The differential operator realizations Ja (x, 0, A) with a,~ = ax~ denoting partial derivative 
with respect to x '~, are then defined by 

(A, xlja = f a ( x , a , A ) ( A ,  xl. (29) 

Obviously these satisfy the Lie algebra commutation relations. It is convenient to have 
a similar notation for highest weight (ket-) vectors, 

IA, x) = g - ( x ) l a ) ,  

jalA, x) = - J a ( x ,  O, a) IA,  x), (30) 

where the relation between the two sets of realizations of the Lie algebra, {)-~(x, 0, A)} 
and {Ja(x ,O,A)} ,  is as follows: 
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(31) 

We write the Gauss decomposition of (Ajg+(x)e’~ for t small as 

(Alg+(x) exp(te,) = (Al exp (xyey + tVt(x)ep + O(t’)) 

= (Al exp (tVi(x)+ + Q(r2)) g+(x), 

(Alg+(x) exp(thi) = (A( exp (thi) exp (Se, + t@(X)ep + U(r’)) 

= (4 exp (I (YP(~)ap + 4) + 0(t2)) g+(x), 

(Alg+(x) exp(r.fa) = (Al exp (tQI~(x)fp + 0(t2)) exp (tf’!,(+)hj + 0(t2)) 

x exp (irye, + tV_P,(x)ep + 0(t2)) 

= (Al exp (t (Pi,(X)Aj + V!a(~)dp) + U(i?)) g+(x). 

(32) 

It follows that the differential operator realization is of the form 

&~&l> =Vfa(x)++P!,(x)Ai. (33) 

Since E, (x, d, A) = ga (x, a) is independent of A it may be defined through a Gauss 

decomposition alone. 

From the realization of SO we obtain 

Vt(x)tr (g;‘W+3g+Wf,) = -$&. (34) 

In Ref. [ 131 essentially this trace is introduced as a key object in the explicit Wakimoto 

construction in those papers (and we see here that our Vt is related to the matrix 

inverse of that). In the present paper we explicitly evaluate this trace (or equivalently 

Vt) in terms of a simple universal analytic function of the matrix C(x) . A similar but 

somewhat more complicated expression was provided in Ref. [ 71. Analogous and new 

results will be given for all the other objects occurring: the remaining V’s as well as 

the P’s and the Q’s. These results are obtained by (laboriously) working out the Gauss 

decompositions (32) involved. 

In Ref. [ 121 the V’s are determined by an approach very similar to the one we have 

employed. However, again we have carried out explicitly the Gauss decomposition. In 

Ref. [ 121 functions similar to the P’s are given by recursion relations while functions 

similar to the Q’s are not discussed. 
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The Gauss decompositions rely on the Campbell-Baker-Hausdorff (CBH) formula 

(see e.g. Ref. [26] for a proof), 

e a e t B = e x p { a + t Z ~ ( - - a d a ) n B + O ( t 2 ) )  (35) 

where the coefficients B, are the Bernoulli numbers 

u 

B(U) = eU----~_ l = u n, 
n>~o 

B(u) - B ( - u )  = - u ,  B2m+l =O form~> 1, 

1 1 1 

. . . .  2 '  30 '  " ' 
Bo = 1, BI = B2 = ~ ,  B4 = 

b/n -1  
e " -  1 _ Z  n! (36) B - l ( u )  - u 

n>/I 

We apply these repeatedly (infinitely many times) to the group element g+ (x) et)% The 

results are expressed in terms of the generating function of Bernoulli numbers (36) (and 

other even simpler analytic functions) evaluated on the matrix C(x) .  Since for any given 
Lie algebra this matrix is nilpotent, the formal power series all become polynomials• 

The main new result of this section is then the following explicit expressions for the 
polynomials V and P (and Q) in the differential operator realization (33) of the Lie 

algebra g: 

V f ( x ) = [ B ( C ( x ) ) ] ~ ,  
3 Vp(x)  = -  [ C ( x ) ] ;  , 

= [e-C'x']'_o [ 8 ( - C ( x )  ) 

(x)= j_ 

Q : ~ ( x ) =  [e-C'x)]-_~. (37) 

These matrix functions are defined in terms of universal power series expansions, valid 

for any Lie algebra, but ones that truncate and give rise to polynomials the orders of 
which do depend on the algebra, see Ref. [26] for details on how the truncations work 
and for an alternative explicit polynomial expression of V_#,~(x). 

