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The 5D Kepler system possesses many interesting properties. This system is super-
integrable and also with a su(2) non-Abelian monopole interaction (Yang-Coulomb
monopole). This system is also related to an 8D isotropic harmonic oscillator by a
Hurwitz transformation. We introduce a new superintegrable Hamiltonian that con-
sists in a 5D Kepler system with new terms of Smorodinsky-Winternitz type. We
obtain the integrals of motion of this system. They generate a quadratic algebra with
structure constants involving the Casimir operator of a so(4) Lie algebra. We also
show that this system remains superintegrable with a su(2) non-Abelian monopole
(generalized Yang-Coulomb monopole). We study this system using parabolic co-
ordinates and obtain from Hurwitz transformation its dual that is an 8D singular
oscillator. This 8D singular oscillator is also a new superintegrable system and mul-
tiseparable. We obtained its quadratic algebra that involves two Casimir operators of
so(4) Lie algebras. This correspondence is used to obtain algebraically the energy
spectrum of the generalized Yang-Coulomb monopole. C© 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.3684955]

I. INTRODUCTION

In classical mechanics, a Hamiltonian system with Hamiltonian H and integrals of motion Xa,

H = 1

2
gik pi pk + V (�x, �p), Xa = fa(�x, �p), a = 1, . . . , n − 1, (1)

is called completely integrable (or Liouville integrable) if it allows n integrals of motion (including
the Hamiltonian) that are well-defined functions on phase space, are in involution {H, Xa}p = 0, {Xa,
Xb}p = 0, a,b = 1, . . . ,n − 1, and are functionally independent ({, }p is a Poisson bracket). A system
is superintegrable if it is integrable and allows further integrals of motion Yb(�x, �p), {H, Yb}p = 0,
b=n,n + 1, . . . ,n + k that are also well-defined functions on phase space and the integrals {H, X1,
. . . , Xn − 1, Yn, . . . , Yn + k} are functionally independent. A system is maximally superintegrable if
the set contains 2n − 1 functions and minimally superintegrable if it contains n + 1 such integrals.
The integrals Yb are not required to be in involution with X1, . . . Xn − 1, nor with each other. The
same definitions (i.e., integrability and superintegrability) apply in the context of quantum mechanics
but {H, Xa, Yb} are well-defined quantum mechanical operators, assumed to form an algebraically
independent set. The most well-known superintegrable system is the Kepler-Coulomb potential.1–3

Its integrals of motion consist of the angular momentum and the Laplace-Runge-Lenz vector whose
origin can be traced back 80 yr earlier4–6 than treatise of celestial mechanics of Laplace7 with the
works of Bernoulli6 and Hermann.4, 5

A systematic classification of classical and quantum superintegrable systems was initiated 40 yr
ago by Smorodinsky et al. for Hamiltonians with quadratic (in momenta) integrals of motion in two-
dimensional (2D) Euclidean space.8 Four types of maximally superintegrable systems were obtained
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with multiseparability.8 This search was extended in three-dimensional (3D) Euclidean space, where
five potentials are maximally superintegrable with five integrals of motion. Nine potentials belong
to the class of minimally superintegrable systems and are characterized by the existence of four
second-order integrals of motion.9–11 One of these nine systems includes the generalized Kepler
system12–23

H = 1

2
P2 − c0

r
+ c1

r (r + x0)
+ c2

r (r − x0)
, (2)

where r =
√

x2
1 + x2

2 + x2
0 and c1 and c2 are non-negative constants. When c1 = c2 �= 0, this system

reduces to the Hartmann potential introduced in 1972 as a model for ring-shaped molecules.24 As the
superintegrability property is preserved for the Kepler system with a monopole interaction (MICZ-
Kepler),25–31 the generalized Kepler system with monopole (generalized MICZ-Kepler system) is
also superintegrable.32–36 This system is also related to another superintegrable systems, a four-
dimensional (4D) singular osicllator,33, 36–38 by a Kustaanheimo-Stiefel transformation.39 Let us
mention that the 2D Kepler system is related to the 2D isotropic harmonic oscillator by a Levi-
Civita transformation.40 This relation that maps these two superintegrable systems in classical and
quantum mechanics was introduced at the origin in context of the regularization of the classical
Kepler problem. A such relation also exists for the five-dimensional (5D) Kepler system that can be
related to an 8D isotropic harmonic oscillator by Hurwitz transformations.41 This system and the
Yang-Coulomb monopole (i.e., 5D Kepler system with a su(2) non-Abelian monopole) have attracted
a lot of attention.42–51 Let us mention that the existence of the Levi-Civita and its generalizations
is one important property of these systems. The Hurwitz relations were exploited to present a
derivation of the energy spectrum of the Yang-Coulomb monopole from the ladder operators of the
8D harmonic oscillator.50 There is an analog of these relations between 1D harmonic oscillator and
Kepler system. These four cases are related to the Euler identity (x2

