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Abstract

Doctor of Philosophy

by Mahmoud Yousif Ali Wahba Hashim

Large scale structure in the universe is one of the most important probing tools for

cosmological modelling. Assuming the hot big bang model of the universe, the expan-

sion history has undergone two phases of acceleration. The primordial phase which

had been considered to be responsible for seeding the structure formation and the late

phase driven by the mysterious component of the cosmos, Dark Energy. Early inho-

mogeneity in the structure formation could though leave a signature on the late time

universe. We assume the cosmos to have non-Gaussian initial conditions. Gravitational

instability is thought to be responsible for late structure evolution. On local scales,

non-linear effects dissipate primordial signal of non-Gaussianity, however on very large

scales, the signal is well preserved. Initial non-Gaussianity introduce a scale dependent

signature on the galaxy power spectrum on very large scales. This could be very useful

to constrain non-Gaussianity parameter via upcoming large scale structure surveys. In

this thesis, we show that on very large scales, interacting dark energy perturbations in-

duce a scale-dependent effect on the galaxy power spectrum on large scales. This could

degenerate with primordial non-Gaussianity signal, though a disentanglement between

the two signatures are necessary for observational constraints. On small scales, N-body

simulations for standard cosmological models are used to investigate the signature of

primordial non-Gaussianity on halo mass function. It has a significant effect on very

large halos however it is negligible for small mass halos. Interacting Dark Energy is

assumed to have a similar effect on small scales. We prepare the basis for future work

that will combine simulations for Interacting Dark Energy models with non-Gaussian

initial conditions.
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Chapter 1

Introduction

One of the main goals of cosmology is the study of the large scale structure in the uni-

verse. Structure formation in the universe mainly arises due to gravitational instabilities

on large and small scales [17, 29, 64]. Upcoming galaxy surveys will allow us to better

understand the process of the structure formation and to constrain the impacting factors

of the initial conditions and the presence of the different components of the cosmos.

Assuming the big bang inflationary model [40], the universe had undergone an early era

of cosmic acceleration which led to the amplification of small primordial fluctuations.

These seeds of perturbation had grown enormously until they exit the horizon and freeze,

keeping all the information about the initial structure of the universe. Simple inflation

models suggest that the universe is homogeneous and isotropic. However different models

assume that the universe is inhomogeneous with the assumption that the primordial

fluctuations are statistically non-Gaussian. Single-field slow-roll inflation model predicts

a very small signal of non-Gaussianity, however multi-field inflation models predict large

signals [10].

After the inflation era, the universe expands until the frozen primordial signal enters

the horizon again and starts to evolve as a seed for late structure formation. Assuming

that gravity is the only factor of interaction between late universe components, gravita-

tional instability is the only physical mechanism that produces the observed large scale

structures (i.e. galaxies, cluster of galaxies, sheets and filaments). By measuring the

statistical nature of the large scale structure, we could constrain the primordial signal of

non-Gaussianity on very large scales. Recent studies suggest that the formation of virial

objects in the universe is affected by the primordial signal of non-Gaussianity. This

leads to a scale dependent bias between galaxies and the dark matter distribution [28].

1
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Current cosmological observations [2] indicate that the cosmos mostly consists of dark

components (i.e. dark matter and dark energy), known as the dark sector. These two

mysterious components of the universe are responsible for the growth and the decay of

the cosmic perturbations. Recently, clustering dark energy has been proven to intro-

duce a scale-dependent signal on very large scales in the galaxy power spectrum [32].

This could be used to determine the nature of dark energy. Interaction between dark

energy and dark matter is also introducing a scale dependent signal to the galaxy power

spectrum [66].

Other different signals are supposed to affect large scale observables, including general

relativistic effects and false gauge effects [18]. This could raise a degeneracy between

different signals resulting in misinterpreting parameter constraints.

In this chapter, we give a quick review on the expansion history of the universe assuming

homogeneous and isotropic background.

1.1 Expansion history of the universe

The standard model of relativistic big bang cosmology is mainly based on the cosmo-

logical principle [31]. It states that the universe is homogeneous and isotropic on very

large scales. Cosmic Microwave Background (CMB) radiation observation is one of the

main observational tools that support the standard cosmological model (or the Concor-

dance model). By solving the Einstein equations assuming homogeneous and isotropic

background, one can reveal the cosmic expansion history.

Observations of the large scale structures in the universe (such as galaxies and cluster

of galaxies) indicate that the universe is inhomogeneous in the local regime. These in-

homogeneous signatures have evolved in time via gravitational instability. Cosmological

perturbation theory suggests that these levels of inhomogeneities can be regarded as

small perturbations evolving on homogeneous background universe.

1.1.1 Friedmann equations

In order to describe a relativistic 4−dimensional homogeneous and isotropic space-time,

we need to define the Friedmann-Lemaitre-Robertson-Walker (FLRW) line-element as

follows

ds2 = gµνdx
µdxν = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (1.1)
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where a(t) is the scale factor which is a function of cosmic time and gµν is a metric

tensor. The curvature constant K = −1, 0,+1 corresponds to open, flat and closed

universes, respectively.

The Einstein relativistic field equations are given by

Gµν = 8πGTµν , (1.2)

where Tµν is the energy-momentum tensor and we assume that c = 1. From the metric

(1.1), the LHS of (1.2) is given as follows. The Christoffel symbol is given by using the

metric gµν

Γµνλ =
1

2
gµα(gαν,λ + gαλ,ν − gνλ,α), (1.3)

where gαν,λ ≡ ∂gαν/∂xλ. Note that the metric gαν satisfies the relation

gµαgαν = δµν , (1.4)

where δµν is Kronecker’s delta (δµν = 1 for µ = ν and δµν = 0 for µ 6= ν).

The non-vanishing components of the Christoffel symbols are

Γ0
ij = a2Hγij , (1.5)

Γi0j = Γij0 = Hδij , (1.6)

Γ1
11 =

Kr

1−Kr2
, (1.7)

Γ1
22 = −r(1−Kr2), (1.8)

Γ1
33 = −r(1−Kr2) sin2 θ, (1.9)

Γ2
33 = − sin θ cos θ, (1.10)

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1

r
, (1.11)

Γ3
23 = Γ3

32 = cot θ, (1.12)

where γij is the 3−dimensional metric given as

γ11 =
1

1−Kr2
, γ22 = r2, γ33 = r2 sin2 θ, (1.13)

and H is the Hubble parameter defined as

H ≡ ȧ

a
, (1.14)

where a dot represents a derivative with respect to the cosmic time t.
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The Ricci tensor is defined as

Rµν = Γαµν,α − Γαµα,ν + ΓαµνΓβαβ − ΓαµβΓβαν . (1.15)

The non-vanishing components of the Ricci tensor are given by

R00 = −3(H2 + Ḣ), (1.16)

R0i = Ri0 = 0, (1.17)

Rij = a2

(
3H2 + Ḣ + 2

K

a2

)
γij . (1.18)

The Ricci scalar is defined as the contraction of the Ricci tensor such that

R = gµνRµν . (1.19)

For FLRW metric, it is given by

R = 6

(
2H2 +H +

K

a2

)
. (1.20)

The Einstein tensor is then defined as

Gµν ≡ Rµν −
1

2
gµνR. (1.21)

The non-vanishing components of the Einstein tensor for FLRW metric are then given

by

G0
0 = −3

(
H2 +

K

a2

)
, (1.22)

G0
i = Gi0 = 0, (1.23)

Gii = −
(

3H2 + 2Ḣ +
K

a2

)
δij , (1.24)

since we used the relation Gµν = gµαGαν . By solving the Einstein equations, we can

determine the cosmological dynamics.

By considering the perfect fluid as the background matter in FLRW universe, the energy-

momentum tensor is given by

Tµν = (ρ+ P )uµuν + Pδµν , (1.25)
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where uµ = δµ0 is the four-velocity of the fluid, ρ is the total energy density and P is the

total pressure. The non-vanishing components of Tµν are

T 0
0 = −ρ, (1.26)

T ij = Pδij . (1.27)

By substituting in the Einstein field equations (1.2) we obtain

H2 =
8πG

3
ρ− K

a2
, (1.28)

3H2 + 2Ḣ = −8πGP − K

a2
, (1.29)

which are the Friedmann equations. These equations describe the expansion history of

the universe.

From (1.28) and (1.29), we get

ä

a
= −4πG

3
(ρ+ 3P ). (1.30)

Differentiating with respect to time t and by using (1.29), we find

ρ̇+ 3H(ρ+ P ) = 0, (1.31)

which is the conservation or continuity equation.

Defining the dimensionless density parameters as follows

Ωm ≡
8πGρ

3H2
, ΩK ≡ −

K

(aH)2
, (1.32)

we can write (1.28) as

Ωm + ΩK = 1. (1.33)

1.1.2 ΛCDM concordance model

We consider a single component universe with equation of state w defined as

w ≡ P

ρ
. (1.34)

For constant w and assume a flat universe (K = 0), and from (1.30) and (1.31) we get

the following solution

ρ ∝ a−3(1+w), a ∝ (t− ti)2/3(1+w), (1.35)
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where ti is the initial cosmic time. For radiation with equation of state w = 1/3, the

cosmic evolution during the radiation era is given by

ρr ∝ a−4, a ∝ (t− ti)1/2. (1.36)

For non-relativistic matter with negligible pressure, i.e w ' 0, the evolution during the

matter domination era is given by

ρm ∝ a−3, a ∝ (t− ti)2/3. (1.37)

From (1.30), cosmic acceleration condition is ä > 0. This leads to

P < −ρ/3 → w < −1/3, (1.38)

since we assume ρ to be always positive. In the case when w = −1, i.e. P = −ρ, from

(1.31) ρ is a constant. This case corresponds to the cosmological constant. In this case,

the cosmological evolution is given by

H =

√
8πGρ

3
, a ∝ exp(Ht). (1.39)

The cosmological constant scenario accounts for late cosmic acceleration and it is one of

dark energy models.

For a universe filled with radiation ρr, dark matter ρm and dark energy ρde, the evolution

equations could be written as

ρr = ρ0
r

(a0

a

)4
= ρ0

r(1 + z)4, (1.40)

ρm = ρ0
m

(a0

a

)3
= ρ0

m(1 + z)3. (1.41)

The dark energy component satisfies the continuity equation,

ρ̇de + 3H(ρde + Pde) = 0. (1.42)

where wde = Pde/ρde is the dark energy equation of state.

At radiation-matter equality (i.e ρr = ρm), the corresponding redshift zeq is given by

1 + zeq =
ρ0
m

ρ0
r

=
Ω0
m

Ω0
r

, (1.43)
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where Ω0
r is defined as

Ω0
r ≡

8πGρ0
r

3H2
0

. (1.44)

By Integrating (1.42), we get

ρde = ρ0
de exp

[∫ z

0

3(1 + wde)

1 + z
dz

]
, (1.45)

where we used the relation dt = −dz/[H(1 + z)].

From (1.28), we get

H2 =
8πG

3
(ρr + ρm + ρde), (1.46)

since we assume a flat universe with K = 0.

The density parameters at present time satisfy the following relation

Ω0
r + Ω0

m + Ω0
de = 1. (1.47)

Equation (1.46) can then be written in the form

H2(z) = H2
0

[
Ω0
r(1 + z)4 + Ω0

m(1 + z)3 + Ω0
de exp

{∫ z

0

3(1 + wde)

1 + z

}]
. (1.48)

For cosmological constant with wΛ = −1, we get

H2(z) = H2
0

[
Ω0
r(1 + z)4 + Ω0

m(1 + z)3 + Ω0
Λ

]
. (1.49)

1.2 Thesis outline

This thesis is organized as follows: in chapter 2, a general overview on the linear and non-

linear perturbation theory is given. This is to understand the mechanism of gravitational

instability responsible for the structure formation in the universe. The perturbation

equations are derived for a multi-component dark energy-dark matter universe. For

non-linear perturbations, the phenomenological spherical collapse model is presented

with derivation of the Press-Schechter halo mass function.

The main results are presented in chapter 3, we present the effect of clustering interacting

dark energy on large scale structure observables. We then investigate the degeneracy

with primordial non-Gaussianity in galaxy power spectrum on very large scales. Possible

disentanglement between the two signals is then discussed with a derivation of effective

non-Gaussianity relation.
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In chapter 4 we perform a set of N-body simulations to measure the primordial non-

Gaussianity imprint on the halo mass function and non-linear power spectrum on non-

linear scales. Chapter 5 contains the concluding remarks and future work.
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Chapter 2

Structure formation and

gravitational instability

The large scale structure of the universe presents one of the observational challenges

in modern astrophyiscs and cosmology. The wealth of information contained in galaxy

clustering is very important in constraining different models of cosmological evolution.

During late universe, gravitational instability has been widely accepted to be responsible

for the observed structure formation. In order to quantitatively understand the dynamics

of gravitational instability, one requires a general theory of cosmological perturbations.

In this chapter we review the basic foundations of linear/non-linear cosmological per-

turbation theory within the context of General Relativity. We discuss its application to

different cosmological models including dynamical dark energy. The initial conditions

originating from inflation are explained. The statistical properties of the perturbation

variables required to link with observations are illustrated with the introduction of the

power spectra. We discuss the assumption of the existence of primordial non-Gaussianity

signal and its imprints on large scale structure. For full non-linear perturbation solu-

tions, we introduce the numerical N-body simulations. This chapter is mainly based on

the following books and reviews [5, 6, 8, 15, 34, 63, 65, 90].

2.1 Dynamics of gravitational instability

Galaxies, superclusters, sheets and filaments are representing the observed large scale

structure of the universe. In an expanding universe, gravitational amplifications of pri-

mordial fluctuations due to the gravitational interaction of the underlying non-relativistic

9



http://etd.uwc.ac.za

Chapter 2. Structure formation and gravitational instability 10

cold dark matter is responsible for structure formation seen today [64]. In order to un-

derstand the dynamics of the gravitational instability on linear and non-linear scales,

cosmological perturbation theory is required.