Now we introduce a differential operator [2,5,8,11] which will turn out to be a 
building block in the free field construction of screening operators of both the first and 

the second kinds in Section 5. It is the differential operator S,~ (which we may construct 
for any root, although only the ones for simple roots will be used). It is defined in terms 
of a left action 

exp{- ted}g+ (x) = exp{tS~ (x, 0) + O( t 2) }g+ (x) ,  

S.(x ,  O) = S~(x)O~. (38) 
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It is easily seen that 

S . ( x ,O)  = ~' , , (-x,  - 0 ) ,  (39) 

so that 

S~(x)  = - [ B ( - C ( x )  ) ]~. (40) 

From the associativity property of 

e-Se"g+(x)e o" (41) 

and the Gauss decomposition (32) one deduces the following commutation relations: 

[F.~(x,O),Sl3(x,O)] =0, 

[[-Ii(x,O,A),S#(x,O)] =(c~V,~)S#(x ,O) ,  

[F,~(x,O,A),S#(x,O)] = e J ~ ( x ) ( ~ v , e ) S B ( x , O )  

+Q-~(x) (S /3r( f lV ,A)  - fl3,_r~S~(x,O) ), 

[S~ (x,  0) ,  S/3(x, 0)] = f~13rSr(x, 0). (42) 

The last commutator follows from the associativity of e-Se"e-te~g+(x), 
We conclude this section by listing certain classical polynomial identities (as opposed 

to quantum polynomial identities established in Section 4) needed in the subsequent 
sections, 

( v , ~  _ ~) V~ (x) = ( ~y,  r ) x % V ~  (x),  

(,~ '/, ~, + a) vL , (x )  = ( , i f ,  #)x%~Vr_~(x), 

V~ ( x)O),Vff ( x) - V~ ( x)O~,V2 ( x ) = fc,~rV~ ( x) ,  

VJ(x)OyV~_~(x) - V~_B(x)O~,V~(x) = f,~,_,~'V¢(x) 

+ f~,_#-rV~_r(x ) - 6,,/~(oev, o-)x ", 

V~ (x)O~,V~_B(x) - Vr#(x)OrV~_,~(x) = -f,~l~rV~_r(x), 

Vf ( x )O#PJ . ( x )  = GiJ(ot v, av), 

Vr. (x)OrPJ_/3(x) = f~,_/3-rPJ_r(x), 

(a  v , fl)xl~O~Pi_,~(x) = (a  v , ~e) P£,~ (x), 

V~_,(x)&/PJ_#(x) - V~(x)O~,PJ_,~(x) = - f , , ~ rPJ : , ( x ) .  (43) 

They are obtained directly from the fact that E,,, Hi and F,, constitute a differential 
operator realization of g. Similarly, (42) gives the classical identities 

V ~ ( x ) o r ~ ( x )  - S~(x)GV~(x)  =0, 

(,,'/, ~ - ,~)S~ ( x) = ( ~,)', ~ , )x%S~ ( x),  
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vZ.(~)o~(~) -s~(~)o~(~):PL~(~)(.~,~)~(x) 
- Q 2 ~ ( x ) f # . - 7 u S ~ u ( x ) ,  

~ ( ~ ) e ~ ( x )  - s ~ ( ~ ) e ~ ( x )  = f ~ S ~ ( x ) ,  

S ~ ( x ) a r P { ~ ( x )  -8  v v 0 =-Q_a(x)(ai,fl )G . (44) 

4. Wakimoto  free field realizations 

The free field realization is well known to be obtained from the differential operator 

realization {)'a} by the substitution [2,3,5,8,10,11] 

c~a ---+ f la (Z) ,  x a ---+ Ta(Z) ,  Ai -'+ v/Taq~i(z) (45) 

and a subsequent normal ordering contribution or anomalous term, Faan°m(y( Z ), aT( Z ) ), 
to be added to the lowering part. This term must have conformal dimension 1, and hence 

is bound to be of the form 

Fan°m(y(Z) ,Oy(Z) )  = aT~(z )F , , l~ (y (Z) ) ,  (46) 

giving rise to the following form of the free field realization: 

