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Abstract

On the Numerical Integration of Singularly Perturbed Volterra Integro-differential

Equations

Bakulikira Iragi

MSc Thesis, Department of Mathematics and Applied Mathematics, Faculty of Natural Sciences,

University of the Western Cape.

Efficient numerical approaches for parameter dependent problems have been an inter-

esting subject to numerical analysts and engineers over the past decades. This is due

to the prominent role that these problems play in modeling many real life situations

in applied sciences. Often, the choice and the efficiency of the approaches depend on

the nature of the problem to solve. In this work, we consider the general linear first-

order singularly perturbed Volterra integro-differential equations (SPVIDEs). These

singularly perturbed problems (SPPs) are governed by integro-differential equations

in which the derivative term is multiplied by a small parameter, known as ”pertur-

bation parameter”. It is known that when this perturbation parameter approaches

zero, the solution undergoes fast transitions across narrow regions of the domain

(termed boundary or interior layer) thus affecting the convergence of the standard

numerical methods. Therefore one often seeks for numerical approaches which pre-

serve stability for all the values of the perturbation parameter, that is ε-numerical

methods. This work seeks to investigate some ε-numerical methods that have been

used to solve SPVIDEs. It also proposes alternative ones. The various numerical

methods are composed of a fitted finite difference scheme used along with suitably

chosen interpolating quadrature rules. For each method investigated or designed, we
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analyse its stability and convergence. Finally, numerical computations are carried

out on some test examples to confirm the robustness and competitiveness of the

proposed methods.

September 2017.
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Chapter 1

General Introduction

1.1 Introduction

In his innovative work at the Third International Congress of Mathematicians in Heidelberg at

the beginning of last century [49], Prandtl introduced, in the context of fluid dynamics, what is

known now as “singular perturbation problems.”Now-a-days, these problems turn out to be ubiq-

uitous in various areas of applied mathematics and engineering. These include quantum mechan-

ics, geophysical fluid dynamics, elasticity, chemical reactor theory, optimal control, oceanic and

atmospheric circulation, fluid dynamics, fluid mechanics, diffraction theory, reaction-diffusion

processes and meteorology.

In fluid dynamics, for example, the most striking example is Navier-Stokes equation in two

dimensions [18]
∂(u2 + p)

∂x
+
∂(uv)

∂y
=

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
, (1.1.1)

with appropriately chosen initial and boundary conditions. Here u and v are the velocity com-

ponents in x and y directions and p is the pressure. The Reynolds number, Re, which is

proportional to the length scale, velocity scale and inversely proportional to the kinematics vis-

cosity of the fluid, gives rise to singularly perturbed nature of (1.1.1) for sufficiently large values

(i.e. Re� 1).

In mathematical genetics, the time-independent Fokker-Planck equation for a one-dimensional

dynamical system with state-independent random perturbation

ε2
d2Φ

dt2
+ b(t)

dΦ

dt
= 0, 0 < ε� 1, t ∈ (0, 1), Φ(0, ε) = Φ0, Φ(1, ε) = Φ1; (1.1.2)

is considered in [22]. Here b(t) denotes a gradient field. Under the assumptions that the coeffi-
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cient function b′(t) is strictly negative throughout the interval [0, 1] and that b(t) = 0 for some

0 < t < 1, the above problem is aclearly a turning point problem. Φ0 and Φ1 are fixed constants.

Another significant model of singular perturbation problems is the free motion of the un-

damped linear spring mass system with a very resistant spring [65]. For more on singular

perturbation models, interested readers are referred to [29, 44, 51].

In general, singular perturbation problems (SPPs) are differential equations (ordinary or

partial) that depend on a small positive parameter ε, and whose solutions (their derivatives)

approach a discontinuous limit as ε approaches zero [51]. The parameter ε is said to be the

perturbation parameter. Technically, this definition simply means that the solution of the SPPs

cannot be represented as asymptotic expansion in the powers of ε.

Notwithstanding the best effort of many researchers in finding solution to SPPs using ana-

lytical, semi-analytical or numerical techniques, the problem of inaccurate solution persists. The

major difficulty that one faces when solving SPPs has always been associated with the small

parameter multiplying the highest derivative terms. This parameter prevents one from getting

satisfactory results. Several numerical methods have been adequately used to solve SPPs. How-

ever, most of them become unfit when the perturbation parameter takes small values. The

solution of these problems varies abruptly across narrow regions of the domain (named layers)

as the perturbation parameter becomes small. Depending on the location of these layers in the

domain of the problem, they are called boundary or interior layers.