2.1.1 Linear cosmological perturbation theory

The Friedmann Lematre Robertson Walker (FLRW) metric is given by

ds2 = gµνdx
µdxν = a2(−dη2 + δijdx

idxj), (2.1)

where η =
∫
a−1dt is the conformal time and H is the conformal Hubble parameter

defined as

H ≡ 1

a

da

dη
= Ha. (2.2)

The perturbed FLRW metric at first order is given by

gµν = ḡµν + δgµν , (2.3)

where δgµν is very small with respect to the unperturbed background term.

General relativistic field equations are invariant under a general coordinate transfor-

mation which means that the perturbed metric is not unique. In order to keep the

background FLRW metric invariant under a general transformation, we choose a set of

infinitesimal transformations that leaves ḡµν invariant, while the perturbed metric δgµν

is variant. These set of transformations are called gauge transformations.

The perturbed metric δgµν can generally be defined as

δgµν = a2

(
−2Ψ E,i

E,i 2Φδij +DijB

)
, (2.4)

where Ψ, Φ, E and B are spatial scalars functions and Dij is a traceless operator.

From these scalar functions one can construct gauge-invariant quantities, which remain

invariant under any general coordinate transformation. For simplicity, it is better to

work with a specific gauge which could be imposed by putting specific conditions on

the metric. These conditions correspond to gauge coordinate transformations. The

Newtonian gauge is defined by choosing E = 0 and B = 0. The perturbed metric in

Newtonian gauge is then given by:

ds2 = a2(η)
[
−(1 + 2Ψ)dη2 + (1 + 2Φ)δijdx

idxj
]
. (2.5)
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In order to perturb the Einstein field equations, (1.2), we decompose the Einstein tensor

Gµν and the energy-momentum tensor Tµν into background and perturbed parts: Gµν =

Ḡµν + δGµν and Tµν = T̄µν + δTµν . The cosmological background evolution is then obtained

by solving the background Einstein equations, Ḡµν = 8πGT̄µν , see chapter 1 for details.

The perturbed first-order Einstein equations are given by

δGµν = 8πGδTµν . (2.6)

In order to compute the perturbed Einstein tensor in (2.6) we first need to calculate the

perturbed Christoffel symbols δΓµνλ by using the formula

δΓµνλ =
1

2
δgµα(gαν,λ + gαλ,ν − gνλ,α) +

1

2
gµα(δgαν,λ + δgαλ,ν − δgνλ,α). (2.7)

The non-vanishing components of perturbed Christoffel symbols for the perturbed FLRW

metric (2.5) are

δΓ0
ij = δij

[
2H(Φ−Ψ) + Φ̇

]
, (2.8)

δΓ0
00 = Ψ̇, (2.9)

δΓ0
0i = δΓi00 = Ψ,i, (2.10)

δΓij0 = δijΦ̇. (2.11)

where an overdot here represents the derivative with respect to the conformal time η.

The perturbations in the Ricci tensor and in the Ricci scalar are given by

δRµν = δΓαµν,α − δΓαµα,ν + δΓαµνΓβαβ + ΓαµνδΓ
β
αβ − δΓ

α
µβΓβαν − ΓαµβδΓ

β
αν , (2.12)

δR = δgµαRαµ + gµαδRαµ. (2.13)

The perturbed Einstein tensors are then derived by

δGµν = δRµν −
1

2
δgµνR−

1

2
gµνδR, (2.14)

δGµν = δgµαGαν + gµαδGαν . (2.15)



http://etd.uwc.ac.za

Chapter 2. Structure formation and gravitational instability 12

Using the perturbed metric (2.5), we get

δG0
0 = 2a−2[3H(HΨ− Φ̇) +∇2Φ], (2.16)

δG0
i = 2a−2(Φ̇−HΨ),i, (2.17)

δGij = 2a−2[(H2 + 2Ḣ)Ψ +HΨ̇− Φ̈− 2HΦ̇]δij (2.18)

a−2
[
∇2(Ψ + Φ)δij

]
. (2.19)

The perturbed energy-momentum tensor δTµν could be determined for a specified matter

source accordingly.

2.1.1.1 Non-relativistic matter

For the energy-momentum tensor Tµν defined in (1.25), the perturbed four-velocity

uµ ≡ dxµ/ds is

uµ =

[
1

a
(1−Ψ),

vi

a

]
, (2.20)

where vi = dxi/dη is the peculiar velocity.

The perturbed quantities are defined as

δ ≡ δρ

ρ
=
ρ− ρ̄
ρ

, θ ≡ ∇ivi, (2.21)

where δ is the density contrast and θ is the velocity divergence.

From (1.25) the perturbed energy-momentum tensor for a perfect fluid with the equation

of state w = P/ρ can be written as

δTµν = ρ[δ(1 + c2
s)uνu

µ + (1 + w)(δuνu
µ + uνδu

µ) + c2
sδδ

µ
ν ]. (2.22)

where c2
s ≡ δP/δρ is the sound speed squared. For barotropic fluid (where P (ρ) is

function of time-dependent density ρ(t) only), the sound speed is defined as

c2
s ≡

δP

δρ
=
dP

dρ
=
Ṗ

ρ̇
. (2.23)

In general case, where the pressure P can depend on other internal quantities, e.g.

entropy s, the sound speed can be defined as

c2
s =

δP (ρ, s)

δρ
=
∂P

∂ρ
+
∂P

∂s

∂s

∂ρ
= c2

s(a) + c2
s(na), (2.24)
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where c2
s(a) ≡ Ṗ /ρ̇ and c2

s(na) are the adiabatic and the non-adiabatic sound speed

squared respectively. Given the equation of state w(a) and the sound speed cs(a) for a

fluid, the perturbed Einstein equation are then fully determined.

The energy-momentum tensor components are

δT 0
0 = −δρ, (2.25)

δT 0
i = −δT i0 = (1 + w)ρvi, (2.26)

δT ii = c2
sδρ. (2.27)

From (2.16) and (2.25) the perturbed Einstein equations (2.6) are

3H(HΨ− Φ̇) +∇2Φ = −4πGa2δρ, (2.28)

∇2(Φ̇−HΨ) = 4πGa2(1 + w)ρθ, (2.29)

Ψ = −Φ, (2.30)

Φ̈ + 2HΦ̇−HΨ̇− (H2 + 2Ḣ)Ψ = −4πGa2c2
sδρ. (2.31)

The energy-momentum tensor satisfies the continuity equation Tµν;µ = 0. The perturbed

continuity equation is then

δTµν;µ = 0. (2.32)

The temporal component, i.e. δTµ0;µ = 0, reads

δTµ0,µ − δΓ
α
0βT

β
α − Γα0βδT

β
α + δΓα0αT

0
0 + ΓαβαδT

β
0 = 0. (2.33)

By using (2.8), we get

δρ̇+ 3H(δρ+ δP ) = −(ρ+ P )(θ + 3Φ̇), (2.34)

In terms of w and c2
s and using the background conservation equation ρ̇+3H(ρ+P ) = 0,

we get

δ̇ + 3H(c2
s − w)δ = −(1 + w)(θ + 3Φ̇), (2.35)

representing the perturbed continuity equation. For non-relativistic matter where w =

c2
s = 0, the perturbed continuity equation reduces to

δ̇ = −θ − 3Φ̇. (2.36)

On small scales (k � H), the Φ̇ term may be neglected.
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The spatial component of (2.32) is given by

[a(ρ+ P )v]· + 3H[a(ρ+ P )v] = −a [av + Ψ] (ρ+ P ), (2.37)

where v is a velocity potential since vi = ∇iv. By taking the divergence of (2.37), we

get

θ̇ +

[
H(1− 3w) +

ẇ

1 + w

]
θ = −∇2

(
c2
s

1 + w
δ + Ψ

)
. (2.38)

Substituting w = c2
s = 0 for non-relativistic matter we get

θ̇ +Hθ = −∇2Ψ, (2.39)

which represents the Euler equation.

By expanding the perturbation quantities in Fourier space:

Φ =

∫
eik·rΦkd

3k, (2.40)

δ =

∫
eik·rδkd

3k, (2.41)

θ =

∫
eik·rθkd

3k, (2.42)

where k is the wave-vector, the perturbation equations are defined as follows for each

Fourier mode:

k2Φ + 3H(Φ̇−HΨ) = 4πGa2ρδ, (2.43)

k2(Φ̇−HΨ) = −4πGa2(1 + w)ρθ, (2.44)

δ̇ + 3H(c2
s − w)δ = −(1 + w)(θ + 3Φ̇), (2.45)

θ̇ +

[
H(1− 3w) +

ẇ

1 + w

]
θ = k2

(
c2
s

1 + w
δ + Ψ

)
, (2.46)

where ∇2 → −k2. The relativistic Poisson equation can be derived by combining (2.43)

and (2.44), which leads to

k2Φ = 4πGa2ρ∆, (2.47)

where

∆ = δ + 3H(w + 1)θ/k2, (2.48)

is the total comoving matter density contrast.
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2.1.1.2 Dynamical dark energy

For general multi-fluid universe with a general equation of state w(a) and a general

sound speed c2
s(a), the gravitational field is sourced by the total energy densities. In

the following, the subscripts m,x represent the dark matter and dynamical dark energy

components respectively.

Dark energy density and velocity perturbations in Fourier space obey the following

equations [5, 84],

δ′x + 3(c2
x − w)δx = −(1 + w)(3Φ′ + θx), (2.49)

θ′x +

(
2− 3w +

H ′

H
+

w′

1 + w

)
θx =

(
k

aH

)2( c2
x

1 + w
δx − Φ

)
, (2.50)

where

δx ≡
δρx
ρx

, θx ≡
−k2

aH
vx, (2.51)

and vx is the rotational-free dark energy velocity potential. The prime represents a

derivative with respect to the number of folds N = ln a. The gravitational potential Φ

perturbation equation is given by

Φ′ + Φ = −3

2

(
aH

k

)2

[Ωmθm + (1 + w)Ωxθx]. (2.52)

In the Newtonian gauge, the galaxy bias b1 is defined by δg(k, a) = b(a)δm(k, a). How-

ever, this definition fails on very large scales due to gauge-dependence, and we need to

identify the correct physical frame in which the bias is scale-independent on all scales

[19]. This is the comoving frame, so that a gauge-independent definition of the bias that

applies on all (linear) scales is given by

∆g = b∆m, where ∆m = δm + (ρ′m/ρm)vm. (2.53)

For dynamical dark energy, the gauge-invariant perturbation variable is given by

∆x = δx + 3

(
aH

k

)2

(1 + w)θx. (2.54)

1The term bias refers to the observed spatial distribution difference between galaxies and the underline
bulk matter.
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Equations (2.49) and (2.50) are reformulated in terms of vx and ∆x as follows. From

(2.51) the first derivative of θx with respect to N is given by

θ′x = −k2

[
(aH)v′x − (aH ′ + a′H)vx

(aH)2

]
,

= − k2

aH

[
v′x −

(
H ′

H
+ 1

)]
, (2.55)

since a′/a = 1.

The first derivative of the dark energy overdensity δx in terms of ∆x and vx is given by

δ′x = ∆′x + 3 [(aH)(1 + w)vx]′ ,

= ∆′x + 3(aH)

[
(1 + w)v′x + w′vx +

(
H ′

H
+ 1

)
(1 + w)vx

]
. (2.56)

Using (2.55), (2.52) could be rewritten as

Φ′ = −Φ +
3

2
(aH) [Ωmvm + (1 + w)Ωxvx] . (2.57)

Using (2.56), the LHS of (2.50) could be rewritten as

− k2

aH
v′x −

k2

aH

(
1− 3w +

w′

1 + w

)
vx. (2.58)

While the RHS of (2.50) is given by

(
k

aH

)2 [ c2
x

1 + w
∆x

]
+ 3

(
aH

k

)2 c2
x

1 + w
(aH)(1 + w)vx −

(
aH

k

)2

Φ. (2.59)

So we get

v′x +

[
1 + 3(c2

x − w) +
w′

1 + w

]
vx =

1

aH

[
Φ− c2

x

1 + w
∆x

]
. (2.60)

Using the same technique with (2.49), we have for the LHS

∆′x+3(aH)(1+w)v′x+3(c2
x−w)∆x+3(aH)

[
w′ +

(
H ′

H
+ 1

)
(1 + w) + 3(c2

x − w)(1 + w)

]
vx.