E ~ ( z )  =: V f l ( y ( z )  ) f l # ( z )  :, 

H i ( z )  =: V f l ( y ( z ) ) f l # ( Z )  : +x/~aq~i(Z), 

F,~(z) =: V~_.(y(z)  ) f lB(Z)  : +x /~O~oj ( z ) eJ~(y ( z )  ) + aTf l ( z )F~f l (y (Z)  ), 

d (Ja)  = 1, (47) 

where the normal ordering part for a simple root has been known for some time ( [7 ] ) ,  

O y ~ ( z ) F m / 3 ( y ( z ) ) = a T m ( z ) ( k - ~ i t  1 ) .  (48) 

To find the result in the general case we first derive the quantum polynomial identities 
obtained by imposing the correct form of the OPE of the form JF and TF (we leave 
out the argument z) ,  

~ a~,~ : -a~vZ a~vz~ + VZ F~, 

f ,~,-B - ~" OYO Fr6 = -OY'%O~'O u V~ cgz, VU- B + V~ OYa O~,F#8 + OY '~ Oa V~ F#~ ,, 

0 = ( a  v , o-)a,,V~_fl - ( a  v,  oe)'/~ Fea + tGqPJ_a, 

(~/, ¢~)aT*Fa8 = ( ~ ,  ~)~aT*a~Fa, + (~/, ~)aT~Fa~, 

O=2(p,~y)PL,~ + a ~ ,  
O~V'~&~V~ = tGi jp i  pJ_~ + V~_~F~ + VY_~F~, 
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f ,~f3~' Fr,~ = a ~ a r v ~ a ~  v ~ - V~_,~arF/3,~ + V~_/30rF,~r 

- t G i j O a p i _ ~ P J #  - O~Vr_~F#, - Vr_#?aF.~,, (49) 

from the OPEs EF, HF, TF and FF. Not all the identities are independent, e.g. the 
second to last one follows from the last• The form of the normal ordering term is 
completely determined from the first identity, since we may introduce the inverse of 
V + ,,- Vf. Indeed we shall only need 

( (v+)- '~ ~ + :~ (50) 

and it follows immediately that 

( v~  (~,) ) - t  = B ( C ~ ( ~ , )  ) - ~  

1 (c~(~,))". (51) 
=ff-~ ( n +  1)! n~>O 

Thus we have 

2k 
+ (52) 

A somewhat more involved form was given in Ref. [26]. The present result is similar to 
the one in Ref. [ 13], but as before, in this paper we have provided the explicit analytic 
results for all the polynomials of y ( z )  which enter. 

5. Screening currents 

5.1. Screening currents of the first kind 

A screening current has conformal weight 1 and has the property that the singular 
part of the OPE with an affine current is a total derivative. These properties ensure 
that integrated screening currents (screening charges) may be inserted into correlators 
without altering the conformal or affine Ward identities• This in turn makes them very 
useful in construction of correlators, see e.g. Refs. [14,4,9,18,19]. The best known 
screening currents [2,5,7,10,11,13] are the following denoted screening currents of the 
first kind, one for each simple root: 

( ' °  ) s i ( z ) = : ~ j ( y ( z ) ) f l ~ ( z ) e x p  - ~  j . g , ( z )  :, 

• ~ ( z )  = ~ q ~ j ( z ) .  (53) ~ j  
Z 

In this case we find 

E~(z)sj(w) =0,  

Hi(z)sj(w) =0, 
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(1  )) 
. . . .  Q_,~ ( r ( w ) ) : e x p  - . ~ ( w )  : F,~(Z)S j (W)-  ce.~ cOw Z - w - ~  j ' 

cO(is) 
T ( z ) s j ( w ) = ~ w  ~ - w  j ( w )  . (54) 

In our formalism the proof of these relations is a matter of direct verification and 
straightforward for E,~, Hi and T using the classical polynomial identities. In order for 

the OPE F , ( z ) s j ( w )  to be a total derivative we find that the following two relations 
are sufficient conditions: 

- S~jOt~P_ ~ + 

S~, 3,Fac~ = O r V~_,,Oa3~S~j - aijcoc~S~j 3#Pi~ - O~rS~j F~,. (55) 

They are easily verified for a a simple root. In the case of a non-simple root a we have 

proven the conditions (55) by induction in addition of roots using various classical and 

quantum polynomial identities. 
In Ref. [29] 4 screening currents of the first kind are considered and a proof of their 

properties is presented. In the recent work [ 13] a more direct proof similar to the one 

above is provided. 