Before we proceed further, we give a clear overview of the layer behaviour of the solution of

the SPPs. To this end, we discuss the following examples.

Example 1.1.1. [35] Consider the following Volterra equation of the second kind

εu(t) = sin(t)−
∫ t

0
u(s)ds. (1.1.3)

For ε > 0 the exact solution is given by

u(t) =
1

1 + ε2
(cos(t) + ε sin(t))− 1

1 + ε2
exp

(
−t
ε

)
, and satisfies u(0) = 0. (1.1.4)

Putting ε = 0, in (1.1.3) we obtain the reduced equation which we denote by

0 = sin(t)−
∫ t

0
u0(s)ds, (1.1.5)

and its solution is given
u0(t) = cos(t), and one has u0(0) = 1. (1.1.6)

3
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Figure 1.1: Exact solution of Example 1.1.1 for ε =0.005

Clearly u(0) 6= u0(0). The solution u0 of the reduced problem is not a uniformly valid

approximation of u near t = 0 and therefore one observes the presence of a boundary layer term

containing exp(−t/ε). This boundary layer is responsible for the quick changes of the solution

u from u(0) = 0 to u0(t) = cos(t) near t = 0.

Example 1.1.2. [44] On the interval Ω =(0, 1), consider the initial value problem

εu′(t) + u(t) = 0, u(0) = u0, (1.1.7)

where u0 ∈ R is an arbitrary constant and ε ∈ (0, 1].

The exact solution of equation (1.1.7) when ε > 0 is given by

uε(t) = u0 exp

(
−t
ε

)
, for every t ∈ Ω. (1.1.8)

Setting ε = 0, equation (1.1.7) is reduced to a trivial equation v0(t) = 0 for every t ∈ (0, 1]. It

can be easily seen that no initial condition can be imposed at t = 0, as a result of v0(t) ≡ 0 being

completely solved. The solution of the differential equation and that of the reduced equation

diverge except when u0 = 0. Therefore, there exists one boundary layer in the neighbourhood

of t = 0.

Example 1.1.3. [44] Consider the two-point boundary value problem

−εu′′(t) + u(t) = 0, u(0) = u0, u(1) = u1, (1.1.9)

4
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Figure 1.2: Exact solution of Example 1.1.2 for ε =0.005

where u0, u1 ∈ R are arbitrary constants and ε ∈ (0, 1].

The exact solution uε(t) is given by

uε(t) = exp

(
−t√
ε

)
+ exp

(
−(1− t)√

ε

)
. (1.1.10)

Putting ε = 0 in (1.1.9), we obtain the reduced equation which is of order zero. Since the

boundary conditions should be prescribed depending on the order of the derivative involved in

differential equation, it is easy to observe that no boundary condition can be imposed to exact

solution of the reduced equation, v0 = 0. It therefore follows that the solution will display a

boundary layer at t = 0 unless u0 = 0 and similarly at t = 1 unless u1 = 0.

1.2 Some basic notions on Volterra integral equations

To avoid a lengthy section, we only include some basic but important information on Volterra

integral equations. A Volterra integral equation is a functional equation in which the unknown

function (to be determined) appears under the integral sign and the upper limit of the integral

is a variable [66]. As far as Volterra integral equations are concerned, one distinguishes between

the first and the second kind. Indeed, for a closed and bounded interval I := [0, T ], {(t, s) 0 ≤

s ≤ t ≤ T}, the Volterra integral equations of the first and the second kinds in the unknown

5
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Figure 1.3: Exact solution of Example 1.1.3 for ε =0.005

function u(t) are respectively ∫ t

t0

K(t, s, u(s))ds = f(t) (1.2.1)

and

u(t) = f(t) +

∫ t

t0

K(t, s, u(s))ds, (1.2.2)

where the function f(.) and the kernel K(., ., .) are known, t0 is a constant and u(.) is the

unknown function to be determined. Note that, if the two limits of integration are constants,

equations (1.2.1) and (1.2.2) are called first and second kind Fredholm integral equations respec-

tively. The distinction between Fredholm and Volterra equations is similar to the one between

boundary and initial value problems in ODEs [45]. Volterra integral equations are extensively

applied in demography, viscosity, biology, chemistry, insurance mathematics [58]. In 1900, while

working on population growth, Volterra came up with a special type of equation in which both

the differential and integral operators of the unknown function appeared [66]. This new equation

was named Volterra integro-differential equation. It’s general form is

u(n)(t) = f(t) +

∫ t

t0

K(t, s, u(s))ds; t ∈ [t0, T ] where u(n)(t) =
dnu(t)

dtn
, (1.2.3)

with the initial conditions u(t0), u
′(t0), u

′′(t0), ..., u
(n−1)(t0) to be defined. In the same manner

as (1.2.1) and (1.2.2), the corresponding Fredholm integro-differential equation can be obtained