(2.61)

From (2.57), we get

∆′x + 3(c2
x − w)∆x − 3c2

x∆x + 3(1 + w)Φ + 3(aH)
H ′

H
(1 + w)vx. (2.62)
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For the RHS of (2.49), we have

3(1 + w)Φ− 9

2
(1 + w)(aH)[Ωmvm + (1 + w)Ωxvx] +

k2

aH
(1 + w)vx. (2.63)

By combining the two sides, we get

∆′x − 3w∆x + 3aH
H ′

H
(1 + w)vx = −9

2
(1 + w)(aH) [Ωmvm + (1 + w)Ωxvx]

+
k2

aH
(1 + w)vx. (2.64)

Since
H ′

H
= −3

2
(1 + wΩx), (2.65)

we get

∆′x − 3w∆x −
9

2
aH(1 + w)(1 + wΩx)vx = −9

2
(1 + w)aHΩmvm

−9

2
(1 + w)aH(1 + w)Ωxvx

+
k2

aH
(1 + w)vx. (2.66)

or

∆′x − 3w∆x −
k2

aH
(1 + w)vx −

9

2
aH(1 + w)(1− Ωx)[vx − vx] = 0. (2.67)

Non-adiabatic sound speed

For imperfect fluids, there exist non-adiabatic entropy perturbations generated from

dissipative processes [84]. The speed of sound is defined as,

c2
x = c2

s + 3

(
aH

k

)2

(1 + w)(c2
s − c2

a)
θx
δx
, (2.68)

where, c2
s is the speed of sound squared and c2

a is the adiabatic speed squared defined as

c2
a = w − w′

3(1 + w)
. (2.69)

Equation (2.68) could be written as,

c2
x = c2

s + T , (2.70)
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where T is

T = 3

(
aH

k

)2

(1 + w)(c2
s − c2

a)
k2

aH

−vx
∆x + 3aH(1 + w)vx

,

= −3aH(1 + w)(c2
s − c2

a)
vx

∆x + 3aH(1 + w)vx
. (2.71)

By substituting into Eq. (2.60), we get

v′x +

[
1 + 3(c2

s − w) +
w′

1 + w

]
vx + 3T

(
vx +

∆x

1 + w

)
=

1

aH

[
Φ− c2

s

1 + w
∆x

]
. (2.72)

Since,

3T
(
vx +

∆x

1 + w

)
= −9aH(1 + w)(c2

s − c2
a)

v2
x

∆x + 3aH(1 + w)vx

−3(c2
s − c2

a)
vx∆x

∆x + 3aH(1 + w)vx
,

= −3(c2
s − c2

a)vx, (2.73)

we get,

v′x +

[
1− 3w + 3c2

a +
w′

1 + w

]
vx =

1

aH

[
Φ− c2

s

1 + w
∆x

]
. (2.74)

From (2.69), we have

v′x = −vx +
1

aH

[
Φ− c2

s

1 + w
∆x

]
. (2.75)

By defining the dimensionless variables

h =
H

H0
, ux =

vx
H0

, ζ =
k

H0
, (2.76)

we get,

Φ′ = −Φ +
3

2
(ah) [Ωmum + (1 + w)Ωxux] , (2.77)

u′x = −ux +
1

ah

[
Φ− c2

s

1 + w
∆x

]
, (2.78)

∆′x = 3w∆x +
ζ2

ah
(1 + w)ux +

9

2
ah(1 + w)(1− Ωx)[ux − um]. (2.79)
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Dark matter perturbations

The dark matter perturbations are given by

δ′m = −3Φ′ − θm, (2.80)

θ′m +

(
2 +

H ′

H

)
θm = −

(
k

aH

)2

Φ. (2.81)

where

δm ≡
δρm
ρm

, θm ≡
−k2

aH
vm, (2.82)

and vm is the rotational-free dark matter velocity potential. The gauge-invariant dark

matter overdensity perturbation is defined as

∆m = δm + 3

(
aH

k

)2

θm. (2.83)

By using the same procedure for the dark energy perturbations, we have

u′m =

[
1

ah
Φ− um

]
, (2.84)

∆′m =
ζ2

ah
um +

9

2
ah(1 + w)Ωx [um − ux] . (2.85)

The relativistic Poisson equation is given by

Φ =
3

2
ζ2∆t, (2.86)

where

∆t ≡ δt + 3ζ2θt(1 + weff). (2.87)

The total perturbation variables are given by

δt =
∑
i

Ωiδi, (2.88)

θt =
∑
i

1 + wi
1 + weff

Ωiθi, (2.89)

where weff =
∑

i Ωiwi is the total equation of state for i = m,x.

2.1.2 Non-linear cosmology

Linear gravitational processes only act on very large cosmological scales. In non-linear

regime, gravitational instability responsible for the formation of astrophysical objects is
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replaced with a new physical mechanism and new interactions. Therefore the signature

of the global structure of the cosmos is lost or dissipated.

An intermediate regime, in which gravitational interaction is still effective beyond linear-

ity, begins to be observable. This regime lies between the linear perturbation theory and

the full non-linear dynamics. Full non-linear dynamics can only be dealt with N-body

simulations or by studying individual astronomical objects.

In the following, we present the perturbation equations in Newtonian limit without

any linearization assumption. The continuity equation and the Euler equation for non-

relativistic matter with density ρ moving under a gravitational potential Φ with a ve-

locity v are given by [5],

ρ̇+∇ · (ρv) = 0, (2.90)

v̇ + (v · ∇)v = −∇Φ, (2.91)

where a dot represents derivative with respect to time t and ∇ is the gradient over the

physical coordinate. The gravitational potential satisfies the Poisson equation

∇2Φ = 4πGρ. (2.92)

In expanding universe, the the local coordinate is replaced with the expanding coordinate

given the following system for perturbation equation

δ̇ +
1

a
∇ · (1 + δ)v = 0, (2.93)

v̇ +Hv +
1

a
v · ∇v =

1

a
∇Φ, (2.94)

and the Poisson equation in the expanding universe is given by

∇2Φ = −4πGa2δρ, (2.95)

where δ is the matter density contrast.

The total derivative of δ with respect to the cosmic time is defined as

dδ

dt
≡ ∂δ

∂t
+
vi

H
∇iδ. (2.96)

The continuity equation (2.93) is then

dδ

dt
= −Θ(1 + δ), (2.97)
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where Θ ≡ ∇ivi/H. By taking the divergence of the Euler equation and make use of the

Poisson equation, we get

dΘ

dt
= − (1 +H) Θ− 1

3
Θ2 − 3

2
Ωmδ. (2.98)

From (2.97) and (2.98), we get

d2δ

dt2
+ (1 +H)

dδ

dt
− 3

2
Ωmδ =

4

3

1

1 + δ

(
dδ

dt

)2

+
3

2
Ωmδ

2, (2.99)

where the RHS represents the non-linear terms. We assume δ = δ(x, a) and only consider

radial perturbations. It corresponds to the density contrast evolution.

2.1.2.1 Spherical collapse

By using the Newtonian picture, (2.99) could be derived assuming a shell of matter with

uniform density ρ at a distance R from a spherical overdensity center obeying Newton

force law
d2R

dt2
= −GM(R)

R2
= −4

3
πGρR, (2.100)

where M(R) = 4πρR3/3 is the constant mass inside the shell. For non-relativistic matter

the background density is given by ρ0 = (3M(R0)/4π)(R0a(t))−3, where R0 is the initial

size of the perturbation. The density contrast inside the shell can be defined as

δ =

(
a(t)R0

R

)3

− 1, (2.101)

where δ = 0 outside. By assuming that the density contrast δ is a top-hat function, all

spatial derivative are equal to zero. The time derivative for δ is then

δ′′ +

(
1 +
H′

H

)
δ′ − 3

2
Ωmδ =

4

3

δ′2

1 + δ
+

3

2
Ωmδ

2, (2.102)

which is exactly the same as (2.99) derived from non-linear perturbation theory.

By multiplying (2.100) by 2dR/dt and then integrating, we get

(
dR

dt

)2

=
2GM

R
− C, (2.103)

where C is an integration constant. This is called the cycloid equation. The parametric

solution for C > 0 is

R =
1

C
GM(1− cos τ), t =

1

C
3
2

GM(τ − sin τ), (2.104)
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where the parameter τ is defined within the range (0, 2π). The radius R first increases

and then reaches and turning point then reduces to zero (perturbation collapses under

its gravity). The linear solution for density contrast δ is given by

δL =
3

5

[
3

4
(τ − sin τ)

] 2
3

> 0, (2.105)

where the integration constant has been set such that δ(τ = 0) = 0.

The collapse value δcoll is defined as the linear fluctuation δL at the time of collapse.

In the Press-Schechter theory [67], δcoll is used to calculate the abundance of collapsed

objects. From (2.105), at τ = 0, the density perturbation δ vanishes. At τ = π when

the perturbation reaches the turnaround, δL ∼ 1.063. At the collapse when τ = 2π, the

overdensity becomes singular with a value of

δL = δcoll =
3

5

3π

2

2
3

∼ 1.686, (2.106)

in the Einstein-de Sitter Universe. For other models, δcoll, however, is time dependent

[89] and for coupled dark energy models see [58].

2.1.2.2 The mass function of collapsed objects

The critical value of the overdensity of collapsed objects δcoll within the spherical collapse

perturbation is important because it is used within the Press-Schechter (PS) formula for

the abundance of virialized objects. The importance of the PS formula is that it can be

used to estimate the number of collapsed objects created in a random Gaussian field. It

is simply done by counting the overdensity regions at any given time that have a value

above the collapse threshold δcoll.

At redshift z, a density fluctuation field is distributed over cells of radius R. Each cell

has average mass of M = 4πR3ρ/3 where ρ(z) is the background density. The density

contrast δ has a variance σ2
M (z). The fraction of collapsed regions with δ > δcoll is given

by

p(M, z)|δ>δcoll =
1

σM (z)
√

(2π)

∫ ∞
δcoll

exp

(
−

δ2
M

2σ2
M (z)

)
dδM . (2.107)

The fraction of objects of mass within the range [M,M + dM ] is then given by

dp(M, z) =

∣∣∣∣∂p(M, z)|δ>δcoll
∂M

∣∣∣∣ dM, (2.108)

where the threshold collapse value δcoll is time dependent in general. The idea then is

to use the linear regime to estimate the collapsed objects with δ > δcoll.
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The volume of N collapsed objects is given by

NVM = V dp, (2.109)

where VM = M/ρ. The number density dn of collapsed halos with mass function dM is

therefore

dn =
N

V
=

dp

VM
=

ρ

M

∣∣∣∣∂p(M, z)|δ>δcoll
∂M

∣∣∣∣ dM
=

√
2

π

ρ

M2

δcoll
σM

∣∣∣∣d lnσM
d lnM

∣∣∣∣ e−δ2
coll/(2σ

2
M )dM, (2.110)

which satisfy the condition

V

∫ ∞
0

(
dn

dM

)
dM = 1. (2.111)

The comoving number density is defined as ñ(M, z) = a3n(M, z) and ρ is defined then

as the comoving background density.

The number density could be written as

M

ρ

∣∣∣∣ dn

d lnσM

∣∣∣∣ = f(σM , z), (2.112)

where

f(σM , z) =

√
2

π

δcoll
σM

e−δ
2
coll

2σ2
M

, (2.113)

containing all the cosmological information. The mass M is taken to be the virial mass

of the observed objects (galaxies and clusters). The PS formula is though dependent on

the cosmological model via the term δcoll/σM .

Since the PS approach is based on the assumption of spherical collapse with top-hat

or step filter, many processes like dissipation or merging are not considered. However,

the PS formula is widely used as a first approximation to the abundance obtained via

numerical N-body simulations. Many efforts have been done to improve PS formula

to include non-linear corrections [44, 78] or by directly fitting N-body simulations. A

widely common successful fit is given by [48]

f(σM , z) = 0.315 exp(−|0.61− lnσM (z)|3.8), (2.114)

which holds for a large range of masses, redshifts, and cosmological models, including

dynamical dark energy [82].
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2.2 2−point correlation function and power spectrum

The large scale structure of the universe could be explained as the present matter distri-

bution in the universe on cosmological scales originates from the propagation of small,

primordial seed of fluctuations and then evolved by means of gravitational instability.

To test different cosmological theories characterizing these initial conditions, we need

to statistically measure the perturbation fields. The idea is to calculate the statistical

properties of the current large scale structure which in turn depend on the the primordial

perturbations. We then consider the cosmic scalar field, which could be either be the

density field, δ(x), the velocity divergence field or the gravitational potential, to have a

statistical nature.

The two-point correlation function is defined as

ζ(r) = 〈δ(x)δ(x + r)〉, (2.115)

which represent the ensemble average of the density field at two different points. In

Fourier space, the density contrast δ(x) is give by (2.41). Since δ(k) is real we get

δ(k) = δ∗(−k). (2.116)

From (2.115), we can determine the density field by determining the statistical properties

of the random variable δ(k).

The two-point correlation function in Fourier space is defined as,

〈δ(k)δ(k′)〉 =

∫
d3x

(2π)3

d3r

(2π)3
〈δ(x)δ(x + r)〉 exp[−i(k + k′) · x− ik′ · r]. (2.117)

From (2.115), we have

〈δ(k)δ(k′)〉 =

∫
d3x

(2π)3

d3r

(2π)3
ζ(r) exp[−i(k + k′) · x− ik′ · r]

= δD(k + k′)

∫
d3r

(2π)3
ζ(r) exp(ik · r) ≡ δD(k + k′)P (k), (2.118)

where P (k) is the density power spectrum. The inverse relation is then

ζ(r) =

∫
d3kP (k) exp(ik · r). (2.119)
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2.2.1 Power spectrum evolution in linear perturbation theory

The evolution of the power spectrum is simply determined by the perturbation theory,

and since we consider only the two-point correlation function, the linear theory is re-

quired. We assume that non-linear effects are negligible. The evolution of the density

field is given by a simple time-dependent scaling of the linear power spectrum

P (k, η) = D(η)2PL(k), (2.120)

where D(η) is the linear growth factor. Since the ”linear” power spectrum PL(k) is

affected by the linear evolution of density fluctuations during the radiation domination

era, this evolution must be determined by solving general relativistic Boltzmann numer-

ical codes [77]. However analytic techniques can be used for a qualitative understanding

[45, 46]. So the linear power spectrum is then determined as

PL(k) ∝ knsT 2(k), (2.121)

where T (k) is the transfer function and ns is the primordial spectral index. The transfer

function phenomenological parametrization is very complicated, however in simple cases

(assuming the baryonic matter is negligible) it can be fitted using the parameter Γ ≡
Ωmh [11]. For the ΛCDM scenario, the transfer function is given as follows on small

scales [5],

T 2 ∝ ln2(k)/k4. (2.122)

2.3 Physical origin of fluctuations from inflation

In Sec. (2.1.1) we have derived the perturbation equations governing the structure

formation of the universe. In order to solve these equations, the initial conditions are

required. The theory of inflation can provide the initial seeds of perturbation. In

different models of inflation, the random stochastic perturbation fields originate from

quantum fluctuations of a scalar field, called the inflaton. Since it is beyond the scope of

this thesis to review inflation models in details, we refer to recent reviews for discussion

[13, 56].