5.2. Screening currents of  the second kind 

The best known screening current of the second kind is the one by Bershadsky and 
Ooguri for SL(2) [27]. For non-integral representations it involves non-integer powers 

of free ghost fields. Therefore, for some time discussions on its interpretation were only 
partly successful [9,16]. However, in the series of papers [18,19] we have provided 
techniques based on fractional calculus for handling such objects. Those techniques 
directly generalize to the present more general situation. Screening currents of both 

kinds are necessary for being able to treat correlators of primary fields belonging to 
degenerate (in particular admissible) representations [20,21]. 

The following expression for the screening currents of the second kind was written 

down without proof by Ito [7]: 

g j ( w ) = :  ( y ( w ) ) f l ~ ( w ) e x p  - - - ~  j .q~(w)  

=: ( y ( w ) ) f l # ( w )  :: e v'7~j(w) : .  (56) 

Here we will show that (at least in the case of S L ( N ) )  they satisfy 

E , ( z ) ~ i ( w )  =0,  

4 We thank E. Frenkel for pointing out this work to us. 



J.L. Petersen et al./Nuclear Physics B 502 [PM] (1997) 649-670 661 

n~(z)~Aw) =0, 
2 t 0  ( 1 

: Q-2J(y(w)) F~(Z)gj(w) = ot 20w Z w 

× ( S ~ j ( T ( w ) ) ~ f l ( w ) ) - ( 2 t / a ~ ) - l e v q ~ ' : ( w ' : ) ,  

T(z)gj(w)=~ ~-w j(w) . (57) 

We employ the techniques discussed in Refs. [ 18,19] for how to perform contractions 
involving ghost fields raised to non-integer powers. Such techniques are necessary in 
the generic case where - 2 t / a  2 is not integer. 

In the case of SL(N) where a simple root (here ag) appears at most once in the 
decomposition of a positive root, it is straightforward to check that Hi ( z ) J j  (w) = 0 and 

A(~j) = I. 

Let us introduce the shorthand notation 

S"(z) =: (~,(z))B~(z) : (58) .1 
and consider 

1 
e~ (z)Sy(w) = ~ (z - w)~ 

l) l  

- l  : o , ,  . . .  o , ,_ ,  V ~ ( z ) ~ ;  . . .  ~',-' o~',~,,s~ -t :) 
(--l)/-1 ( u ) 

+ Z  iZ --_-w--)l l 1 : 0~., ...O,,_,V~(z)O#(S~,;. S ~ - . I - - l ) S ~  - l + l  - -  " "  ~ j  : 

l>~2 

- -  ( - - l  )l ( ~ ) (: Oyt . . .OytVafll~fl(z )S~a: . . . S~atjSU.j - l  " 

59) 

Here and in the following equations we have suppressed the argument y (z  ) of V J  and 
other fields. We use the explicit expressions for Vf and S~j and find that all terms for 
l > 1 vanish. Hence, in that case we get 

= u : ( oTs , - : ( w )  
Z - - W  

=0.  (60) 

In a similar way, we have worked out the OPE F~(z)gj(w) and in the case of SL(N) 
it reduces to (u = -2t/ce}) 

1 ( - u  :O~V~(z )O~S~  -~ : Fa(z)Jj(w)= (z -w) 2 

- - - - 5 - - :  
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F " "S~_. "u-I ) e "/7~Aw) - utGij : 3rPi~(z)S~ajS~ -Z : +u : , ~ ( z )  ,~j~) : : 

l ( "Y ,B -- S~a)O,yg~ot u - I  eVq,Aw) + u: (V'_~arS~j )BaS~ : :  : 
Z - - W  

- uVq  : arP '_~ j  S~-l a~oieeT¢J(w) : 

i u eV'7+,(w) OTo-ayFao.S~a/S~j-I :: eVS+Aw):)  + tG U : P_~S~ :: : - u  : 