0 + . . . + x2
d−1 = (u2

0 + . . . +
u2

D−1)2) which has a bilinear solution in ui only for the following pairs (D,d): (1,1), (2,2), (4,3),
and (8,5).47

Quadratic algebras and more generally polynomial algebras have been applied to many quantum
systems.22, 23, 36, 52–78 Such algebraic structures generated by the integrals of motion do not only
provide an elegant method to obtain the energy spectrum but also explain the degeneracies of
the energy spectrum. Recently,36, 70, 72 it was pointed out how results obtained in context of 2D
superintegrable systems and their quadratic algebras can be applied to three- and four-dimensional
superintegrable systems.

The purpose of this paper is to study a generalized 5D Kepler system and moreover to obtain
the superintegrable analog with a non-Abelian monopole. The study of systems with non-Abelian
monopole with Smorodinsky-Winternitz terms and the related duality transformation are unexplored
subjects. The paper is also devoted to the study these systems using representation theory of quadratic
algebra developed in context of 2D superintegrable systems.

Let us present the organization of the paper. In Sec. II, we recall results obtained in context
of 2D systems concerning the realizations of quadratic algebras as deformed oscillator algebras
and the representation theory. In Sec. III, we recall results concerning the five-dimensional Kepler
system and introduce a generalized 5D system. We obtain its integrals of motion and we show that
they generate a quadratic algebra with structure constants involving an integral that commute with
the generators of this quadratic algebra. This integral is also the Casimir of a so(4) Lie algebra.
We present an algebraic derivation of the energy spectrum of this system. In Sec. IV, we introduce
a generalized Yang-Coulomb monopole and present its integrals of motion, the energy spectrum,
and the wavefunctions using parabolic coordinates. We will also show that this system is related to
an 8D singular oscillator by a Hurwitz transformation. We will study the quadratic algebra of this
system and present the finite-dimensional unitary representations. This quadratic algebra involves
two integrals that commute with the generators that are the Casimir of so(4) Lie algebras. We also
use these results to re-obtain the energy spectrum of the generalized Yang-Coulomb monopole
algebraically.
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II. QUADRATIC ALGEBRAS

Quadratic and more generally polynomial algebras were introduced in the context of non-
relativistic quantum mechanics22, 23, 55–59 20 yr ago. Their finite-dimensional unitary representations
can be used to calculate algebraically the energy spectrum of superintegrable systems. Let us recall
results obtained in context of two-dimensional quantum superintegrable systems. We refer the reader
to Ref. 60 for more detailed discussions.

In the case of a two-dimensional Hamiltonian H allowing two second-order integrals A and B
(i.e., [H, A] = [H, B] = 0), we have the following graph ( as in Ref. 72 ):

A − − − − − H − − − − − B (3)

The most general quadratic algebra generated by these integrals is given by the following
commutation relations:60

[A, B] = C, [A, C] = αA2 + γ {A, B} + δA + εB + ζ, (4)

[B, C] = a A2 − γ B2 − α{A, B} + d A − δB + z.

The structure constants γ , δ, α, ε, ζ , and z of the quadratic algebra given by Eq. 4 are polynomials
of the Hamiltonian H. The degree of these polynomials can be deduced from the order of these
commutators. The structure constants α, γ , and a are constant and

δ = δ0 + δ1 H, ε = ε0 + ε1 H, d = d0 + d1 H, (5)

ζ = ζ0 + ζ1 H + ζ2 H 2, z = z0 + z1 H + z2 H 2.