6
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by letting the two limits to be constants. As shown in [12], the interval [t0, T ] may be interpreted

as [t0,∞] if T is unbounded. For our purposes and without lost of generality, we will assume

that T is finite. The functions f(.) ∈ C[t0, T ] and the kernel K(t, s, v) are continuous for

t0 ≤ s ≤ t ≤ T . In addition, the function K(t, s, v) satisfies a uniform Lipschitz condition in

v for t0 ≤ s ≤ t ≤ T . These conditions are sufficient to guarantee that (1.2.1)-(1.2.3) have a

unique continuous solution [66]. In some cases, alternative equation to (1.2.3) is

u(n)(t) = F

(
t, u(t),

∫ t

t0

K(t, s, u(s))ds

)
, t ∈ [t0, T ] with (1.2.4)

the initial conditions u(t0), u
′(t0), u

′′(t0), ..., u
(n−1)(t0), where as before, F (., ., ), and K(., ., .) are

given functions and u(.) is the unknown function to be found. Moreover, the function F (., ., )

satisfies appropriate Lipschitz conditions.

1. If K(t, s, v)=K(t, s)v, equations (1.2.1)-(1.2.3) are linear.

2. If at least one of the limits of integration is infinite or the kernel K(t, s, v) becomes un-

bounded at some point inside the interval [t0, T ], then equations (1.2.1)-(1.2.3) are said to

be singular equations, not to be confused with singularly perturbed equations.

In [12], it is said that there could be a link between the solution uε(.) of the singularly perturbed

Volterra equation

εu′(t) =

∫ t

t0

K(t, s, uε(s))ds− f(t), (1.2.5)

of the second kind and the solution u0(.) of the corresponding reduced Volterra integro-differential

equation (1.2.1), (see discusions in example (1.1.3)). However, such link can only be established

under special conditions. This said, one can develop special discretization techniques that are

candidates to solve equation a (1.2.1) by modifying them for the singularly perturbed equation

(1.2.5). This dissertation falls under the design of these techniques.

1.3 The model problem

There exists several types of SPPs. In this work, we consider the general linear first order

singularly perturbed Volterra integro-differential equation (SPVIDE)

Lu := εu′(t) + a(t)u(t) +

∫ t

0
K(t, s)u(s)ds = f(t), t ∈ I := [0, 1], (1.3.1)

7
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along with the initial condition

u(0) = u0, (1.3.2)

where a prime indicates the first derivative of u with respect to t, 0 < α ≤ a(t) and a(t), f(t),

K(t, s) ((t, s) ∈ I × I) are sufficiently smooth functions. The perturbation parameter ε is

assumed to take arbitrary small positive values in the semi-open interval (0, 1] and u0 is a given

fixed constant.

Under these conditions, the solution u(t) of the problem (1.3.1)-(1.3.2) displays one boundary

layer near t = 0 [4]. Setting ε = 0 in equation (1.3.1), we obtain the reduced equation

a(t)u0(t) +

∫ t

0
K(t, s)u0(s)ds = f(t) (1.3.3)

which is a Volterra integral equation of the second kind. The singularly perturbed nature of

(1.3.1) arises when the properties of the solution with ε > 0 are incompatible with those when

ε = 0 [4]. Problems which do imply such an incompatibility in the behaviour of u near t = 0

form the subject matter of this dissertation.