During inflationary era, the energy density was dominated by the inflaton. The inflaton

field has quantum fluctuations which can be decomposed as follows

δφ =

∫
d3k[akψk(t) exp(ik · x) + a†kψ

∗
k(t) exp(−ik · x)]. (2.123)
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where a†k and ak are the creation and annihilation operators respectively for a wave

mode k. These operators satisfy the standard commutation relation

[ak, a
†
k′ ] = δD(k + k′), (2.124)

and the wave function ψk(t) is obtained from the Klein-Gordon equation for δφ in an

expanding universe.

In de-Sitter universe, the wave function ψk(t) is given by [13]

ψk(t) =
H

(2k)1/2k

(
i+

k

aH

)
exp

[
ik

aH

]
, (2.125)

where a and H are, respectively, the expansion factor and the Hubble constant that are

determined by the Friedmann equations.

At k/(aH) = 1, the perturbation modes exit the Hubble radius and from (2.125) that

the dominant perturbation mode is given by

δφk =
iH√
2k3/2

(ak + a†k), δφ =

∫
d3kφke

ik·x, (2.126)

where δφk is proportional to ak + a†k. Thus the quantum nature of the fluctuations has

disappeared [41], since any combination of φk modes commute with each other according

to (2.124). So the field φ can then be described as a classic stochastic field. The ensemble

averages of the primordial perturbation field φ is identified with the vacuum expectation

values.

Scalar field fluctuations generate a gravitational potential Φ. The imprints of their

energy fluctuations and its statistical properties then appears in the gravitational po-

tential. After the inflation, the gravitational modes enter the horizon. The subsequent

statistical properties that appears in the late cosmic fields can be expressed in terms of

the primordial random variable Φk.

2.3.1 Primordial non-Gaussianity

Deviations from Gaussian initial conditions offer an important window into the very early

universe and a powerful constraint for the mechanism which generated the primordial

perturbations. Large primordial non-Gaussianity could be produced within multi-field

inflation models, while standard single-field slow-roll models lead to a small level of

primordial non-Gaussianity [12].
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The leading signature of non-Gaussianity is presented in the three-point correlation

function, or the bispectrum in Fourier space

〈Φk1Φk2Φk3〉 = BΦ(k1,k2,k3). (2.127)

For homogeneous and isotropic background, the bispectrum only depends on momentum

vectors magnitude

BΦ(k1,k2,k3) = (2π)3δD(k1 + k2 + k3)BΦ(k1, k2, k3), (2.128)

where δD is a delta function over the sum of the three momenta, which means it must

form a closed triangle shape. For a scale-invariant power spectrum, the shape of the

bispectrum depends only on the ratios x2 ≡ k2/k1 and x3 ≡ k3/k1,

BΦ(k1, k2, k3) = k−6
1 Bφ(1, x2, x3). (2.129)

The bispectrum is rewritten as

BΦ(k1, k2, k3) =
S(k1, k2, k3)

(k1k2k3)2
∆2

Φ(k∗), (2.130)

where ∆2
Φ(k∗) = k3

∗PΦ(k∗) is the dimensionless power spectrum evaluated at k∗, and S

is dimensionless function.

The amplitude of non-Gaussianity is defined as the size of the bispectrum in the equi-

lateral momentum configuration,

fNL(K) =
5

18
S(K,K,K), (2.131)

where fNL depends on the overall momentum. However, for scale-invariant power spec-

trum , fNL is a constant and the bispectrum is then reads

BΦ(k1, k2, k3) =
18

5
fNL

S(k1, k2, k3)

(k1k2k3)2
∆2

Φ. (2.132)

A common phenomenological parametrization of non-Gaussianity is given as a non-linear

correction to a Gaussian perturbation φg,

Φ = φ+
3

5
f loc

NL[φ2 − 〈φ2〉]. (2.133)

It is called local non-Gaussianity since it is local in space [71].
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2.3.1.1 Imprints on large-scale structure: scale dependent bias

In order to probe non-Gaussianity, one way is to investigate its observational signatures

on the large scale structure of the universe. On non-linear scales it is difficult to probe

the primordial signal of non-Gaussianity due its correlation with non-linear signals. The

mass function of massive virialised objects is affected by primordial non-Gaussianity

[14, 59, 74]. This is due to the fact that the very massive virialised objects correspond

to very rare large peaks in the primordial density field. Therefore the number density

is a unique probe of the primordial peak structure.

Another method to probe primordial non-Gaussianity on large scales is by expanding

the clustering of rare peaks calculation in a Gaussian field [11] to include the fNL-type

non-Gaussianity. The clustering of rare peaks have a scale-dependent bias feature on

large scales [28, 79].

We use the peak-background split to determine halo bias on large scales [23]. By splitting

the density field into long-wavelength δl and short-wavelength δs modes, we have

ρ = ρ̄(1 + δl + δs). (2.134)

The number density of haloes n(x) at position x can then be written as a function of the

long-wavelength perturbation δl and the short-wavelength fluctuations statistics Ps(ks).

For large scale matter perturbations, the number density of halos is given by

n(x) = n̄(1 + bLδl), (2.135)

where the Lagrangian bias is defined as

bL = n̄−1 ∂n

∂δl
. (2.136)

The total or Eulerian bias is then b = bL + 1. This leads to a general scale-independent

bias. To specifically determine the bias b(M), the number density function n(M) needs

to be specified by large N-body simulations and then differentiating it.

In the presence of non-Gaussian initial conditions, large and small-scale density fluctu-

ations are dependent. In local non-Gaussian form of fNL, the gravitational potential

fluctuations could be separated into independent long and short modes,

φ = φl + φs. (2.137)
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By substituting into (2.133), we get

Φ = φl + fNLφ
2
l + (1 + 2fNLφl)φs + fNLφ

2
s, (2.138)

since we assume that fNL-term simply proportional to φ2. By using Poisson equation,

δ(k) = α(k)Φ(k), we can determine the matter density perturbation in non-Gaussian

case. For ΛCDM model, α is defined as

α(k, z) =
2k2T (k)D(z)

3ΩmH2
0

, (2.139)

where T (k) is the transfer function and D(z) the linear growth factor.

For long-wavelength modes, the matter density field is given by

δl(k) = α(k)φl(k). (2.140)

The short-wavelength modes are then

δs = α[X1φs +X2φ
2
s], (2.141)

where X1 = 1 + 2fNLφl and X2 = fNL.

The halo bias then reads

bL(M,k) = n̄−1

[
∂n

∂δl
+ 2fNL

dφl
dδl

∂n

∂X1

]
. (2.142)

The second term represents the modified non-Gaussian part which appears to be scale-

dependent while first term is the k independent Gaussian bias. By rewriting (2.142) in

terms of the cosmic variance σ8, we get

bL(M,k) = bL(M) + 2fNL
dφl
dδl

∂ lnn

∂ ln σ̄8
, (2.143)

where σ̄8(x) = σ8X1(x).

By substituting in dφl/dδl = α−1 and dropping the local label, we get

∆b(M,k, z) =
3ΩmH

2
0

c2k2T (k)D(z)
fNL

∂ lnn

∂ lnσ8
. (2.144)
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For halo abundance with a universal mass function, we can use (2.143) to determine the

halo bias. Universal mass function is defined as

n(M) = n(M,ν) = M−2νf(ν)
d ln ν

d lnM
, (2.145)

where we use the significance ν = δ2
c/σ

2(M) and f(ν) is the fraction of collapsed haloes.

δc = 1.686 is the spherical collapse over-density.

By using (2.136) and (2.145) we get

b = 1− 2

δc
ν
d

dν
ln[νf(ν)]. (2.146)

From (2.144), we have
∂ lnn

∂ lnσ8
= −2ν

d

dν
ln[νf(ν)], (2.147)

assuming the universality of the mass function.

Comparing with (2.146), we have

∆b(M,k) = 3fNL(b− 1)δc
Ωm

k2T (k)D(z)

(
H0

c

)2

, (2.148)

which represents the scale dependent halo bias correction due to primordial non-Gaussianity

[28].

2.4 N-body simulations

In order to predict the evolution of the structure formation in the universe in the non-

linear regime, cosmological dark matter simulations are required. The idea behind nu-

merical simulations is sampling dark matter distributions in the universe by making

number of elementary volumes of the phase space and distributing particles with posi-

tions and velocities. Then we follow the evolution of this particle distribution due to

the effect of gravity and the universe expansion. The mass resolution of the simulation

is fixed by the number of distributed particles.

The most basic steps for cosmological N-body simulation are as follows; first implement

the initial conditions on the matter distribution [61], then the gravitational force is

calculated by solving the Poisson equation Eq. (2.47). Then update particles positions

and velocities accordingly. Some energy conservation tests are done by the end of each

position and velocities update. The numerical solution of the gravitational force is
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usually performed using time integrators. The Leapfrog algorithm is the most common

used integrator. For a review on N-body simulations see [16].

Linear perturbation theory breaks down when dark matter perturbations reaches the

cosmic mean. In this case full numerical solutions are needed to solve the non-linear

structure evolution. Some analytical approaches can be used to predict the mass function

in a given spherical collapse function, e.g. Press-Schechter formalism [67].

2.4.1 Initial conditions

In order to set up the initial conditions for an N-body simulation, first a homogeneous

distribution of particles is created over a grid. Then density distribution is applied ac-

cording to the appropriate power spectrum. In order to apply the density perturbations

on the homogeneous uniform grid, the Zel’dovich approximation [95] is used which create

a discrete density field according to the following relations

x = x0 −
D

4πGρa3
∇ψ0, (2.149)

v = − 1

4πGρa2

aḊ

D
∇ψ, (2.150)

where x0 is the initial Lagrangian position and D is the growth function of linear fluc-

tuations. The displacement field ψ is related to the input power spectrum P (k).

2.4.1.1 Non-Gaussian initial conditions: local type

The bispectrum for local form non-Gaussianity, (2.133), is given by,

BΦ(k1,k2,k3) = 2fNLPΦ(k1)PΦ(k2) + cyc, (2.151)

where PΦ(ki) is the power spectrum at scale ki and ’cyc.’ denotes cyclic permutations

over ki.

By defining a quadratic non-local kernel K such that,

Φ = φ+ fNLK[φ, φ]. (2.152)

In Fourier space it can be written as

Φ(k) = φ(k) +

∫
fNL[δD]K(k1, k2)Φ(k1)Φ(k2)d3k1d

3k2, (2.153)
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where the kernel K is dimensionless in Fourier space, and [δD] = δD(k − k12)(k12 ≡
k1 + k2).

From (2.152), the bispectrum simply reads,

BΦ = 2fNLK(k1, k2)Pφ(k1)Pφ(k2) + cyc. (2.154)

The kernel K satisfies the exchange symmetry such that K(k1,k2) = K(k2,k1). To

generate initial conditions, (2.154) is used to find the kernel from a given bispectrum

[75].

For local non-Gaussianity, the kernel satisfies the following relation,

2fNLK(k1, k2)PΦ(k1)PΦ(k2) + cyc. = 2fNLPΦ(k1)PΦ(k2) + cyc. (2.155)

The trivial solution for the exchange symmetric kernel K(k1,k2) = 1. The non-trivial

solution is defined such that

K(k1, k2) =
PΦ(k3)

2

(
1

PΦ(k1)
+

1

PΦ(k2)

)
, (2.156)

where PΦ(k3) = PΦ(|k1 + k2|). This leads to a more general definition of the kernel such

that

K(k1, k2) = (1− u) + u
PΦ(k3)

2

(
1

PΦ(k1)
+

1

PΦ(k2)

)
, (2.157)

where u is a free parameter. The Bardeen potential for a scale-invariant spectrum is

then given by,

Φ = φ+ fNL

[
(1− u)φ2 + u∇−2∂−1(φ∇2∂φ)

]
. (2.158)

For u = 0, (2.158) leads to the local form of primordial non-Gaussianity. The CMB

constraint on local primordial non-Gaussianity from last Planck results is [1]

f loc
NL = 2.5± 5.7 (68%CL). (2.159)

2.5 Conclusion

In this chapter, we review the basic analysis of the cosmological perturbation theory

on small and large scales. The linear perturbation equations have been derived for

dynamical dark energy models using gauge-invariant variables. On non-linear scales, the

mass function has been derived for collapsed objects using phenomenological spherical

collapse model. We show that primordial non-Gaussianity introduces a scale dependency

in halo bias.
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Full numerical solution is required on non-linear scales. N-body simulations are the

perfect suit for numerical analysis of structure formations on very small scales. We review

the various methods of numerical simulations and illustrate the creation of primordial

non-Gaussian initial conditions.
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Chapter 3

Primordial non-Gaussianity

degeneracy with interacting dark

sector on large scales

Forecasts for primordial non-Gaussianity constraints typically assume the standard con-

cordance model, i.e. with dark energy as the cosmological constant. Dynamical dark

energy models, i.e. with equation of state wx 6= −1, do not typically introduce signif-

icant changes to the power spectrum on large scales (see [32] and references therein).

However, if the dark energy interacts with dark matter, then there can be significant

effects on the matter overdensity on large scales in some models [33, 66, 85]. This means

that we could misinterpret a large-scale signal as evidence of primordial non-Gaussianity

when in fact it might be a signature of interacting dark energy.

In this chapter we investigate the large-scale effects on the power spectrum from a class of

interacting dark energy models, and consider how to disentangle this signal from that of

primordial non-Gaussianity. Our fiducial (non-interacting) model is a wCDM (i.e. wx =

const) model, with Ωm0 = 0.32, ΩΛ0 = 0.68, ns = 0.96 and H0 = 67.04 km s−1 Mpc−1.

The interacting dark energy models have the same parameters.

3.1 Interacting dark energy dynamics and perturbations

The transfer of energy density between dark energy and dark matter is not ruled out by

current observations (for recent work, see e.g. [25, 72, 73, 86, 88, 91–93]). Baryons, as

standard model particles, do not interact non-gravitationally with the dark sector. For

34
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simplicity, and since we are not producing observational constraints, we neglect baryonic

matter in our analysis, but it is straightforward to include it via the transfer function.