The Casimir operator (i.e., [K, A] = [K, B] = [K, C] = 0) of this quadratic algebra is thus given
in terms of the generators (A, B, and C) by

K = C2 − α{A2, B} − γ {A, B2} + (αγ − δ){A, B} + (γ 2 − ε)B2 (6)

+(γ δ − 2ζ )B + 2a

3
A3 + (d + aγ

3
+ α2)A2 + (

aε

3
+ αδ + 2z)A.

In order to obtain the finite-dimensional unitary representations, we consider realizations of the
quadratic algebras in terms of deformed oscillators algebras56 {N, b†, b} satisfying the following
equations:

[N , b†] = b†, [N , b] = −b, bb† = �(N + 1), b†b = �(N ), (7)

where �(x) is a real function called the structure function satisfying �(0) = 0 and �(x) > 0 for x > 0.
We have the existence of finite-dimensional unitary representations when we impose the existence of
a positive integer p such that �(p + 1) = 0. The realizations of the quadratic algebra given by Eq. 4
of the form (A = A(N), B = b(N) + b†ρ(N) + ρ(N)b) were studied.60 Two cases were obtained
(i.e., γ �= 0 and γ = 0). Let us only present the results in the case γ �= 0 with the following choice of
structure constants (α = a = δ = 0) similar to the generalized MICZ-Kepler systems (u is a constant
determined from the constraints on the structure function):

ρ(N ) = 1

2123γ 8(N + u)(1 + N + u)(1 + 2(N + u))2
, (8)

A(N ) = γ

2
((N + u)2 − 1

4
− ε

γ 2
, b(N ) = − ζ

γ 2

1

((N + u)2 − 1
4 )

,

�(N ) =−3072γ 6 K (−1+ 2(N + u))2 + 48dγ 8(−3 + 2(N + u))(−1+ 2(N + u))4(1 + 2(N + u))

+12288γ 4ζ 2 + 32γ 4(−1 + 2(N + u))2(−1 − 12(N + u) + 12(N + u)2)(−4dεγ 2 + 8γ 3z)

−256γ 2(−1 + 2(N + u))2(−3dε2γ 2 + 2dεγ 4 + 12εγ 3z − 4γ 5z).
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The Casimir operator K can be written in terms of the Hamiltonian only. We have an energy-
dependent Fock space of dimension p + 1 if

�(p + 1, u, E) = 0, �(0, u, E) = 0, �(x) > 0, ∀ x > 0. (9)

The Fock space is defined by

H |E, n >= E |E, n >, N |E, n >= n|E, n >, b|E, 0 >= 0.

b†|n >=
√

�(n + 1, E)|E, n + 1 >, b|n >=
√

�(n, E)|E, n − 1 > .

The energy E and the constant u are solutions of the equations obtained by the system given by
Eq. 9. They represent the finite-dimensional unitary representations with dimension p + 1.

A. Higher dimensional systems and quadratic algebras

These results obtained in context of two-dimensional systems can be applied to various systems
in three and four dimensions. The Kepler system,55 the harmonic oscillator56 and the MICZ-Kepler
systems on three sphere,31, 73 the Hartman potential,23 the generalized Kepler,22 generalized MICZ-
Kepler systems,36 the 4D singular oscillator,36 the generalized Kaluza-Klein monopole,70 and the
non-degenerate extended Kepler-Coulomb system72 possess a quadratic algebra with three genera-
tors.

We allow in context of higher dimensional superintegrable system, the structure constants α,
δ, γ , ε, ζ , a, d, and z to be polynomial functions not only of the Hamiltonian but also of any
other integrals of motion (Fi) that commute with the Hamiltonian, with each other and also with
the generators of the quadratic algebra A, B, and C (that is, [Fi, H] = [Fi, Fj] = [Fi, A] = [Fi, B]
= [Fi, C] = 0),

A Fi B

H

Fi Fj (10)

When we study this algebra’s realization in terms of deformed oscillator algebras and its
representations, we will fix the energy (Hψ = Eψ) but also these other integrals (Fiψ = fiψ) of
motion that form, with the Hamiltonian, an Abelian subalgebra. The Casimir operator K of this
quadratic algebra is thus given in terms of the generators and will be also rewritten as a polynomial
of H and Fi.