1.4 Fitted finite difference methods to solve singularly perturbed

problems

Problems with a small parameter multiplying the derivative have been solved successfully using

various computational methods such as Finite Element Method (FEM), Finite Volume Method

(FVM) and Finite Difference Method (FDM). These methods are generally referred to as stan-

dard or classical numerical methods. However, it is known that if any discretization technique

is applied to a parameter-dependent problem, then the behaviour of the discretization depends

on the parameter. With this in mind, unless extremely large number of mesh points is pro-

vided, standard numerical methods fail to provide fairly accurate approximate solution of the

exact solution for all the values of the perturbation parameter. The truncation error becomes

unbounded on one hand, on the other hand, when ε = 0, the order of the differential equation

drop by one as a result, the number of initial or boundary condition to be imposed is lowered

[44].

To resolve this issue, ε-uniformly convergent methods are desirable. These are numerical

methods whose accuracy does not depend on the value of the perturbation parameter and for

8
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which the size of the error depends only on the number of mesh points [24]. Throughout this

work, we focus on ε-uniform numerical methods to derive approximate solutions.

In order to achieve ε-uniform convergent behavior, two approaches are often used in the

context of finite difference methods. The first one involves designing a method which reflects

the nature of the solution in the layer regions using uniform meshes with reasonable number

of mesh points. This approach forms the class of Fitted Operator Finite Difference Methods

(FOFDMs). The second approach is to use meshes adapted to the layers [31]. This technique

falls under the class of Fitted Mesh Finite Difference Methods (FMFDMs). We give a brief

description of both techniques in this section.

1.4.1 Fitted Operator Finite Difference Methods (FOFDMs)

This first approach which reduces to a discrete operator involving either a fitting factor (of

exponential type for example) or a denominator function, consists in replacing the standard

finite difference operator suitably by a finite difference operator which reflects the singularly

perturbed nature of the differential operator [44, 51]. In other words, modifying the difference

scheme coefficients in such a way that the scheme becomes more stable and achieves that the

truncation error becomes uniformly bounded with respect to the perturbation parameter.

The concept denominator function is recent and developed on the basis of some rules first

introduced by Mickens [43]. The advent of this book seem to have been the principal motivation

for introducing the concept of denominator function in the wide area of numerical analysis. The

fundamental idea behind the construction of this FOFDMs is to substitute the denominator

functions of the classical derivatives with a positive functions derived in such a way that they

capture significant properties of the governing differential equation and provide trustworthy nu-

merical results [10]. Numerous scientific works have been dedicated to construction of FOFDMs

for singularly perturbed differential equations (see e.g.; [40, 46, 47, 48]) and in a number of other

works as well.

In the case of linear equations, the FOFDMs are developed by choosing their coefficients so

that some or all the exponential functions in the null space of the differential operator, or part

of it, are also in the null space of the finite difference operator [18]. Here, the FOFDM is termed

Exponentially Fitted Operator Finite Difference Method and generally require the introduction

of artificial viscosity.

Introduced by Allen and Southwell [1], FOFDMs of exponential type have been used by
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many authors [3, 4, 32] to solve several different type of SPPs.

Note that in either case, the FOFDMs consist in a special discretization of the continuous

problem on a uniform mesh and are known to be more accurate than FMFDMs. An other

attractive advantage is that FOFDMs are easy to implement and generally do not require a

priori knowledge of the location and the breadth of the layer [47] . However, they are difficult

to extend to nonlinear and higher order dimensional problems.

1.4.2 Fitted Mesh Finite Difference Method (FMFDM)

The FMFDM consists of a simple discretization with fittingly chosen non-uniform grid. It

involves transforming the continuous problem into a discrete problem on a non-uniform partition

and uses a mesh which is adapted to the singularly perturbed nature of the problem [44, 51].

Towards the design of FMFDMs, numerous works have been done (see for instance [16, 29,

41, 46, 51]).

The idea of layer adapted meshes was addressed for the first time by Bakhvalov about

six decades ago [11] in the framework of a reaction-diffusion problem. For singularly per-

turbed boundary value problems whose solution contains an exponential term of the form

y = exp(−βx/ε), where β is a fixed constant, the exponential layer appears near x = 0 [39]. In

fact, Bakhvalov’s idea is to use an equidistant y-grid near y = 1 (which corresponds to x = 1),

then to map this grid back to the x-axis by means of a logarithmic function.