(61) 

A comparison with (57) yields the following consistency condition: 

+ (-Oo.O, VU_,~Oug, + g ,O~F,  w - t G i j g a ,  o~Pi,~ - g , a , F ~ )  S~, 

3-O-'~J ¢¢~ = ( u -  1)Q-~JO,rS~j + . . . .  o,~j (62) 

besides more trivial relations such as 

i --aj S~ o,  Pi_a = -6 )Q_,~  , 

½ a,, 0,2 = o -  4, 

g ;3 , ,  V r2_,, 3 ~, 2S~, = O, (63) 

which are easily seen to be satisfied. One can verify the less trivial part (62) using 
the polynomial identities together with the consistency conditions (55). Hence, we 
conclude that in the case of S L ( N )  the screening currents of the second kind (57) 
exist. As already mentioned it seems natural that the expression (57) should hold for all 
simple groups; we refer to Ref. [25] (and Ref. [26] ) for further details. In Ref. [25] a 
quantum group structure based on both kinds of screening currents will also be discussed 
(see also the presentation in Ref. [26] ), along the lines of Gomez and Sierra [30]. 

6. Primary fields 

The final new result reported in this paper is the explicit construction in this section 
of primary fields for arbitrary representations, integral or non-integral (for integral 
representations, see also Ref. [2] ). We find it particularly convenient to replace the 
traditional multiplet of primary fields (which generically would be infinite for non- 
integrable representations) by a generating function for that, namely the primary field 
~bA (w, x) which must satisfy 

- J a ( x , O , A )  
J a ( Z ) ~ a ( W , X )  -- ~ A ( W , X ) ,  

Z - - W  

A(q~A) 1 
T (Z )q~A(W,X)  -- (Z ~"-'2"2q~A(W'X) + O~A(W'X)"  (64) W) Z - - W  
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Here Ja(z) are the affine currents, whereas Ja(x,O,A) are the differential operator 

realizations Eqs. (30),  (31),  (33) and (37). For the simplest case of affine SL(2) the 
result is known [ 16,18]. In that case we have only one positive root, one x, one ghost 
pair ( f l ( z ) , y ( z ) )  and one scalar field ~p(z) while A is given by the spin j (2j  = Aj 

is non-integral in general). The result is 

~bj(w,x) = ( l + x y ( w ) ) 2 J : e x p ( ~ t t ~ o ( w ) ) : .  (65) 

In this section we show how to generalize this sort of expression to an arbitrary Lie 

algebra, with particularly explicit prescriptions in the case of affine SL(N).  We shall 
find the result in the form 

,~a(w,x) = 4~(~,(w) ,x)Va(w),  

VA(W)=: exp ( -~ ta 'q~ ( z )  ) :, 

dfa(y(w),O) = 1. (66) 

Indeed such a field is conformally primary and has conformal dimension A(dpA) = 
I ( A , A  + 2p).  In order to comply with (64) for Ja -- Hi, it seems very plausible 
that ~b~ must be symmetric in y(w) and x. Below we shall show this by explicit 

construction. Due to the fact that the anomalous or normal ordering part of F,~ (z )  does 
not give singular contributions when contracting with ~b~, it is then sufficient to consider 

OPEs with E,~. The point is that the two OPEs Ea(z)~a(W,X)  and F,~(z)fba(w,x) are 
obtained from one another by interchanging x and y(w) .  Because of the above symmetry 
it is enough to verify one of them. We therefore obtain the following sufficient conditions 

on dp~(y(w),x) ,  one for each a > 0: 

Vf(y)O~,#fbta = Va_~(X)Ox#dp~ + ajPJ,~(x)djA . (167) 

Further, one can use the classical polynomial identities (43) to demonstrate that if ~ba 

is a primary field with respect to E,~ and Ea, then it is a primary field with respect to 
f,~'E~,. Effectively, this amounts to prove (67) for a sum a = f l + y  of two roots under 
the assumption that it is satisfied for both a =/3 and ce = y. This means that there are 

only r sufficient conditions a primary field (66) must satisfy, 

V~(y)OradjA = V~_~, (x)Ox#(b~ + aix'~'(b~a . (68) 

It is very hard to solve this set of  partial differential equations directly. However, we 
have found an alternative way to obtain the primary fields. The construction goes as 
follows. 