III. GENERALIZED FIVE-DIMENSIONAL KEPLER

A. Five-dimensional Kepler system

Let us first recall some known results concerning the 5D-Kepler system given by

H = 1

2
P2 − c0

r
(11)

with r =
√

x2
0 + x2

1 + x2
2 + x2

3 + x2
4 and

Pi = −i�∂i , [xi , Pj ] = i�δi j . (12)

This system has the following integrals of motion ([H, Lij] = [H, Mk] = 0):

Li j = xi Pj − x j Pi , Mk = 1

2
(Pi Lik + Lik Pi ) + c0xk

r
. (13)
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These integrals generate the following dynamical symmetry algebra:

[Li j , Lmn] = i�δim L jn − i�δ jm Lin − i�δin L jm + i�δ jn Lim, (14)

[Li j , Mk] = i�δik M j − i�δ jk Mi , [Mi , Mk] = −2i�H Lik . (15)

The relations given by Eq. 14 generate a so(5) Lie algebra. The algebra generated when we consider
also Eq. 15 and we fixed the energy is isomorphic to the so(6) Lie algebra for the bound states. The
symmetry algebra can also be seen as a Kac-Moody algebra.79 This dynamical symmetry algebra
can be used to obtain algebraically the energy spectrum.

B. Generalized 5D Kepler system

Let us now introduce the following Hamiltonian:

H = 1

2
P2 − c0

r
+ c1

r (r + x0)
+ c2

r (r − x0)
. (16)

The two last terms break the so(5) rotational invariance. This system is superintegrable and has the
following integrals of motion:

A = L2 + 2rc1

(r + x0)
+ 2rc2

(r − x0)
, B = M0 + c1(r − x0)

r (r + x0)
− c2(r + x0)

r (r − x0)
, (17)

L2 =
∑

1<i< j<4

L2
i j , Li j = xi Pj − x j Pi , (18)

where i, j = 1,2,3,4.
We have the commutation relations

[H, A] = [H, B] = [H, L2] = [A, L2] = [B, L2] = [H, Li j ] = 0, (19)

and in terms of graph

A L2 B

H

L2 Lij

H

(20)

These integrals generate the following quadratic algebra:

[A, B] = C, [A, C] = 2�
2{A, B} + 8�

4 B − 4(c1 − c2)�2c0, (21)

[B, C] = −2�
2 B2 + 8�

2 H A − 4�
2 L2 H + 16�

4 H − 8�
2(c1 + c2)H + 2�

2c2
0, (22)

K = 16�
4 H L2 − 8�

2(c1 − c2)2 H + 32(c1 + c2)�4 H − 32�
6 H (23)

+4�
2c2

0 L2 + 8�
2(c1 + c2)c2

0 − 4�
4c2

0.

This quadratic algebra has a very interesting structure. The structure constants involve the
operator L2 that is the Casimir operator of the so(4) Lie algebra generated by Lij for i, j = 1, 2, 3, 4.
The l ( L2ψ = lψ) can be calculated from the representation theory and Casimir operators of so(4)
Lie algebras.
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C. Finite-dimensional unitary representations

We obtain for the generalized 5D Kepler system the following structure function:

�(x) = 6191456E�
18(x + u − (

1

2
(1 − m1 − m2)))

× (x + u − (
1

2
(1 − m1 + m2)))(x + u − (

1

2
(1 + m1 − m2)))

(x + u − (
1

2
(1 + m1 + m2)))(x + u − (

1

2
− c0√−2E�

))(x + u − (
1

2
+ c0√−2E�

)) (24)

with �
2m2

1,2 = 16c1,2 + 4l + 4�
2. From the constraints on the structure function given by Eq. 9, we

obtain u = 1
2 + c0√−2E�

and

E = −c2
0

�2(p + 1 + m1+m2
2 )2

, p = 0, 1, 2, 3, . . . , (25)

�(x) = 6291456�
18x(p + 1 − x)c2

0

�2(p + 1 + m1 + m2)
(p + 1 + m1 − x)(p + 1 + m2 − x)(p + 1 + m1 + m2).