3.1.1 Background dynamics

For interacting dark fluids with energy density ρm (dark matter) and ρx (dark energy),

the background continuity equations are (where A = m,x)

ρ′A + 3(1 + wA)ρA =
aQA
H

, Qx = −Qm. (3.1)

Here a prime denotes d/d ln a. The equation of state parameters are wA = pA/ρA and

we assume a constant equation of state for dark energy1

wm = 0, wx = const 6= −1. (3.2)

In the non-interacting case, this dark energy model is known as wCDM. The rate of

energy density transfer to fluid A is QA, and the conservation of total energy enforces

Qx +Qm = 0. We can rewrite (3.1) in terms of an effective equation of state:

ρ′A + 3(1 + weff
A )ρA = 0, weff

A = wA −
aQA
3HρA

. (3.3)

The Friedmann constraint and evolution equations do not contain interaction terms since

they govern the total density and pressure:

H2 =
8πGa2

3
(ρm + ρx), (3.4)

H′ = −1

2
(1 + 3wt)H, wt =

∑
A
wAΩA = wxΩx, (3.5)

where wt is the total equation of state.

3.1.2 Perturbations

Scalar perturbations of the flat background metric in Newtonian gauge are given by

(2.5). The A-fluid energy-momentum tensor is

TµAν = (ρA + PA)uµAu
A
ν + PAδ

µ
ν , (3.6)

1Interacting dark energy models with wx = −1 are also possible, see e.g. [73] and references therein.
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where we assume each fluid is a perfect fluid. Here uµA is the A-fluid four-velocity,

uµA = a−1
(
1− Φ, ∂ivA

)
, (3.7)

where vA is the peculiar velocity potential.

The covariant form of energy-momentum transfer is given by (we follow the approach

of [85])

∇νTµνA = QµA, QµA = QAu
µ + FµA. (3.8)

We have split the energy-momentum transfer 4-vector relative to the total four-velocity,

where

uµ = a−1
(
1− Φ, ∂ivt

)
, (3.9)

(1 + wt)vt =
∑

A
(1 + wA)ΩAvA, (3.10)

QA = Q̄A + δQA, uµF
µ
A = 0. (3.11)

Here vt is the total velocity potential, the energy density transfer rate is QA and FµA

is the momentum density transfer rate, relative to uµ. For convenience, we drop the

overbar on the background Q̄A from now on.

Then it follows that

FµA = a−1(0, ∂ifA), (3.12)

QA0 = −a [QA(1 + Φ) + δQA] , (3.13)

QAi = a∂i [fA +QAvt] , (3.14)

where fA is the momentum transfer potential. Total energy-momentum conservation

implies

0 =
∑

A
QA =

∑
A
δQA =

∑
A
fA. (3.15)

The perturbed Einstein equations do not explicitly contain interaction terms, since they

govern the total density and velocity perturbations. The gravitational potential evolves

as

Φ′ + Φ = −3

2
H
∑

A
ΩA(1 + wA)vA, (3.16)

and the relativistic Poisson equation is

∇2Φ =
3

2
H
∑

A
ΩA

[
δA − 3H(1 + wA)vA

]
, (3.17)

where δA = δρA/ρA is the overdensity in Newtonian gauge. Although there are no ex-

plicit interaction terms in (3.16) and (3.17), the gravitational potential Φ and the matter
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overdensity δm are affected by interaction – via the perturbed conservation equations

[(3.21), (3.22) below], which do explicitly contain the interaction.

For general fluid A, it is convenient to use the comoving overdensities, see Sec. 2.1.1.2,

defined as

∆A = δA +
ρ′A
ρA
vA. (3.18)

In terms of the comoving overdensities, the Poisson equation becomes

∇2Φ =
3

2
H2
(∑

A
ΩA∆A −QΦ

)
, (3.19)

QΦ =
a

ρt

∑
A
QAvA =

a

ρt
Qx(vx − vm). (3.20)

The interaction is now explicitly present through the velocity terms introduced via the

comoving overdensities.

The perturbed conservation equations in [85] are given in terms of δA. We re-express

these in terms of ∆A to obtain

v′A + vA +
c2
sA

(1 + wA)H
∆A +

Φ

H
= QvA, (3.21)

∆′A − 3wA∆A −
k2

H
(1 + wA)vA −

9

2
H(1 + wA)(1 + wt)(vA − vt) = Q∆

A , (3.22)

where csA is the sound-speed, i.e. the speed of propagation of fluctuations. For dark

matter, csm = 0. For dark energy, we choose the sound-speed of a quintessence scalar

field [85], so that csx = 1. The source terms on the right encode the effect of interactions,

and are given by

QvA =
a

(1 + wA)ρAH

[
QA (vt − vA) + fA

]
, (3.23)

Q∆
A =

aQA
ρA

[
Q′A
QA
−
ρ′A
ρA

]
vA −

aQA
ρA

[
3 +

aQA
(1 + wA)ρAH

]
(vt − vA)

− a

ρA

[
3 +

aQA
(1 + wA)ρAH

]
fA +

aQA
ρA

[
3(1 + wA) +

aQA
ρAH

]
vA +

a

ρAH
δQA

−aQA
ρAH

[
c2
sA

(1 + wA)
+ 1

]
∆A + 2

aQA
ρAH

Φ. (3.24)

3.1.3 A simple model of interacting dark energy

Dark sector interactions are not ruled out observationally and are theoretically plausible,

given the unknown nature of the physics of the dark sector. We do not have guidance

from fundamental physics for either the nature of dark energy, or the form of a possible

interaction between it and dark matter. Here we choose a simple model of dark energy

and a simple interaction model, each with only a single parameter.
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Figure 3.1: Upper: Evolution of effective dark energy equation of state, weff
x , with

wx = −0.9 and for different Γ > 0, in the interacting dark energy model (3.25). The
Γ = 0 limit is weff

x = wx = −0.9. Lower: The Γ < 0 case, with wx = −1.1.

We adopt the interaction model of [22], defined covariantly by

Qµx = −Qµm = Γρxu
µ
x, (3.25)

where Γ is a constant interaction rate. (Observational constraints on Γ are given in [22].)

Since the dark energy has wx = const, we call this model ΓwCDM.

In the background, (3.25) gives

Qx = Γρx = −Qm, (3.26)
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and for the perturbations,

δQx = −δQm = Γρxδx, fx = −fm = Γρx(vx − vt). (3.27)

Since QµA is parallel to uµx, there is no momentum transfer in the dark energy frame.

This means there is momentum transfer in the dark matter frame, so that the dark

matter velocity vim does not obey the same Euler equation as the galaxies, and there

is consequently a velocity bias [52]. The alternative model considered in [22] has QµA

parallel to uµm, without momentum transfer in the dark matter frame and thus with no

velocity bias.

There are two cases for the ΓwCDM model:

• Γ > 0 – which represents a transfer of energy density from dark matter to dark

energy, with transfer rate Γ.

Stability of this model requires [22] wx > −1.

• Γ < 0 – which represents the decay of dark energy to dark matter, with decay rate

|Γ|.

Stability of this model requires [22] wx < −1.

From (3.3) and (3.26), we see that weff
x = wx− aΓ/(3H). Then it follows that weff

x < wx

when Γ > 0 and weff
x > wx when Γ < 0. This behaviour is illustrated in Fig. 3.1.

The effects of interaction grow with time, as dark energy becomes significant and then

dominant. It is clear that |Γ|/H0 < 1 is required to avoid a background evolution that

will be ruled out by distance measurements. Here we are not concerned with precise

limits on Γ (see [22] for these).

3.1.4 Initial conditions

At decoupling, we assume that the dark fluids are adiabatic and have equal peculiar

velocities:

Smx
∣∣
d
≡
(
δρm
ρ′m
− δρx

ρ′x

)
d

= 0, vmd = vxd. (3.28)

By (3.18), this implies (
ρm
ρ′m

)
d

∆md =

(
ρx
ρ′x

)
d

∆xd. (3.29)
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Figure 3.2: Upper: Relative galaxy overdensity [see (3.45)] at a = 1 with dark sector
interactions, for different Γ > 0 and with wx = −0.9. The vertical dashed line is the
Hubble scale, k = H0. The Γ = 0 limit is the horizontal line through 0. We used

b(1) = 2. Lower: The Γ < 0 case, with wx = −1.1.

Using the Poisson equation (3.19), we get

∆md = −2

3

(
k

Hd

)2 (1 + µ)

Ωmd
Φd, (3.30)

∆xd = −2

3

(
k

Hd

)2 µ

Ωxd
Φd, (3.31)

where we have defined

µ =

(
ρ′x
ρ′m

)
d

[
1−

(
ρ′x
ρ′m

)
d

]−1

� 1. (3.32)
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Figure 3.3: The relative galaxy overdensity as in Fig. 3.2 but for the case of primordial
non-Gaussianity, with fNL < 0 (Up) and fNL > 0 (Down).

We find that µ ∼ 10−9 for |Γ|/H0 . 0.03 and wx = −0.9. For wx = −1.1, µ ∼ −10−11.

The gravitational potential at decoupling is related to the primordial potential as follows:

Φd(k) =
9

10
T (k)Φp(k), (3.33)

Φp(k) = A

(
k

H0

)(ns−4)/2

, (3.34)

where T is the transfer function (→ 1 on very large scales), ns is the spectral index of

the primordial spectrum and A is an amplitude determined by the primordial curvature

perturbation.
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Figure 3.4: Upper: Galaxy power spectrum Pg at a = 1 for an interacting dark energy
model with Γ = 0.03H0 and for a primordial non-Gaussianity model with fNL = −7.69.
The black (solid) line is the fiducial wCDM model without interaction or primordial
non-Gaussianity. We set b(1) = 2 and wx = −0.9. Lower: For Γ = −0.03H0 and

fNL = 4.81, with wx = −1.1.

We can neglect dark energy and the interaction at decoupling provided that µ� 1 and

|Γ|/H0 . 0.03. This is equivalent to assuming that the universe at decoupling is well

described as matter-dominated, and it implies that Φ′d = 0. Then from (3.16), (3.20)

and (3.28), we find

vmd = − 2

3(1 + wxΩxd)Hd
Φd = vxd, (3.35)

QΦ
d = 0. (3.36)
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3.1.5 Growth functions

The potential growth function DΦ is defined by

Φ(k, a) =
DΦ(k, a)

a
Φd(k), (3.37)

so that DΦd = ad.

We define dark matter and dark energy growth functions

Dm(k, a) =
∆m(k, a)

∆md(k)
ad, (3.38)

Dx(k, a) =
∆x(k, a)

∆xd(k)
ad, (3.39)

where we normalize at decoupling. Then it follows from the Poisson equation (3.19) that

Dm =
Ωmd

Ωm(1 + µ)

[
adH2

d

aH2
DΦ − µ

Ωx

Ωxd
Dx −B

adH2
d

T (k)kns/2
QΦ

]
, (3.40)

QΦ = aΓΩx (vx − vm) . (3.41)

Here B = 5H
(4−ns)/2
0 /(3A) is a constant. In the limiting case of the concordance model

ΛCDM (Γ = 0, wx = −1), we have µ = 0 = Dx and H2Ωm = a−1H2
0 Ωm0. Thus

(3.40) recovers the ΛCDM relation Dm = DΦ. In ΛCDM, the matter growth function is

scale-independent, Dm = Dm(a). This also holds approximately for the non-interacting

wx = const models, wCDM. The effect of dark sector interactions on the growth of the

comoving matter overdensity is encoded in the QΦ term (3.41).

3.2 Large-scale power in interacting dark energy

We show below that dark sector interactions in our model do lead to a growth or de-

crease of matter power on large scales – which is similar to the effect of primordial

non-Gaussianity on the galaxy power spectrum. This illustrates the point that if we

are unaware of the possibility of interacting dark energy, then a detection of primordial

non-Gaussianity from the galaxy power spectrum could in fact be a signal of dark sector

interaction with Gaussian primordial perturbations. We need to be able to distinguish

the two possibilities, i.e. to break the potential degeneracy between the signals of in-

teracting dark energy and primordial non-Gaussianity in the large-scale galaxy power.

First we need to characterize the galaxy power in the two scenarios.
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Figure 3.5: Upper: Effective primordial non-Gaussianity parameter f eff
NL correspond-

ing to interaction rate Γ > 0 at different redshift values. We take wx = −0.9. Lower:
For Γ < 0 and wx = −1.1.

3.2.1 Galaxy overdensity in interacting dark energy and primordial

non-Gaussianity

In the absence of primordial non-Gaussianity, the galaxy overdensity in ΓwCDM is

related to the matter overdensity on linear scales by

∆Γ
g (k, a) = b(a)∆m(k, a), (3.42)

where b is the scale-independent bias. We have introduced a Γ superscript to distinguish

this galaxy overdensity from the non-interacting primordial non-Gaussianity case.
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In the presence of primordial non-Gaussianity, the bias becomes scale-dependent on

large scales (2.148). On very large scales, where T → 1, we have b ∝ fNLk
−2. Equation

(2.148) is derived in ΛCDM but can also be applied to wCDM with the replacement

Dm(a)→ (1 + µ)Dm(k, a), (3.43)

where µ is given by (3.32) and Dm(k, a) is the growth function for non-interacting dark

energy (i.e., Γ = 0). This replacement makes only a small change provided wx is close

to −1 and csx = 1. Thus for non-interacting wCDM with primordial non-Gaussianity

∆fNL
g (k, a) = b(a)

[
1 +

∆b(k, a)

b(a)

]
∆0
m(k, a), (3.44)

where ∆0
m is the matter overdensity in wCDM. We will call this model fNLwCDM.

3.2.2 Comparing the galaxy power

Now we investigate whether the large-scale behaviour is qualitatively similar in the two

cases, i.e. the ΓwCDM and fNLwCDM models. In order to do this, we define for each

model the galaxy overdensity relative to wCDM, i.e.,

∆Γ
g (k, a)−∆0

g(k, a)

∆0
g(k, a)

and
∆fNL
g (k, a)−∆0

g(k, a)

∆0
g(k, a)

, (3.45)

where ∆0
g(k, a) = b(a)∆0

m(k, a) denotes the wCDM galaxy overdensity (Γ = 0 = fNL).