First we directly construct primary fields for each fundamental representation Ma,k~. 
Such representation spaces are finite-dimensional modules and ~b~k~ ( y ( w ) , x )  will be 
polynomial in y(w) and x. Then finally, for a general representation with highest weight 
A = AkA (k) we use (68) to immediately obtain that 5 

5 In Ref. [26] a discussion of this point is partly incorrect. 
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~b~ (y(w),  x) = I£I [~b~k, (y(w),  x) ]ak. (69) 
k=l 

We emphasize here that the Dynkin labels, Ak, may be non-integers as is required 
for degenerate (including admissible) representations. We proceed to explain how to 
construct the building blocks, 

fb~,k, (y (w) ,x) .  (70) 

The strategy goes as follows. First we concentrate on the case w = 0 where the object 
reduces to 

d)~4,,, (yo,x) (71) 

when acting on the highest weight state lACk)). Y0 is the zero mode in the mode 
expansion 

y(w) = Z y, w-", fl(w) = Z fl, w-"- ' .  (72) 
ll n 

Conformal covariance requires ~b~k~ (y(w),  x) to be obtained just by replacing Y0 by 
y(w). The function (71) in turn is obtained from 

la ck) , x) = g_ (x)[a  (k)) = ~bA,k, (Y0, X)Ia<k)). (73) 

Indeed, it is an immediate consequence of the formalism, that the primary field con- 
structed this way will satisfy the OPE (64). The construction is now simply achieved 
by expanding the state ]A ok), x) on an appropriate basis which is convenient to obtain 
using the free field realization. 

Let the orthonormal basis elements in the kth fundamental highest weight module 
Ma,k~ be denoted by {[b, A~k))} such that the identity operator may be written as 

1 = Z [b, a~k))(b, a (k) 1. (74) 
b 

The s t a t e  IA (k), x) may then be written as 

[a ~k) , x) = Z Ib, a <k)) (b, a (k) ]a (k) , x). (75) 
b 

One of the basis vectors will always be taken to be the highest weight vector I A~k~) 
itself. 

Now concentrate on one particular basis vector. It will be of the form (see also 
Section 8: Note added in proof) 

Ib, a (~)) = f~a,l,,, . . .  f~a~b, la ck) } (76) 

and the expansion of IA ck), x) will be 

I a(~), x) = ~ fBll,,.., fB~,~, ]a(~))(A(k)]e/~,~... e#[~)}a (~), x). (77) 
b 



J.L. Petersen et al./Nuclear Physics B 502 [PM] (1997) 649-670 665 

For each term in the sum we treat the two factors differently. First consider the second 

factor. We may use the differential operator realizations to write 

(A (k) lenl,~> . . .en?, I A(*), x) 

= ( - 1 ) '(b) E~Ib ' (x,  0, A ( k ) ) . . .  E#(~, (x,  (9, A (k)) (A(k)iA(k), x) 

= b(x,  A (k)), (78) 

where 

b(x,A (k,) = [l/_v~(,s,, (x)O~,, + Pk_te,/,)(x) ] ... 

Iv  ~'''~>-' ~x~O + . (x)] X (x). (79) 
u - - # ' ~ n ( b )  - -  1 

In the last step we used that clearly 

(A(k)lA(k),x) -- 1. (80) 

In the first factor in (77) ,  

f f l ' l " '  " " " f #~,~, [A(k))' (81) 

we use the free field realizations. The state IA (k)) is a vacuum for the fl, y system, so 

it is annihilated by Yn, n >/ 1 and by fin, n >/0.  The f # ' s  are the zero modes of  the 
affine currents. It follows that only y0's  and fl0's need be considered. Also the normal 
ordering term will not give a contribution, and we obtain 

fa ' , " ' " "  f,~:L>, IA<~°) = [vr-'n',"' ('yo)/7~,,,o + pk_n?, ( ,o ) ] . . .  

] x (~'o)/7->,,,,,,_,,o + P_kn~L>- ' ('to) P_k e~, (yo)I A~k)) 

= b(y0, A (k)) IA(k)). (82) 

By the remarks above this completes the construction in general. Explicit expressions 
for the V's and the P ' s  have already been provided. 