A mesh generating function of this type for a problem whose solution exhibits two layers

is as follows [60]: for an even positive integer N , we consider the following partition Ih :=

0 = x0 < x1 < ... < xN−1 < xN = 1, xi = Ψ(i/N), h = 1/N, i = 0(1)N . Note that the

mesh generating function Ψ consists of three parts: Ψ1,Ψ2 and Ψ3. The functions Ψ1 and Ψ3

generate points in the boundary layers near x = 0 and x = 1 respectively, while the function

Ψ2 generates mesh points outside the boundary layers and is tangent to both Ψ1 and Ψ3 and

satisfies Ψ2(1/2) = 1/2. Hence, Bakhvalov’s mesh generating function in the three subintervals

is given by

Ψ(t) =


Φ(t) = −a

√
ε ln( q

q−t), t ∈ [0, η],

Φ(η) + Φ′(η)(t− η), t ∈ [η, 1/2],

1−Ψ(1− t), t ∈ [1/2, 1],

(1.4.1)

where a, q are constants independent of ε and satisfy q ∈ (0, 1/2), a ∈ (0, q/
√
ε), η is the

abscissa of the contact point of the tangent line from the point (1/2, 1/2) to Φ(x).
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The graded grids of Bakhvalov are equally spaced outside the layer and characterized by

a gradual transition from the coarse in a very fine mesh at the layer. This mesh has been

investigated and improved by many authors, like Gartland in [21] and Vulanović [64].

Soon after, the Russian mathematician Grigorii Ivanovich Shishkin [59] introduced a simple

layer adapted mesh which consists in a blend of finite number of uniform meshes with different

transition points. Unlike Bakhvalov meshes, Shishkin meshes are piecewise uniform meshes.

That is, they divide the domain into subdomains on which an equidistant mesh is developed.

For illustration purposes, we present piecewise-uniform meshes [44]. Consider the following

piecewise-uniform mesh ΩN
δ which we generate as follows: choose a point δ such that 0 < δ ≤ 1/2

and assume that N is an even positive number. We divide the interval [0, 1] into two subintervals

[0, δ] and [δ, 1]. Then the mesh size in each of the two subintervals is given by

xj − xj−1 =

 h1 = 2δ/N, j = 0, 1, ..., N/2,

h2 = 2(1− δ)/N, j = N/2 + 1, ..., N.
(1.4.2)

The transition parameter, δ which separates the inner and outer regions is located and defined

according to the nature of the problem to be solved. In other words, δ is chosen in accordance

with the position of the layer. An example of a Shishkin mesh with N = 8 is given in Figure

1.4, where the transitions parameter is

δ = min{1/2, ε lnN}. (1.4.3)

Note that for the above case, the boundary layer is located at x = 0. On the other hand, if

0 1δ

Figure 1.4: Shishkin mesh Ω8
δ where the boundary layer is located at x = 0

the layer occurs near x = 1, then the mesh is as the in Figure 1.5 where δ is still defined as in

(1.4.3) and mesh size in the two subdomains then becomes

xj − xj−1 =

 h1 = 2(1− δ)/N, j = N/2 + 1, ..., N,

h2 = 2δ/N, j = 0, 1, 2, ..., N/2.
(1.4.4)

In the above two cases, we dealt with problems whose solutions exhibit one boundary layer.

Next, we look at example (1.1.3) whose solution displays two boundary layers, one near x = 0 and
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0 1δ

Figure 1.5: Shishkin mesh Ω8
δ where the boundary layer is located at x = 1

δ0 11− δ

Figure 1.6: Shishkin mesh Ω16
δ where the boundary layers occur at x = 0 and x = 1

another one at x = 1. Because of these two boundary layers, the mesh should be condensing near

each of these points. Therefore, the interval Ω = (0, 1) is then divided into three subintervals,

(0, δ), (1 − δ, 1) and 1 − δ. As before, δ is still ranging in the semi-open interval (0, 1/2] but

in this case there are two transition points. One located at x = δ and other one at x = 1 − δ.

Each of the intervals (0, δ) and (1 − δ, 1) is divided uniformly into N/4 subintervals whilst the

interval (δ, 1− δ) is devided into N/2 subintervals. In this case, we define δ as

δ = min{1/4,
√
ε lnN}. (1.4.5)

The mesh size in each of the three subintervals is given by

xj − xj−1 =


h1 = 4δ/N, j = 0, 1, 2, ..., N/4 + 1,

h2 = 2(1− 2δ)/N, j = N/4 + 1, ..., 3N/4,

h3 = 4δ/N, j = 3N/4 + 1, ..., N.