These relative overdensities are shown in Figs. 3.2 and 3.3.

3.2.3 Interacting dark energy mimics primordial non-Gaussianity

Figures 3.2 and 3.3 confirm that the effects of Γ and of fNL are qualitatively similar,

giving a growth (Γ < 0, fNL > 0) or suppression (Γ > 0, fNL < 0) on super-Hubble scales

(k � H). The effect is stronger as |Γ| or |fNL| are increased. By comparing the galaxy

power spectra, we find numerically the effective primordial non-Gaussianity parameters

that correspond most closely to |Γ|/H0 = 0.03. The correspondence is confined to scales

that are not too far beyond the Hubble radius, since this regime is well outside the reach

of observations.

In Fig. 3.4, we compare the resulting galaxy power spectra, where Pg(k, a) = 〈|∆g(k, a)|2〉.

Figure 3.4 indicates that we can successfully extract an effective primordial non-Gaussianity

parameter when |Γ|/H0 = 0.03. We extend this over the range |Γ|/H0 < 0.03 to produce
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a curve of the effective primordial non-Gaussianity parameter against Γ. We do this for

a range of redshifts, and the results are shown in Fig. 3.5. To account for the redshift

evolution of the (Gaussian) bias on linear scales, we adopt the ansatz

b = b0
√

1 + z = b0a
−1/2, (3.46)

where b0 = 2.

3.2.4 Breaking the degeneracy between interacting dark energy and

primordial non-Gaussianity

Figure 3.5, shows a key feature:

• As redshift increases, the value of |f eff
NL| decreases, approaching zero at redshifts

z & 1. This follows since the dark sector interaction begins to have an effect on

the galaxy power spectrum only at late times. By contrast, the primordial non-

Gaussianity signal is ‘frozen’ into the power spectrum at primordial times so that

fNL is independent of redshift.

This feature should be generic for interacting dark energy models that cause large-scale

deviations in the power spectrum. It is exactly what allows us to break the degeneracy

between primordial non-Gaussianity and interacting dark energy using the galaxy power

spectrum. If we establish a value of f eff
NL at redshift z = 0, then we can compare the

observed power at another redshift, e.g. z = 0.5, with that predicted by primordial

non-Gaussianity with fNL = f eff
NL. Significant disagreement indicates that the large-scale

signal is not due to primordial non-Gaussianity, but could be a smoking gun for dark

sector interaction.

For our interacting dark energy model, the relationship between f eff
NL and Γ can be

estimated analytically as follows. We take the limit k � H, so that (3.44) implies

∆fNL
g → ∆b∆0

m. In the Poisson equation (3.19), we neglect k2Φ to obtain ∆m → QΦ/Ωm.

Thus by (3.42), ∆Γ
g → bQΦ/Ωm. Then we can write (for k � H)

∆
feff
NL
g ≈ ∆Γ

g ⇒ ∆b∆0
m ≈ b

QΦ

Ωm
. (3.47)

From (3.38) we have ∆0
m = D0

m∆0
md/ad. Then (3.30), (3.33) and (2.148) (with T = 1)

imply

f eff
NL ≈

[
5ad
9A

aΩmdH2
d

Ωm0H2
0

b

(b− 1)δc

Ωx

Ωm

(
k

H0

)(4−ns)/2

(vx − vm)

]
Γ
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(3.48)

Clearly f eff
NL is in general redshift dependent, and this is confirmed by Fig. 3.5.

3.3 Interacting quintessence with an exponential potential

As an alternative model for dynamical dark energy, we consider the quintessence model.

Quintessence is defined as a canonical scalar field φ governed by a potential V (φ) that

is responsible for the late-time acceleration of the universe [21]. The equation of state

of quintessence varies with time. The background dynamics of the various quintessence

dark energy models could be understood using the dynamical system approach [36, 69].

Interaction between dark energy and dark matter has been proposed in several forms.

One proposal is the interaction between quintessence dark energy field φ and dark matter

of the form Qρmφ
′ [4]. This type of interaction is familiar within scalar-tensor theories

context [3]. In Brans-Dicke theory, the interaction between a Ricci scalar and a scalar

field introduces a constant interaction with non-relativistic dark matter in the Einstein

frame [83].

Another phenomenological approach to the interaction between dark energy and dark

matter is in the form Γρm, where Γ is normalized such that Γ/H is dimensionless [20, 27].

This represents the fluid description of interacting dark energy models (see Sec. 3.1.3).

3.3.1 Background dynamics

The interaction between quintessence scalar field and dark matter is given by

∇µTµν(φ) = −QT(m)∇νφ, ∇µTµν(m) = QT(m)∇νφ, (3.49)

where Tµν(φ) and Tµν(m) are quintessence and dark matter energy-momentum tensors re-

spectively.

Interacting quintessence Lagrangian density is given as

Lφ = −1

2
gµν∂µφ∂νφ− V (φ) + Lint, (3.50)

where Lint is the interacting Lagrangian. We assume the exponential potential form for

the quintessence field given by

V (φ) = V0 exp(−λφ), (3.51)
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where λ is taken to be a positive constant [5].

In FLRW metric, the background continuity equations for interacting quintessence dark

energy and dark matter are given by

ρ′φ + 3(1 + wφ)ρφ =
a

H
Qφ, (3.52)

ρ′m + 3ρm =
a

H
Qm, (3.53)

where ρφ,m is the energy density for quintessence field φ and dark matter respectively

and wφ = Pφ/ρφ is quintessence equation of state. The interaction terms Qφ,m are

defined as

Qφ =

√
2

3
βρm

φ′

H
, Qm = −Qφ, (3.54)

where β is the interaction constant. The scalar field φ satisfies Klein-Gordon equation

in the interacting from

φ′′ + 3Hφ′ + V,φ =

√
2

3
βρm

φ′

H
. (3.55)

The Friedman constraint equation is

H2 =
8πGa2

3
(ρm + ρφ), (3.56)

where G is the Newtonian constant.

In order to solve for the background dynamics, we introduce the dynamical variables ξ, ε

defined as

ξ ≡ φ′√
6
, ε ≡ a

H

√
V

3
. (3.57)

Equations (3.52) could be written as follows,

ξ′ =
3

2
ξ(ξ2 − ε2 − 1) + V,φε

2 + β(1− ξ2 − ε2), (3.58)

ε′ =
3

2
ε(ξ2 − ε2 + 1)− V,φξε, (3.59)

and the Hubble evolution equation is given by

H′ = −3

2
H(ξ2 − ε2 + 1). (3.60)

Form the definitions (3.57), the dimensionless density parameters Ωφ,m are given by

Ωφ = ξ2 + ε2, Ωm = 1− ξ2 − ε2, (3.61)
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for quintessence dark energy and dark matter respectively. The equation of state for the

scalar field φ is given as follows

wφ =
ξ2 − ε2

ξ2 + ε2
. (3.62)

Figure 3.6: The equation of state of interacting quintessence dark energy at different
values of the interaction parameter β.

Fig. 3.6 shows the equation of state of interacting quintessence dark energy models at

values of interacting constant β = 1.0, 2.0, 3.0×10−3H0. It appears that the quintessence

field has a tracker solution towards wφ = 1.0 at the initial redshift. The equation of

state approaches the value wφ = −1.0 at redshift z = 0.0. The initial conditions for the

dynamical system has been chosen such that the current values of the density parameters

are the same as ΛCDM model.

3.3.2 Perturbations

For quintessence field φ, we define the fluid variables as follows

ρφ ≡ −1

2
gαβφ,αφ,β + V, (3.63)

Pφ ≡ −1

2
gαβφ,αφ,β − V, (3.64)

uµ ≡ φ,µ

|gαβφ,αφ,β|1/2
. (3.65)

The energy-momentum tensor is given by

Tφµν = (ρφ + Pφ)uµuν + gµνPφ. (3.66)
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The perturbed energy density and pressure for quintessence dark energy are given by

δρφ = H2(φ′δφ′ − φ′2Φ) + V,φδφ, (3.67)

δPφ = H2(φ′δφ′ − φ′2Φ)− V,φδφ. (3.68)

The sound speed is therefore defined as

c2
s,φ =

δPφ
δρφ

=
H2(φ′δφ′ − φ′2Φ)− V,φδφ
H2(φ′δφ′ − φ′2Φ) + V,φδφ

(3.69)

For interacting fluids with generic equations of state and sound speed, the perturbation

equations are given by (3.16), (3.21), (3.22). For interacting quintessence model (3.54),

the perturbed coupling terms are given by,

δQm = −δQφ = Qm

(
δm +

3

2
Φ + 3Ωφ

δφ
2φ′2(1 + c2

s,φ)

)
, (3.70)

fm = −fφ = Qm (u− uφ) . (3.71)

where δφ = δρφ/ρφ is the quintessence overdensity.

3.3.3 Galaxy overdensity in interacting quintessence model

Figure 3.7: Relative galaxy overdensity for interacting quintessence dark energy at
a = 1.0 for different values of the interacting constant β.
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Fig. 3.7 shows the relative galaxy overdensity for interacting quintessence dark energy

defined as
∆β
g (k, a)−∆0

g(k, a)

∆0
g(k, a)

, (3.72)

where ∆0
g(k, a) represents the galaxy overdensity for quintessence model with no in-

teraction. On super-horizon scales, the galaxy overdensity (and so the galaxy power

spectrum) shows a scale dependent effect decreasing with the interaction parameter

increase. On sub-horizon scales, the galaxy overdensity also shows an increasing devia-

tions with respect to the background model with interaction. These signs of interacting

effects allow for possible observational constraints on super and sub horizon scales via

upcoming large scales surveys. Approaching non-linear scales, interacting quintessence

dark energy is assumed to leave an imprint on small structure formation as well. See

Sec. 4.3 for further details.

3.4 Conclusion

We have shown that for a simple class of models, interaction in the dark sector causes a

growth or suppression of matter power on very large scales, relative to the non-interacting

case. Furthermore, these large-scale deviations can be approximately mimicked by pri-

mordial non-Gaussianity in a non-interacting model. This raises a potential problem for

attempts to constrain primordial non-Gaussianity through the galaxy power spectrum

– such attempts could be confused by interaction in the dark sector. One way to break

this degeneracy is by looking at the power spectra at two redshifts. If the two effective

parameters f eff
NL are not equal, then this is a strong indication of interacting dark energy.

We also considered interacting quintessence dark energy models with constant interac-

tion rate. The galaxy overdensity shows that the interaction between quintessence scalar

field and dark matter leaves a scale-dependent signal on super-horizon scales. On sub-

horizon scales, interacting quintessence model shows deviation form the non-interacting

case, which could be a very suitable constraint within current large scale observational

limits.

There are serious obstacles to the observability of any effect that arises only on very

large scales – including interacting dark energy effects and primordial non-Gaussianity.

The fundamental problem is cosmic variance, which grows on large scales and typically

swamps any small signal. The current state of the art in constraining primordial non-

Gaussianity via galaxy surveys [37] is unable to detect |fNL| . 20, and Planck has

already placed the constraint |fNL| . 10 (2.159). In the interacting dark energy model

that we investigate here, f eff
NL is in the range compatible with Planck, and therefore not
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currently detectable. In order to overcome the problem of cosmic variance in galaxy

surveys, we need either three-dimensional data (i.e., the power spectrum measured over

a significant range of redshifts) or the application of the multi-tracer method [60, 76],

or both. (The multi-tracer method requires that we have two or more different tracers

of the underlying dark matter overdensity.) Future surveys such as Euclid and the SKA

will be needed in order to detect primordial non-Gaussianity or large-scale interacting

dark energy effects at the level |f eff
NL| . 10 considered here.

There is an important further point about observability on very large scales: on these

scales, there are general relativistic corrections to the standard power spectrum, which

are also potentially degenerate with primordial non-Gaussianity [19, 49, 68, 94]. There-

fore one needs to include the relativistic effects in any analysis of primordial non-

Gaussianity, as in [19, 49, 68, 94]. The same applies to an anlysis of interacting dark

energy on very large scales. The relativistic effects for our interacting dark energy model

and others are investigated in [33].
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Chapter 4

Imprints of primordial

non-Gaussianity on non-linear

scales

The abundance of galaxy clusters in the universe is considered as one of the large scale

structure observational probes of non-Gaussianity. Since large objects formation origi-

nate from the initial density distribution tails, which is nearly Gaussian, it is sensitive

to primordial non-Gaussianity [59]. The abundance of large objects, i.e. galaxy clusters

and large voids, allows to measure primordial non-Gaussianity on small scales of order

10 Mpc. Different estimates of f loc
NL have been derived from very massive galaxy clusters

observations which is f loc
NL ∼ 400 [35, 62].

On non-linear scales, where the fluctuations are not governed only via gravitational

interactions, numerical simulations are required for more accurate predictions. Since the

abundance probe of non-Gaussianity are affected by non-linear gravitational evolution,

N-body simulations are considered. Local type non-Gaussianity N-body simulations

have been considered with good agreement with the analytical predictions [28, 39, 87].

In this chapter we study the effect of non-Gaussian initial conditions on non-linear

dynamics via a set of cosmological dark matter only N-body simulations. We show

the effect of non-Gaussianity on non-linear power spectrum and cumulative halo mass

function.

53
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4.1 N-body simulation setting

Cosmological N-body simulations consist of an expanding box containing N particles

with periodic initial conditions. The mutual interaction between particles, which traces

the matter density, are only via Newtonian gravity. The Friedmann equation is used to

determine the expansion rate of the expanding box. On non-linear scales, other physical

processes are considered such as hydrodynamics which is referred to as baryonic physics.

Except on very small scales, baryonic physics are less important and hence gravity-only

N-body simulations are good enough for the purpose of this thesis.