It remains to account in detail for how to obtain a convenient basis for the funda- 

mental representations. This part will depend on the algebra. Here, for completeness 
and illustration, we indicate the construction for SL(N) where the fundamental repre- 
sentations are conveniently realized in terms of  N fermionic creation and annihilation 

operators, 

q[,qi, i= l . . . . .  N. (83) 

An orthonormal basis in the kth fundamental representation is provided by the sets of  
states where k fermionic creation operators act on the Fermi vacuum, giving dimension 
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The r = N -  1 dimensional root and weight space may be represented as the N - 1 
dimensional hyperplane in N-dimensional Euclidean space, 

N 
{ Z Y J e j  I Z Y J = 0 } ,  (85) 

j=l j 

where {ej} is an orthonormal basis for the N-dimensional space. The roots of  S L ( N )  
are of  the form 

aij  = ei - ei .  (86) 

We may take 

eij =- e~ o = q]q j ,  i < j ,  

f i j  ==- faig = q~qi, i < j.  (87) 

The highest weight vector is 

]A(k)) = qtqti 2.-- q~10). (88) 

A basis with a minimal set of  lowering operators is then easily seen to be the set 

Ia(~)), 

f i j l A ( k ) ) ,  i <~ k < j <~ N, 

fi,j~ . . .  fi~,h,]A(k)), il < . . .  < ip <~ k < j l  < . . .  < jp <~ N, 

(89) 

where al'together p = 0, 1 . . . . .  N - k. 
The primary field for the kth fundamental representation is then of  the form 

~)a(k) ( Z,X) =~)A,k~ (~( Z ) , x )  VA(k) ( Z ), 
N--k 

Z 
p=O il<...<ie<~k<jl <...<b <~N 

× bp ( { i t} ,  { j l } ,  r ( z  ) ,  a (k)) bp ( { i t} ,  { j l } ,  x ,  a (k ) ) ,  

b o ( x ,  A (k)) = 1, 

b p ( { i t } , { j t } , x , a  (k)) = ( - 1 y ' E o , , , j , ( x , a , a  (k)) . . . E , , , , j , , ( x , a , a ( k ) ) l .  (90) 

Actually in this particular case of  S L ( N )  (and possibly with a suitable generaliza- 
tion, for more general groups),  an even more explicit realization is possible, one not 
involving derivatives. Indeed the basis for the kth fundamental representation (89) may 
be equivalently obtained as the set 

Ib; l ( k ) ) = q~, . . . q/~10). (91) 
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Here we have denoted by I (k)  the subset {il . . . . .  ik} of the set {1,2 . . . . .  N} and we 

shall denote by M(N, k) the set of all these subsets, so that 

Now we may evaluate 

IA (k) , x) = e f(x) q] . . .  q~l 0) 

= (eF'm(x)~ J' (er'N'(x)~ J~qt...qJ.klO) ' (93) 
\ /I  " " \  ]k yl" 

where F(N)(x) is the matrix representation of f ( x )  in the N-dimensional defining 
representation of SL(N),  

F(N)(x)i j =x ij, i < j, 

F(N)(x)iJ=o, i >~ j. (94) 

We have to evaluate the overlap between the state (93) and the basis vector in (91). 

The result is the well-known determinant. Namely, denote by 

e F'N' (x) ( I (k) ) (95) 

the k × k matrix obtained from the N × N matrix e r~(x) by using the first k rows 

and the k columns given by the set l (k ) .  Then the sought overlap (up to a sign which 
will be irrelevant) is the determinant of that reduced k × k matrix. From the discussion 

above we know that in the primary field, the polynomial in x thus obtained will be 

multiplied by exactly the same polynomial in T(z ) (hence the irrelevance of the above 

sign). Thus we have the simplified version of Eq. (90), 

~b~A,k,(T(Z),X)= ~ det(eFCm(X)(l(k)))det(eF'N'(~(z)l(I(k))) .  (96) 
I(k)EM(N,k) 

A similar expression is obtained when states are represented in terms of fermion anni- 
hilation operators acting on the "filled Dirac sea" state, 

10) = q~ . . .  qtN]0 ). (97) 

The new form is similar to Eq. (96) but k is replaced by N - k and F (N) by - F  (N), 
and now we have to use the last N - k rows. This second form is the most convenient 
one for k >~ N/2. 