(26)

IV. GENERALIZED YANG-COULOMB MONOPOLE SYSTEM AND DUALITY

A. Yang-Coulomb monopole

The Yang-Coulomb monopole is given by the following Hamiltonian that consists in a 5D-Kepler
systems with a su(2) monopole interaction:

H = 1

2
(π j )

2 + �
2

2r2
T 2 − c0

r
, Aa

i = 2i

r (r + x0)
τ a

i j x j (27)

with π j = −i�∂x j − �Aa
j Ta and

T1 = i(cos(αT )cot(βT )
∂

∂αT
+ sin(αT )

∂

∂βT
− cos(αT )

sin(βT )

∂

∂γT
), (28)

T2 = i(sin(αT )cot(βT )
∂

∂αT
− cos(αT )

∂

∂βT
− sin(αT )

sin(βT )

∂

∂γT
), (29)

T3 = −i
∂

∂αT
(30)

with (i, j=0,1,2,3,4; μ,ν=1,2,3,4). These operators given by Eqs. 27–30 satisfy the following
relations:

[Ta, Tb] = iεabcTc. (31)

We have

τ 1 = 1

2

⎛
⎜⎝

0 0 0

0 0 −iσ 1

0 iσ 1 0

⎞
⎟⎠, τ 2 = 1

2

⎛
⎜⎝

0 0 0

0 0 iσ 3

0 −iσ 3 0

⎞
⎟⎠, τ 3 = 1

2

⎛
⎜⎝

0 0 0

0 σ 2 0

0 0 σ 2

⎞
⎟⎠, (32)

where σ i for i = 1, 2, 3 are the Pauli matrices

σ 1 =
(

0 1

1 0

)
, σ 2 =

(
0 −i

i 0

)
, σ 3 =

(
1 0

0 −1

)
. (33)
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We can construct the following field tensor:

Fa
ik = ∂i Aa

k − ∂k Aa
i + εabc Ab

i Ac
k, (34)

and using Eqs. 28–30 and 34 generate the following integrals of motion:

Lik = (xiπk − xkπi ) − r2
�Fa

ik Ta, Mk = 1

2
(πi Lik + Likπi + 2c0

xk

r
). (35)

They satisfy Eqs. 14 and 15 and thus preserve the so(6) Lie algebra.

B. Yang-Coulomb monopole with Smorodinsky-Winternitz terms

We can introduced the following Hamiltonian:

H = 1

2
(π j )

2 + �
2

2r2
T 2 − c0

r
+ c1

r (r + x0)
+ c2

r (r − x0)
. (36)

Similarly, we can show with more involving calculations that this system allows integrals of the
form given by Eqs. 17 and 18 where the Lij and M0 are given by Eq. 35. This system is thus a
new superintegrable system and multiseparable (a consequence of this existence of more than one
second-order integrals of motion). It allows separation of variables in hyperspherical, spheroidal,
and parabolic coordinates systems. Let us present the wavefunctions and a derivation of the energy
spectrum of this system using the parabolic coordinates. We define the parabolic coordinates by

x0 = 1

2
(μ − ν), (37)

x1 + i x2 = √
μνcos(

β

2
)e

i(α+γ )
2 ,

x3 + i x4 = √
μνsin(

β

2
)e

i(α−γ )
2

with ν, μ ∈ [0, ∞). The Schrödinger equation given by the Hamiltonian (36) (with Hψ = εψ)
becomes (with Ji = Li + Ti),

(�μ,ν − (4J 2 − 2c1)

μ(μ + ν)
− (4L2 − 2c2)

ν(μ + ν)
)ψ + 2

�2
(ε + 2c0

μ + ν
)ψ = 0 (38)

with

�μ,ν = 4

μ + ν
(

1

μ

∂

∂μ
(μ2 ∂

∂μ
) + 1

ν

∂

∂ν
(ν2 ∂

∂ν
)). (39)

We use the following form for the wavefunctions (similar to the Yang-Coulomb monopole44):

ψ = C f1(μ) f2(ν)D J M
LT m ′t ′ (α, β, γ, αT , βT , γT ) (40)

with D J M
LT m ′t ′(α, β, γ, αT , βT , γT ) given by

D J M
LT m ′t ′(α, β, γ, αT , βT , γT ) =

√
(2L + 1)(2T + 1)

4π4

∑
M=m+t

C J M
L ,m;T,t DL

mm ′(α, β, γ )DT
tt ′ (αT , βT , γT ),

(41)
where C J M

L ,m;T,t are the Clebseh-Gordon coefficients, DL
mm ′(α, β, γ ) and DT

tt ′(αT , βT , γT ) are the
Wigner functions, and C is a normalization constant. Using the following parameters s1 = 4(j(j
+ 1) − 2c1), s2 = 4(l(l + 1) − 2c2), β = 2ε