Two common algorithms are used for the solution of the N-body problem, the particle-

mesh (PM) and the tree particle mesh (tree-PM). The PM method is very good in

speed and error control, however it has limits on force resolution. Tree-PM method

is used to combine long-range and short-range force computations. Short range force

computations are done by tree algorithm. In this thesis we are going to use the tree-PM

publicly available code GADGET-2 [81] for all simulation runs.

Parameter Value

Ωc 0.2678
ΩΛ 0.6817
Ωb 0.049
ns 0.9619
σ8 0.8347
H0 67.04 km s−1 Mpc−1

Table 4.1: Cosmological parameters used to generate initial conditions and simulation
runs [2].

The choice of cosmological parameters are for a flat ΛCDM cosmology with Planck

results [2], see Table 4.1. We consider different sets of medium resolution simulations for

different local non-Gaussianity realizations to measure the effect on non-linear scales.

Table 4.2 contains the setting of the simulations suits done in this thesis.

Name zini B [Mpc3] Npart mpart [M�] εsoft [Mpc] fNL

ΛCDM 49.0 2503 2563 6.92× 1012 0.0244 0.0
fNL-ΛCDM0 49.0 2503 2563 6.92× 1011 0.0244 250.0
fNL-ΛCDM1 49.0 2503 2563 6.92× 1011 0.0244 500.0
fNL-ΛCDM2 49.0 2503 2563 6.92× 1011 0.0244 1000.0
fNL-ΛCDM3 49.0 2503 2563 6.92× 1011 0.0244 -250.0
fNL-ΛCDM4 49.0 2503 2563 6.92× 1011 0.0244 -500.0
fNL-ΛCDM5 49.0 2503 2563 6.92× 1011 0.0244 -1000.0

Table 4.2: Set of N-body simulation runs.
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All the simulation runs have been done on SCIAMA cluster at Portsmouth University

via CosmoSuite code (see Sec. 4.1.3). The total running time on 128 cores is around

six hours. Since high resolution simulations are very computationally consuming, we

restrict our set of runs to medium resolution setting. We considered high values of the

primordial non-Gaussianity parameter fNL > 100, which are ruled out by recent Planck

results (2.159), in order to have a qualitative measurable effect on a medium resolution

box considered in our simulation runs. For near-Planck fNL values, it requires very high

resolution simulations, which is very time and computational consuming and will be

considered for future work [30].

4.1.1 Initial conditions generation

The initial conditions for our set of N-body simulations are generated by displacing N

number of particles on a regular grid using the Zel’dovich approximation (2.149). We use

a realization of a random Gaussian field for the Bardeen potential. The transfer function

T (k) for the initial power spectrum is numerically computed using the numerical code

CAMB [54], see Fig. 4.1. The initial redshift has been selected at z = 49.0 so radiation

could be safely neglected.

4.1.1.1 Local non-Gaussianity implementation

For local type non-Gaussianity, we used 2LPT-PNG code to generate initial conditions

[75]. It simply computes the non-Gaussian contribution using the kernel defined in

(2.158) to compute the non-Gaussian density field from a given Bardeen potential.

4.1.2 Simulation settings test

In order to test our simulation setting for local primordial non-Gaussianity model, we

compare our results with [87] for the halo mass function.

Fig. 4.2 shows the the ratio between Gaussian and non-Gaussian halo mass function at

redshift z = 1.5 for local f loc
NL = 500. The plot shows that our results are in agreement

with [87], considering the same setting for initial conditions generation and N-body

simulation runs. We used the same halo finder (AHF halo finder) as in [87] to avoid

numerical errors.
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Figure 4.1: Initial matter power spectrum and transfer function at redshift z = 49.0
calculated using CAMB.

4.1.3 CosmoSuite: A toolkit for running and analysing cosmological

N-body simulations

For the simulations done in this thesis, a Python package with Graphical User Interface

(GUI) has been developed for the purpose of creating the initial conditions, running

the simulations and doing the post-analysis including snapshots visualization and data
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Figure 4.2: Halo mass function ratio for f loc
NL = 500 at redshift z = 1.5 compared with

Wagner et al results [87].

plotting, halo mass function and non-linear power spectrum calculations. Fig. 4.3 shows

the GUI for CosmoSuite code. The code is publicly available on the following address,

https://github.com/mwhashim/CosmoSuite.

Figure 4.3: CosmoSuite Graphical User Interface.

The GUI is user friendly and allows for entering all the simulation settings without any

file editing. The code runs over three stages. The first stage is code compilation; in which

editing to makefile options of the various codes supported by the GUI is simply done



http://etd.uwc.ac.za

Chapter 4. Imprints of primordial non-Gaussianity on non-linear scales 58

by multi-choice buttons. Then after choosing the running platform from the settings,

selected code could be compiled by a simple click. The GUI is supported with different

compiler settings for different platforms.

The second stage of the GUI run is the simulation parameter entering. All parameter files

for the various supported codes are implemented in the GUI. Common parameter fields

are filed simultaneously. The GUI support different model and cosmological parameters.

Then, by adding tasks to the task menu, you can run or submit your simulation job to

the running cluster.

The final stage includes the post-analysis of the simulations output. Many different

analysing functions are supported, including the calculations of the non-linear power

spectrum and the halo mass function. Snapshot projection plotting is also implemented.

The code is supported with remote connection for parallel computation.

4.2 Results

We study the effect of primordial non-Gaussianinty via a set of dark matter only N-body

simulations for different values of non-Gaussianity parameter f loc
NL = 0,±250,±500,±1000.

We plot the output snapshots at four different redshifts z = 0.0, 0.55, 1.0, 2.01. In Figs.

4.4, 4.5, 4.6, 4.7, we plot time evolution of particle distribution in a box with size

2503 Mpc3 and projection depth on the z-axis 7 Mpc at different redshifts. The par-

ticle distribution changes between Gaussian and non-Gaussian cases. Also structure

formation differs with the inclusion of non-Gaussianity.

Figs. 4.8, 4.9, 4.10, 4.11 represent the four different realizations of non-Gaussianity for

positive and negative values at different redshifts. The particle projection plots show

that the structure formation at higher redshifts are sensitive to the non-Gaussianity

parameter than at low redshifts. The statistical properties of structure formation at

higher redshifts is a very good probe of non-Gaussianity parameter. Also higher mass

objects distribution differs with different non-Gaussianity parameters.
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Figure 4.4: Particle projection plot of GADGET-2 output snapshots of redshift series
z = 2.01, 1.0, 0.55, 0.0 for different values of non-Gaussianity f loc

NL = 0.0, 250.0 from
upper-left to lower-right respectively. The projection depth is 7.0 Mpc and the plot is

weighted with dark matter halo mass.
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Figure 4.5: Particle projection plot of GADGET-2 output snapshots of redshift series
z = 2.01, 1.0, 0.55, 0.0 for different values of non-Gaussianity f loc

NL = 500.0, 1000.0 from
upper-left to lower-right respectively. The projection depth is 7.0 Mpc and the plot is

weighted with dark matter halo mass.
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Figure 4.6: Particle projection plot of GADGET-2 output snapshots of redshift series
z = 2.01, 1.0, 0.55, 0.0 for different values of non-Gaussianity f loc

NL = 0.0,−250.0 from
upper-left to lower-right respectively. The projection depth is 7.0 Mpc and the plot is

weighted with dark matter halo mass.
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Figure 4.7: Particle projection plot of GADGET-2 output snapshots of redshift series
z = 2.01, 1.0, 0.55, 0.0 for different values of non-Gaussianity f loc

NL = −500.0,−1000.0
from upper-left to lower-right respectively. The projection depth is 7.0 Mpc and the

plot is weighted with dark matter halo mass.
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Figure 4.8: Particle projection plot of GADGET-2 output snapshots of different
values of non-Gaussianity fNL = 0.0, 250.0, 500.0, 1000.0 for redshift series z = 0.0, 0.55
from upper-left to lower-right respectively. The projection depth is 7.0 Mpc and the

plot is weighted with dark matter halo mass.
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Figure 4.9: Particle projection plot of GADGET-2 output snapshots of different
values of non-Gaussianity fNL = 0.0, 250.0, 500.0, 1000.0 for redshift series z = 1.0, 2.01
from upper-left to lower-right respectively. The projection depth is 7.0 Mpc and the

plot is weighted with dark matter halo mass.
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Figure 4.10: Particle projection plot of GADGET-2 output snapshots of different
values of non-Gaussianity f loc

NL = 0.0,−250.0,−500.0,−1000.0 for redshift series z =
0.0, 0.55 from upper-left to lower-right respectively. The projection depth is 7.0 Mpc

and the plot is weighted with dark matter halo mass.
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Figure 4.11: Particle projection plot of GADGET-2 output snapshots of different
values of non-Gaussianity f loc

NL = 0.0,−250.0,−500.0,−1000.0 for redshift series z =
1.0, 2.01 from upper-left to lower-right respectively. The projection depth is 7.0 Mpc

and the plot is weighted with dark matter halo mass.
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4.2.1 Halo mass function

Large gravitationally bound objects are supposed to be sensitive to the value of pri-

mordial non-Gaussianity parameter. In this section we study the effect of non-Gaussian

initial conditions on the halo mass function. In order to identify halos in the simulation

data we use AHF [38, 50], the publicly available Amiga’s Halo Finder. AHF identifies

halos as gravitationally bound objects with spherical overdensity. Redshift dependent

virial overdensity is used to calculate the specific overdensity for a bounded object. We

assume the minimal number of particles inside a halo to be 20 particles. The halo masses

for the set of simulations are larger than 1013M�/h.

The high mass tail of the halo mass function is very sensitive to primordial non-

Gaussianity. Galaxy cluster surveys are very good probe of the primordial non-Gaussianity

parameter.

In Figs. 4.12, 4.13, 4.14, 4.15, 4.16, 4.17, 4.18, 4.19, we present the cumulative halo

mass function for different values of fNL at four different redshifts. The bottom panel

in each plot shows the residual with respect to the Gaussian case. The black solid

line represents Reed analytical fit [70]. At redshift z = 0.0, the large mass tail of the

halo mass function with masses > 1013.5 M� increase with increasing positive f loc
NL and

decrease with decreasing negative f loc
NL. At very large masses, the halo mass function

diffuse due to stochastic effects originate from medium resolution masses. For higher

resolution simulations, the systematic errors decrease with higher mass resolutions.

At higher redshifts, the change in the mass function shifts towards lower mass halos,

< 1013 M� and the change increases with a factor of 20% for large mass halos. Future

galaxy surveys at higher redshifts will be a sensitive probe to the early universe physics.
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Figure 4.12: Upper: Cumulative halo mass function for different non-Gaussianity
parameter f loc

NL = 0.0, 250.0, 500.0, 1000.0 at redshift z = 0.0. Black solid line represents
Reed 2007 analytical fit. Lower: Cumulative halo mass function residual with respect

to Gaussian ΛCDM model at redsift z = 0.0.
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Figure 4.13: Upper: Cumulative halo mass function for different non-Gaussianity
parameter f loc

NL = 0.0,−250.0,−500.0,−1000.0 at redshift z = 0.0. Black solid line
represents Reed 2007 analytical fit. Lower: Cumulative halo mass function residual

with respect to Gaussian ΛCDM model at redsift z = 0.0.
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Figure 4.14: Upper: Cumulative halo mass function for different non-Gaussianity pa-
rameter f loc

NL = 0.0, 250.0, 500.0, 1000.0 at redshift z = 0.55. Black solid line represents
Reed 2007 analytical fit. Lower: Cumulative halo mass function residual with respect

to Gaussian ΛCDM model at redsift z = 0.55.
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Figure 4.15: Upper: Cumulative halo mass function for different non-Gaussianity
parameter f loc

NL = 0.0,−250.0,−500.0,−1000.0 at redshift z = 0.55. Black solid line
represents Reed 2007 analytical fit. Lower: Cumulative halo mass function residual

with respect to Gaussian ΛCDM model at redsift z = 0.55.
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Figure 4.16: Upper: Cumulative halo mass function for different non-Gaussianity
parameter f loc

NL = 0.0, 250.0, 500.0, 1000.0 at redshift z = 1.0. Black solid line represents
Reed 2007 analytical fit. Lower: Cumulative halo mass function residual with respect

to Gaussian ΛCDM model at redsift z = 1.0.
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Figure 4.17: Upper: Cumulative halo mass function for different non-Gaussianity
parameter f loc

NL = 0.0,−250.0,−500.0,−1000.0 at redshift z = 1.0. Black solid line
represents Reed 2007 analytical fit. Lower: Cumulative halo mass function residual

with respect to Gaussian ΛCDM model at redsift z = 1.0.
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Figure 4.18: Upper: Cumulative halo mass function for different non-Gaussianity pa-
rameter f loc

NL = 0.0, 250.0, 500.0, 1000.0 at redshift z = 2.01. Black solid line represents
Reed 2007 analytical fit. Lower: Cumulative halo mass function residual with respect

to Gaussian ΛCDM model at redsift z = 2.01.
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Figure 4.19: Upper: Cumulative halo mass function for different non-Gaussianity
parameter f loc

NL = 0.0,−250.0,−500.0,−1000.0 at redshift z = 2.01. Black solid line
represents Reed 2007 analytical fit. Lower: Cumulative halo mass function residual

with respect to Gaussian ΛCDM model at redsift z = 2.01.
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4.2.2 Non-linear power spectrum

Non-linear power spectrum prediction at high precision is required to estimate the un-

biased results from weak-lensing and Lyman-alpha forest surveys [47]. Primordial non-

Gaussianity affects the non-linear power spectrum at a few-percent level. In this section

we calculate the non-linear power spectrum for the simulation runs using POWMES code

[24]. This power spectrum estimator relies on a Taylor expansion of the trigonometric

functions.

In Figs. 4.20, 4.21, 4.22, 4.23, 4.24, 4.25, 4.26, 4.27, we show non-linear power spectrum

for different values of the non-Gaussianity parameter at different redshifts. The black

solid line represents the analytical non-linear perturbation theory with HaloFit model

prediction [80]. In the bottom panel, we calculate the residual with respect to the

Gaussian case.