(1.4.6)

A model presentation of the mesh of this kind is shown in Figure 1.6. Note that the choice of

δ = 1/4 results in a uniform mesh. For all other permissible values of δ, 0 < δ ≤ 1/2, each of

the subintervals (0, δ) and (1− δ, 1) is small than the subinterval (δ, 1− δ). In this case the mesh

becomes piecewise-uniform rather than uniform. The same idea holds true for δ = 1/2 in each

of the first two cases.

As reported by Kadalbajoo et al. [29], though Shishkin meshes are simpler than Bakhvalov

meshes, the latter produces much better numerical results. The chief reason is that Bakhvalov

meshes are better adapted to the layer structure. However, since higher order schemes are much

easier developed on an equidistant grid than on an entirely nonequidistant one, the piecewise

uniform Shihskin mesh presents more advantage than Bakhvalov ones. Another advantage of
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Shishkin meshes over Bakhvalov’s is observed in their simplicity which allows application to

different type of problem, more precisely flexibility and smoothness to tackle complicated and

higher order dimensional problems [31, 48].

The above approaches have been used extensively to solve singularly perturbed differential

equations. However, very little effort in their use is observed for singularly perturbed integro-

differential equations.

1.5 Literature review on Volterra equations

In this section, we present some of the works recorded in the literature on numerical treatment

of Volterra integral equations over the past half century. These classes of equations play a pri-

mordial role in modelling numerous problems in engineering and applied sciences, and therefore

have attracted the attention of many researchers in developing a wide theory and numerical

analysis.

A number of recent papers have been devoted to the investigation of various approxima-

tion techniques including quadrature rules, finite difference method, finite element methods,

variational iteration method, homotopy perturbation methods and spline collocation methods

for Volterra, Fredholm, Fredholm-Volterra and Volterra-Abel integral and integro-differential

equations [7, 14, 19, 50, 52, 55, 56, 62].

If we restrict the above mentioned classes of problems to the corresponding classes in which

the terms with the highest derivatives are multiplied by a small parameter, then they are said

to be singularly perturbed Volterra, Fredholm, Fredholm-Volterra and Volterra-Abel integral

and integro-differential equations respectively. The solution of these problems undergoes fast

variations in the boundary or interior layers thus rendering the classical numerical approaches

impractical. This fact motivates the design of special techniques which preserve stability for all

the values of the perturbation parameter. In this regard, tremendous works have been done for

singularly perturbed Volterra integro-differential equations.

Kauthen [35] surveyed the existing literature on singularly perturbed Volterra integral and

integro-differential equations. He also analyzed an implicit Runge-Kutta method for singularly

perturbed Volterra integro-differential equation [33]. In [34] the same author studied the con-

vergence of the extended implicit Pouzet-Volterra-Runge-Kutta methods applied to singularly

perturbed systems of Volterra integro-differential equations.
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An exponentially fitted scheme for a fixed perturbation parameter ε is derived and stability

analysis of the scheme is discussed in [53]. Some discretizations of singularly perturbed Volterra

integro-differential equation and Volterra integral equations by tension spline collocation meth-

ods in tension spline spaces can be found in [25].

In 1978, Lodge et al. [42] established many qualitative properties of the solution of a non-

linear singularly perturbed Volterra integro-differential equation. They also proved existence

and uniqueness of the solution. Jordan [28, 26] extended the results of [42] to the general

nonconvolution problem.

Angell and Olmstead developed [9] a formal methodology for obtaining asymptotic expan-

sion of the solution to a singularly perturbed Volterra equation which they appplied to several

examples. In [8], they used a formal asymptotic scheme and determined the leading order be-

haviour of a certain singularly perturbed integro-differential equation which models the process

of stretching a polymer filament. Bijura [15] demonstrated in 2006 the existence of the initial

layers whose thickness is not of order of magnitude O(ε), ε 7−→ 0, and constructed approximate

solutions using the initial layer theory.

In [61], Zhao et al. investigate the delay-dependent stability of the symmetric boundary value

methods (BVMs). Four families of symetric boundary value methods, namely the Extended

Trapezoidal Rules of first (ETR1) and second (ETR2) kinds, the Top Order Methods (TOMs)

and the B-spline linear multistep methods (BS methods) were considered. The authors analyzed

the delay-dependent stability region of symmetric BVM using the boundary locus technique

and proved that under suitably chosen hypothesis the symmetric schemes preserve the delay-

dependent stability of the test equation. A convergent collocation method based on the use of

the Taylor polynomials to approximate the solution of the delay integro-differential equation in

spline space S0
m−1(ΠN ) is presented by Bellour and Bousselsar [13]. In [23], He and Xa discussed

the exponential stability of impulsive singularly perturbed Volterra delay integro-differential

equation.