�2 , and α = 2c0
�2 and the wavefunctions as given by

Eq. 40, we obtain two second-order differential equations

(∂μ(μ∂μ) − s1

4μ
+ α

4
+ β

4
μ) f1(μ) = v

2
f1(μ), (42)
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(∂ν(ν∂ν) − s2

4ν
+ α

4
+ β

4
ν) f2(ν) = −v

2
f2(ν). (43)

The solution can be written in term of the hypergeometric function (with x = μ
√−β and

y = ν
√−β),

f1(μ) = x
s1
2 e− x

2 F(−n1, s1 + 1, x), f2(ν) = y
s2
2 e− y

2 F(−n2, s2 + 1, y), (44)

where n1, n2 = 0, 1, 2, . . . and

n1 = − s1 + 1

2
+ (2v − α)

4
√−β

, n2 = − s2 + 1

2
− (2v + α)

4
√−β

. (45)

From Eq. 45, we have the relation

n1 + n2 + (s1 + s2 + 1) = − α

2
√−β

(46)

that allows us to obtain the energy spectrum

ε = −c2
0

2�2(n1 + n2 + (s1 + s2 + 1))2
. (47)

C. Hurwitz transformation and 8D singular oscillator

The Schrödinger equation of the generalized Yang-Coulomb monopole system

1

2
(−i�

∂

∂x j
− �Aa

j Ta)2ψ + �
2

2r2
T 2ψ − c0

r
ψ + c1

r (r + x0)
+ c2

r (r − x0)
= εψ (48)

is related to the following 8D singular oscillator:

−�
2

2

∂2

∂u2
+ ω2

2
u2 + λ1

u2
0 + u2

1 + u2
2 + u2

3

+ λ2

u2
4 + u2

5 + u2
6 + u2

7

= E, (49)

by the following Hurwitz transformation (that converts R8 to the direct product R5 ⊗ S3) :

x0 = u2
0 + u2

1 + u2
3 − u2

4 − u2
5, (50)

x1 = 2(u0u4 − u1u5 − u2u6 − u3u7),

x2 = 2(u0u5 + u1u4 − u2u7 + u3u6),

x3 = 2(u0u6 + u1u7 + u2u4 − u3u5),

x4 = 2(u0u7 − u1u6 + u2u5 + u3u4),

αT = i

2
ln

(u0 + iu1)(u2 − iu3)

(u0 − iu1)(u2 + iu3)
,∈ [0, 2π )

βT = 2 arctan
u2

0 + u2
1

u2
2 + u2

3

1
2

,∈ [0, π ]

γT = i

2
ln

(u0 − iu1)(u2 − iu3)

(u0 + iu1)(u2 + iu3)
,∈ [0, 4π )
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with the following relations between the parameters:

c0 = E

4
, ε = −ω2

8
, ci = 2λi . (51)

The 8D singular oscillator is also superintegrable and has the following integrals of motion:

Ji j = ui∂u j − u j∂ui , i < j, i, j = 0, 1, 2, 3, (52)

Ki j = ui∂u j − u j∂ui , i < j, i, j = 4, 5, 6, 7, (53)

J 2 =
∑

1<i< j<4

J 2
i j , K 2 =

∑
1<i< j<4

L2
i j , (54)

A = −1

4
(u2 ∂2

∂u2
− ui u j

∂2

∂ui ∂u j

− 7ui
∂

∂ui
) (55)

+ (
1

2�2
u2(+ λ1

u2
0 + u2

1 + u2
2 + u2

3

+ λ2

u2
4 + u2

5 + u2
6 + u2

7

),

B = �
2

2
(

∂2

∂u2
+ ω2

2
(u2

0 + u2
1 + u2

2 + u2
3 − u2

4 − u2
5 − u2

6 − u2
7)

+ λ1

u2
0 + u2

1 + u2
2 + u2

3

− λ2

u2
4 + u2

5 + u2
6 + u2

7

. (56)

We have the following commutation relations:

[H, A] = [H, B] = [H, K 2] = [H, J 2] = [H, Ji j ] = [H, Ki j ] = 0 (57)