It is not difficult to check that the two expressions Eqs. (90) and (96) (of  course) 
agree with each other in the cases k = 1 and k = r = N - 1. Thus Eq. (90) gives 

N 

~b~t,,, ( T ( z ) ,  x) 1 -4- ~--~ P I ( r ( z  1 = ) ) P _ a , j ( x )  --Ollj 
j=2 

N--1 
= ~ p N - l ( x )  t~A~N--I~(T(Z),X ) 1 "~-~pN-I(T(Z,'-ai~ --~,N" ," (98) 

i=1 
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As an illustration, we get in the case of SL(3) (MAc~, = {3}, MA,2, = {5}) 

q~A~,~(Y(Z),X)=I + yI2(z)xI2  + (TI3(z )  + ~TI2(Z)~/23(Z))(XI3 + ~XI2x23),  

( )( ) ¢bA,2,(y(Z),x)=l+ye3(z)x23+ y J 3 ( Z ) - - ~ y  tZ)y23(Z) x13---x12x23 

(99) 

The last two results were obtained already in Ref. [26]. 

We note that with the two sets of screening operators constructed in Section 5, in 
principle we shall be able to use the standard free field techniques to provide integral 
representations of correlators of primary fields with weights given by non-integer Dynkin 
labels of the form 

02^ 
Ak = Aki ri -- Gkisit = ?k -- g~-s-yt, 

Ol k 
2 

F= b-~t = k v + h v, (100) 

where i, k = 1 . . . . .  r and r i, s i, ?k, Sk are integers corresponding to degenerate represen- 
tations [20]. For f rational of the form i" = p/q with p and q co-prime, this corresponds 
to admissible representations [21]. 

In our previous work on SL(2) [ 18,19] we used a notation different from the one 
employed in this paper. The correspondence is the following, where "hats" refer to our 
old notation: 

J+ =E, ]3 = -1/t j -  = 
2 ' 

2 2) Aj, ~ = k  v, ~'= b--~t, = 

~ = -  ~o~ ( lOl)  

and where G ll = 02/4, such that A(~b) = .~(~ + 1 )/i'. Furthermore, there are additional 
phases on the screening currents. 

7. Conclusions 

In this paper we have provided missing ingredients needed in order to use free 
field realizations of affine algebras for setting up integral representations of conformal 
(chiral) blocks for arbitrary degenerate representations [20] generalizing the famous 
treatments for minimal models [ 14] and the more recent ones for SL(2) [ 18,19]. Our 
new results are (i) very explicit and universal formulas for the free field realizations of 
currents, Eqs. (47), (52), (37), (36) and (10); (ii) a proof of the properties of the 



J.L. Petersen et al./Nuclear Physics B 502 [PM] (1997) 649-670 669 

screening currents of the second kind Eq. (56) [7], at least for affine S L ( N )  based 

on the screening currents of the first kind Eq. (53); (iii) free field realizations for 
full multiplets of primary fields using the triangular parameters, and valid for arbitrary 
weights (integral and non-integral), Eqs. (66), (69) and (79). In particular, we now 
have ingredients for building correlators for degenerate (and admissible) representations 
with weights obtained from Eq. (100). The realization is particularly explicit for S L ( N ) ,  

Eqs. (90) and (96). 

8. Note added in proof 

A normalization constant is missing in the general discussion of primary fields in 

Section 6. It concerns the construction of the unit operator (77) built from n o r m a l i z e d  

basis vectors. Thus, (76) and (77) should be replaced by 

1 

Ib, a (~) } = N~-: ffl(lb).., fB~,~b )) Ia(*)), 
Nb = ( A(k)  le ~l,~) . . . e f,lb) f l3,b) . . . f Bi~)b, IA (k)) (102) 

and 

[A <k), x) = ~ N~f#~tb,... f#,~) A (k)} (A (k) lea(~).,,,~ .-.  en(o)rl IA (k), x) .  (103) 
b 

The subsequent construction of primary fields for S L ( N )  is correct, since Nb = 1 in that 
case. 
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