Koto [37] studied stability of a Runge-Kutta method for Volterra delay integro-differential

equation with a constant delay. For singularly perturbed problem, the issues associated with

their numerical treatments and several approaches to sort out these difficulties we used [20, 44,

51]. The authors in [67] examined a singularly perturbed Volterra integro-differential equation

with a delay. Using a linear multistep method, they investigated error behaviour and derived

global error estimates A(α)-stable linear multistep method with convergent quadrature rule.
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None of the works above mentioned on singularly perturbed Volterra integro-differential equa-

tions (SPVIDE) have used fitted finite difference methods for their solution.

Using a method of integral identities with weights and remainder terms in the integral

form, Amiraliyev and Yilmaz [2] developed a fitted difference method of exponential type to

solve a delayed singularly perturbed Volterra integro-differential equation. The scheme was

fully analyzed for convergence and stability and proved to have a first order parameter-uniform

convergence. In [54], Şevgin derived a uniformly convergence ε-numerical method on a graded

mesh for the numerical solution of a nonlinear SPVIDE and was proved to be of first order

accurate in the maximum norm.

Using the midpoint difference operator with trapezoidal integration, Zhongdi and Lifeng [63]

studied the convergence properties of a finite difference scheme on Shishkin mesh for problem

(1.3.1)-(1.3.2), they derived a priori error estimate that is ε-uniform and proved that the finite

difference scheme is almost second order accurate. On the other hand, Amiraliyev and Şevgin

[4] presented an exponentially fitted finite difference method to solve the same problem. The

fitting factor was introduced via the method of integral identities with the use of exponential

basis functions and interpolating quadrature rules with weight and remainder terms in integral

form. Their method was first order uniformly convergent, in the maximum norm, with respect

to ε.

Recently Kudu et al. [38] designed an implicit finite difference scheme on a piecewise-uniform

mesh of Shishkin-type for solving a singularly perturbed delay integro-differential equation. The

scheme was constructed utilising the procedure in [4]. It was proved that under some appropriate

conditions, the scheme is stable with respect to ε and is convergent with oder 0(N−1 lnN).

To our knowledge, fitted finite difference methods are not fully explored to solve singularly

perturbed Volterra integro-differential equations. In this work, we solve first order linear sin-

gularly Perturbed Volterra Integro-differential Equation (SPVIDE). Our aim is to investigate

some existing fitted finite difference methods. Then design and analyse new discretizations in

the framework of fitted finite difference methods for these problems. In this regard, we have

reached some successes. Apart from the technique used in chapter 2, the approach to construct

discrete problems and to perform convergence analysis of approximate solution is analogous to

the ones from [4, 54, 38] and based upon some quadratures rule introduced by Amiraliyev [5].

An extension and summary of these rules are given in Amiraliyev and Mamedou [6].
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1.6 Outline of the thesis

In this work, we investigate, construct and analyse FMFDMs and exponentially FOFDMs to

solve singularly perturbed Volterra integro-differential equations (SPVIDEs). Apart from this

introductory chapter, this dissertation consists of five chapters and a conclusion. In each chapter,

we investigate/design a numerical method and provide a complete theoretical analysis of its

convergence. Computational results are presented in tabular form to support the theoretical

results.

The problem under consideration in this work is composed of a differential and integral

operators. Therefore, to construct the numerical methods, we use the upwinding finite differ-

ence discretization for the differential part and several different suitably chosen interpolating

quadrature rules to discretize the intergral part.

The exponentially fitted operator finite difference scheme of [4] is considered in Chapter 2.

The chapter commences with an important qualitative result which gives a better understanding

of the behaviour of the solution of the problem under study and its derivatives. Then we present

the difference scheme. The method is based on the use of exponential basis functions and some

interpolating quadrature rules with weights and remainder terms in integral form. The method

is analyzed for stability and convergence and proved to be first order accurate in the maximum

norm.

In Chapter 3, we investigate the fitted mesh finite difference method of [63]. The method

consists of the midpoint finite difference operator along with the trapezoidal integration. The

method is applied on an appropriate piecewise uniform mesh of Shishkin type. We show that

the method is parameter uniformly convergent of almost second order.