[A, J 2] = [A, K 2] = [B, J 2] = [B, K 2] = 0

and in terms of graph

J2 K2

A B

H

J2 Jij

H

K2 Kij

H

(58)

The integrals generate the following quadratic algebra:

[A, B] = C, [A, C] = 2{A, B} + 8B + J 2 H − K 2 H − 2(λ1 − λ2)

�2
H, (59)
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[B, C] = 4�
2 B2 + 2H 2 − 16�

2ω2 A − 4�
2ω2 J 2 − 4�

2ω2 K 2 + 8(λ1 + λ2 − 4�
2)ω2, (60)

K = −2J 2 H 2 − 2K 2 H 2 + 4(λ1 + λ2 − �
2)ω2

�2
H 2 + �

2ω2(J 2)2 − �
2ω2(K 2)2 − 2�

2ω2 J 2 K 2

(61)

−4(λ1 − λ2 − 4�
2)ω2 J 2 + 4(λ1 − λ2 + 4�

2)ω2 K 2 + 4((λ1 − λ2)2 − 8(λ1 + λ2)�2 + 16�
4)ω2

�2
.

The structure constants and the Casimir operator allow us to obtain the structure function �(x)
of the deformed oscillator algebra. The energy and the two Casimir operators are fixed, Hψ = Eψ ,
J2ψ = jψ , and K2ψ = kψ . The structure function is then given by (with �

2m1 = �
2j2 + 2λ1 + �

2

and �
2m2 = �

2k2 + 2λ2 + �
2)

�(x) = 3 · 222ω2

(
x + u −

(
1

2
− E

2ω�

)) (
x + u −

(
1

2
+ E

2ω�

))
(62)

(
x + u −

(
1

2
− 1

2
(m1 + m2)

)) (
x + u −

(
1

2
− 1

2
(m1 − m2)

))

(
x + u −

(
1

2
− 1

2
(−m1 + m2)

)) (
x + u −

(
1

2
− 1

2
(−m1 − m2)

))
.

We thus found the following energy spectrum with the corresponding finite-dimensional unitary
representation:

E = 2ω�(p + 1 + m1 + m2

2
), u = 1

2
− E

2ω�
, (63)

φ(x) = 3 · 219ω2x(p + 1 − x)(p + 1 + m1 − x)(p + 1 + m2 − x) (64)

(p + 1 + m1 + m2 − x)(2p + 2 + m1 + m2 − x).

Using the relations between the parameter of the generalized Yang-Coulomb monopole and the
8D singular oscillator, we obtain the following equation (with Eq. 51):

4c0 = E = 2ω�(p + 1 + m1 + m2

2
) = 2

√−8ε�(p + 1 + m1 + m2

2
) (65)

that can be used to re-obtain algebraically the energy spectrum of the generalized Yang-Coulomb
monopole

ε = −c2
0

2�2(p + 1 + m1+m2
2 )2

. (66)

This results coincide with the one obtained from a direct approach using the parabolic coordi-
nates and given by Eq. 47 ( with mi = 2si and p = n1 + n2 ).

V. CONCLUSION

One main result of this paper is the study of three new superintegrable systems: the generalized
5D Kepler system, the generalized Yang-Coulomb monopole, and the 8D singular oscillator. The
study of systems with non-Abelian monopole is important, and this paper points out how they could
be generalized using Smorodinsky-Winternitz terms. We show that for the generalized 5D Kepler
systems (as for the well-studied 5D Kepler systems), the superintegrability property is preserved
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when one add the appropriate non-Abelian monopole. The Hurwitz transformation also maps this
superintegrable system to an other one an 8D singular oscillator.

The algebraic structure presented in this paper is interesting. In the case of the generalized
Kepler system, the quadratic algebra involves the Casimir operator of a so(4) Lie algebra. In the case
of the dual of the generalized Yang-Coulomb monopole, the 8D singular oscillator, the quadratic
algebra involves two integrals that are Casimir operator of so(4) Lie algebras. This points out also
how the quadratic algebra approach can be applied in context of higher dimensional superintegrable.

Let us mention that these results can have a wider applications; it was shown that systems
with monopole can be extended in N dimensions80 and a generalized Hurwitz transformation was
obtained for a nine-dimensional hydrogenlike system with so(8) non-Abelian monopole.81 Let us
mention also recent works on monopoles.82–86
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