The non-linear power spectrum changes with different values of f loc
NL. On scales larger

than k > 10−1 h/Mpc the non-linear power spectrum increases with increasing positive

f loc
NL and decreases with decreasing negative f loc

NL values. At redshift z = 0.0, the non-

linear power spectrum residual peaks at scale k ∼ 0.5 h/Mpc. This peak shifts with

increasing redshift towards small scales at k ∼ 1 h/Mpc. The change in the non-linear

power spectrum is almost constant with increasing redshift and it stabilize on very small

scales k > 1 h/Mpc.



http://etd.uwc.ac.za

Chapter 4. Imprints of primordial non-Gaussianity on non-linear scales 77

Figure 4.20: Upper: Non-linear power spectrum for different non-Gaussianity pa-
rameter f loc

NL = 0.0, 250.0, 500.0, 1000.0 at redshift z = 0.0. Black solid line represents
CAMB Halo-fit model prediction. Lower: Non-linear power spectrum residual with

respect to Gaussian ΛCDM model at redsift z = 0.0.
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Figure 4.21: Upper: Non-linear power spectrum for different non-Gaussianity param-
eter f loc

NL = 0.0,−250.0,−500.0,−1000.0 at redshift z = 0.0. Black solid line represents
CAMB Halo-fit model prediction. Lower: Non-linear power spectrum residual with

respect to Gaussian ΛCDM model at redsift z = 0.0.
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Figure 4.22: Upper: Non-linear power spectrum for different non-Gaussianity pa-
rameter f loc

NL = 0.0, 250.0, 500.0, 1000.0 at redshift z = 0.55. Black solid line represents
CAMB Halo-fit model prediction. Lower: Non-linear power spectrum residual with

respect to Gaussian ΛCDM model at redsift z = 0.55.
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Figure 4.23: Upper: Non-linear power spectrum for different non-Gaussianity param-
eter f loc

NL = 0.0,−250.0,−500.0,−1000.0 at redshift z = 0.55. Black solid line represents
CAMB Halo-fit model prediction. Lower: Non-linear power spectrum residual with re-

spect to Gaussian ΛCDM model at redsift z = 0.55.
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Figure 4.24: Upper: Non-linear power spectrum for different non-Gaussianity pa-
rameter f loc

NL = 0.0, 250.0, 500.0, 1000.0 at redshift z = 1.0. Black solid line represents
CAMB Halo-fit model prediction. Lower: Non-linear power spectrum residual with

respect to Gaussian ΛCDM model at redsift z = 1.0.
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Figure 4.25: Upper: Non-linear power spectrum for different non-Gaussianity param-
eter f loc

NL = 0.0,−250.0,−500.0,−1000.0 at redshift z = 1.0. Black solid line represents
CAMB Halo-fit model prediction. Lower: Non-linear power spectrum residual with

respect to Gaussian ΛCDM model at redsift z = 1.0.
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Figure 4.26: Upper: Non-linear power spectrum for different non-Gaussianity pa-
rameter f loc

NL = 0.0, 250.0, 500.0, 1000.0 at redshift z = 2.01. Black solid line represents
CAMB Halo-fit model prediction. Lower: Non-linear power spectrum residual with

respect to Gaussian ΛCDM model at redsift z = 2.01.
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Figure 4.27: Upper: Non-linear power spectrum for different non-Gaussianity param-
eter f loc

NL = 0.0,−250.0,−500.0,−1000.0 at redshift z = 2.01. Black solid line represents
CAMB Halo-fit model prediction. Lower: Non-linear power spectrum residual with re-

spect to Gaussian ΛCDM model at redsift z = 2.01.
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4.3 Qualitative comparison with interacting dark energy

simulations

Numerical N-body simulations have been tested so far for the simplest standard ΛCDM

model with much agreement with analytical predictions. For more complex cosmological

dark energy models, the use of N-body simulation becomes more relevant to identify

small deviations from the standard model on non-linear scales. The significant progress

made to the numerical simulations allows to investigate the nature of dark energy and

to study different scenarios of interaction between dark energy and dark matter [53].

Interacting dark energy N-body simulations have been done firstly by [57] using a mod-

ified AMR code, which consider a range of scaler field dark energy models interacting

with dark matter only. The first hydrodynamic simulations of interacting dark energy

models are done by [9]. The evolution of the halo mass function with respect to red-

shift has been studied in [26] showing a significant effect of the interaction between dark

energy and dark matter at high mass tail.

4.3.1 CoDECS simulations

For our qualitative comparison with interacting dark energy simulations, we are going to

use the CoDECS simulations [7]. It includes interacting quintessence model simulations

with interaction term of the form (3.54) with variable interaction rate β(φ) given as

follows,

β(φ) = β0 exp(β1φ), (4.1)

where β0 and β1 are constants. In our analysis we only consider simulations with constant

interaction rate, i.e. β1 = 0.0. There are different simulations runs within CoDECS

including investigation of the effect of baryon dynamics via hydrodynamical simulations.

Since this is out of the scope of the thesis, we only consider the L-CoDECS, see Table

4.3, runs which only represent interacting dark energy-dark matter simulations with the

existence of baryons but without hydrodynamics. It consists of 2×10243 dark matter and

baryon particles in a periodic cosmological box of 13[(h−1Gpc)3] size. The simulations

are done using the modified TreePM N-body GADGET code [9]. The mass resolution

of L-CoDECS simulations are mc = 5.84× 1010h−1M� and mb = 1.17× 1010h−1M� for

dark matter and baryons respectively at z = 0.0.

The initial conditions for L-CoDECS simulations are generated using the Zel’dovich

approximation on a homogeneous glass-like particle distribution [95]. The initial matter

power spectrum are computed at zini = 99.0 via a modified Boltzmann code CAMB
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Model β0 β1 wφ(z = 0) σ8(z = 0)

L-ΛCDM - - -1.0 0.809
L-EXP001 0.05 0 -0.997 0.825
L-EXP002 0.1 0 -0.995 0.875
L-EXP003 0.15 0 -0.991 0.967

Table 4.3: Set of L-CoDECS N-body simulation runs.

[54] for interacting quintessence cosmology with ”WMAP7 only Maximum Likelihood”

cosmological parameters [51].

4.3.2 Halo mass function

In order to compare primordial non-Gaussianity effect with interacting dark energy on

non-linear scales, we compute the halo mass function for L-CoDECS simulations using

the same halo finder we used for primordial non-Gaussianity simulations (see Sec. 4.2.1).

We apply AHF halo finder [50] to L-CoDECS snapshots at z = 2.01 for three realizations

of interaction parameter β = 0.05, 0.1, 0.15.

Fig. 4.28 shows halo mass function for interacting dark energy and the residual with

respect to ΛCDM model. The halo mass function appears to show an increasing be-

haviour at high mass tail with the increasing interaction parameter β. At low mass tail,

the halo mass function slightly deviates from the non-interacting case.

By qualitatively comparing with primordial non-Gaussian halo mass function Fig. 4.18,

we notice that the high mass tail of the halo mass function apparently experience a

similar effect from both primordial non-Gaussianity and interacting dark energy. This

could lead to possible mutual degeneracy of primordial non-Gaussianity and interacting

dark energy on non-linear scales.

4.4 Conclusion

In this chapter, we show that primordial non-Gaussianity leaves an imprint on non-linear

scales of the structure formation of the universe. Via a set of cosmological mark matter

N-Body simulations, we show that local primordial non-Gaussianity affects large mass

halos. The calculation of the halo mass function indicates that large mass halos are

very sensitive to primordial non-Gaussian initial conditions. This indicates that galaxy

surveys are very good probes of primordial non-Gaussianity.

Non-linear power spectrum on scales k ∼ 1 h/Mpc are also sensitive to the value of non-

Gaussianity. We show that for different non-Gaussianity realizations, non-linear power
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Figure 4.28: Upper: The halo mass function for L-CoDECS simulations of interacting
dark energy at z = 2.01 for different interaction parameters β = 0.05, 0.1, 0.15. The
solid-dashed line represents ΛCDM mode. Lower: The halo mass function residual with

respect to ΛCDM model.

spectrum residual peaks around k ∼ 0.5 h/Mpc at redshift z = 0.0 and stabilize on very

small scales.

In this chapter, we have used GADGET-2 and the initial condition code 2LPT-PNG

with our CosmoSuite tool in order to investigate local primordial non-Gaussianity. This
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work is part of a major project [42], which aims for the first time to include non-Gaussian

initial conditions in N-body simulations with interacting dark energy. The project will

advance our understanding from the large scales where perturbation theory is effective

(see chapter 3) to small non-linear scales where N-body simulations are essential. The

project combines the work presented is this chapter with previous work on N-body

simulations with interacting dark energy and Gaussian initial conditions [9].
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Chapter 5

Conclusion and future work

Large scale structure of the universe is a very promising tool for exploring the early

universe physics. Mapping the universe on large scales gives us a very accurate constraint

on many cosmological parameters including dark energy equation of state and primordial

non-Gaussianity. In chapter one, we review the cosmic evolution history of the universe

assuming the standard model. The dynamical evolution of the universe is described by

the Friedmann equations derived by solving Einstein field equations for FLRW metric,

assuming homogeneous and isotopic background. The expansion rate of the universe

changes according to the different components of the cosmos. For accelerated expansion,

the universe has to be filled with a negative pressure component.

In chapter 2 with discuss the dynamics of gravitational instability responsible for the

evolution of the structure formation of the universe. Cosmological perturbation the-

ory on linear/non-linear scales has been discussed with the derivation of perturbation

equations for different dark energy cosmologies. We considered dynamical dark energy

models with variable equation of state. We discussed the spherical collapse phenomeno-

logical model with the derivation of the mass function of collapsed objects. For statistical

measure of the large scale structure, the 2-point correlation function has been discussed.

In Fourier space, the power spectrum evolution of matter component of the universe has

been derived using linear perturbation theory. According to inflation model, the quan-

tum fluctuations are the physical seed of structure formation of the large scale structure

in the universe. With the assumption of non-Gaussian curvature primordial field, we

discussed the possible imprint of primordial non-Gaussian signature on late large scale

structure. We showed that primordial non-Gaussianity leaves a scale-dependent effect

of galaxy bias on very large scales.

Evolution is the interacting dark sector has been discussed in chapter 3. In this chapter,

we derived the background and perturbation equations for interacting dark energy model

89
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with constant interaction rate proportional to dark energy density. After numerical

solution of the perturbation system we calculated the galaxy power spectrum. On very

large scales, interacting dark energy perturbation leaves a scale-dependent signature

similar to primordial non-Gaussianity. The two signals provide very similar features

on very large scale galaxy power spectrum. At higher redshifts, the interacting dark

energy signal decrease however primordial non-Gaussianity signal stay constant due to

its primordial origin. So we can disentangle between the two signals by measuring the

galaxy power spectrum at two different redshifts.

In chapter 4, we perform a set of cosmological N-body simulations to measure imprints

of primordial non-Gaussianity on non-linear structure. Calculations of cumulative halo

mass function show that it is sensitive to the value of primordial non-Gaussianity param-

eter fNL on large mass tail. The change increase with higher redshifts. Non-linear power

spectrum measurements also indicate that primordial non-Gaussianity affects non-linear

power spectrum on scales k ∼ 1h/Mpc. The change is stable with redshift changing how-

ever the peak of the residual change shifts towards small scales with higher redshifts.

Future galaxy surveys are very good probes to the estimation of non-Gaussianity pa-

rameter to a high precision.

Measurements of halo mass function suggests that very large mass halos are affected

by primordial non-Gaussianity. In the following section we discuss the future work

investigating possible degeneracy between primordial non-Gaussianity an interaction in

the dark sector via N-body numerical simulation.

5.1 Future work

Dark sector N-body simulations are a very promising tool to test the theoretical mod-

elling of dark energy and dark matter components of the cosmos. The halo mass function

are very sensitive to the nature of dark energy. The formation of dark matter halos on

small scales is modulated by the primordial non-Gausianity, leading to a scale-dependent

bias on very large scales. Cosmological N-body simulations show that primordial non-

Gaussianity strongly affects the clustering of rare objects on large scales and the mass

function of massive halos.

Several scenarios have been proposed in the literature to account for the unexpected

energy component of the cosmos - dark energy, responsible for the late time cosmic

acceleration. This include the existence of a light minimally coupled scalar field called

quintessence. Other proposed scenarios incorporate deviations form standard general

relativity on cosmological scales. Recently, there has been a growing interest on whether
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the physical nature of dark energy could be settled by the clustering of large-scale

structures. This is also include the possible degeneracies between the clustering effect

of interacting dark energy and the primordial non-Gaussianity constraint [43].

Numerical simulations used to investigate the evolution of the universe and the for-

mation of cosmic structures beyond the linear regime has proven to be an extremely

valuable tool. It has allowed to study the nature of dark matter and dark energy and

its role in driving the growth of cosmic structures starting from the primordial density

fluctuations generated in the early universe by the inflationary accelerated expansion.

Many different codes have been developed for dark energy N-body simulations [7] and

for alternative modified gravity scenarios [55]. This creates an essential studying tool

and a link between theoretical modelling and direct observations for any present and

future of the accelerated expansion of the universe.

In the presence of primordial non-Gaussianity, the formation of dark matter halos on

small scales is modulated by the large-scale overdensity, leading to a scale-dependent

bias on very large scales. Cosmological N-body simulations shows that primordial non-

Gaussianity strongly affects the clustering of rare objects on large scales and the mass

function of massive halos [28]. However dark sector interaction has its own imprint on

the halo mass function as well [26] leading to a possible degeneracy between primordial

non-Gaussianity and interacting dark energy on non-linear scales.

In future work, we will investigate different forms of primordial non-Gaussianity via its

imprint on the halo mass function and the bias of the galaxies using N-body simulations,

and determine how this form of non-Gaussianity is affected by various dark energy

scenarios. Also, We will investigate a possible degeneracy between primordial Non-

Gaussianity and Interacting dark energy on non-linear scales.
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