As outlined earlier in the chapter, fitted mesh and fitted operator finite difference methods

are not fully exploited for singularly perturbed Volterra integro-differential equations. In the

next 3 Chapters we suggest more discretizations for (1.3.1)-(1.3.2). In Chapter 4, we design

and analyze an implicit finite difference scheme on a piecewise-uniform mesh. The scheme is

developed using right and composite left side rectangle rules with the weights and remainder

terms in integral form. We prove that the method is first order accurate in the maximum

norm. A similar method has been suggested by Kudu et al. [38] to solve singularly perturbed

integro-differential equations with delay. In Chapter 5, we wish to improve the results obtained

with the method in Chapter 4. To this end, we combine the obtained result with Simpson and

trapezoidal quadrature rules. We remark that the two quadrature rules have greatly contributed
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to the accrued accuracy of the schemes, however, the rates of convergence remain the same.

In Chapter 6, we introduce a new discretization on a uniform mesh. Unlike the method in

Chapter 2, this new FOFDMs is based on the right side rectangle rule and use of exponential basis

functions to compute a fitting factor which is employed for the discretization of the derivative

part. Then the trapezoidal integration with weight and remainder terms in the integral form is

used to deal with the integral part. This method is shown to be stable, of first order convergence

and more accurate than the one in Chapter 2. The performance of our method is illustrated

through numerical computations.

Lastly some concluding remarks and directions for further research are given in Chapter 7.
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Chapter 2

An Exponentially Fitted Operator

Finite Difference Method for

SPVIDEs

In the previous chapter, we discussed singularly perturbed problems as well as the issues associ-

ated with their numerical treatment. We have noticed that the major difficulty with SPPs lies

in resolving the layer. The solution to these problems vary abruptly within some thin regions of

the domain (boundary layer) thus making numerical methods unsatisfactory. To overcome this

difficulty, two approaches are often used in the framework of finite difference methods namely

fitted operator finite difference methods and fitted mesh finite difference methods.

This chapter presents a fitted operator finite difference method of exponential type to solve

(1.3.1)-(1.3.2). The proposed numerical method is constructed via the integral identities ap-

proach along with the exponential basis function to compute a fitting factor. This approach is

used to discretize the differential part. Then, a blend of some suitable interpolating quadrature

rules with weights and remainder terms in the integral form are used for the integral part. We

show that this method is first order convergent in the maximum norm. We carry out some

computations on two test examples to support the theoretical results.

2.1 Introduction

Over the past half century, numerical solution of singularly perturbed Volterra integro-differential

equations have attracted the attention of researchers in applied sciences and engineering. Numer-
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ous analytical, semi-analytical and numerical approaches have been developed to approximate

the solution of these equations (see [33, 34, 25] and the references therein). However, when the

perturbation parameter approaches zero, the solution of the these problems is known to have a

steep gradient within the boundary layer which affects the convergence of the solution obtained

utilizing classical numerical techniques.

To get the best of this difficulty, two ways have been followed in the context of finite defference

methods. Those are FMFDMs and FOFDMs.

Except the works in [4, 54, 63], not much work have been done so far towards the design

of fitted finite difference methods for solving singularly perturbed Volterra integro-differential

equations (SPVIDEs). In this chapter, we aim to explore a class of fitted operator finite differ-

ence methods. More specifically the Exponentially Fitted Operator Finite Difference Method

(EFOFDM) constructed by Amiraliyev and Şevgin [4].

The rest of the chapter is organized as follows. Bounds on the solution and its derivatives

are provided in the next Section. In Section 2.3, we present the numerical method. Stability

and convergence analysis of the numerical method are carried out in Section 2.4. Two test

examples to confirm our theoretical results are given in Section 2.5 and lastly, a short conclusion

is provided in Section 2.6.

Throughtout the dissertation, C, sometimes subscripted, denotes a generic positive constant

which is independent of ε and the mesh parameter. The set Cn(I × I) denotes a space of

real-valued functions which are n-times continuously differentiable on I × I. The set Cnm(I × I)

denotes the space of two real-valued functions which are n-times continuously differentiable with

respect to the first argument and m-times continuously differentiable with respect to the second

argument on I× I. Moreover, the constant K̄ denotes the maximum of the function K(t, s) i.e.,

K̄ = max
I×I
|K(t, s)|.

2.2 Bounds on the solution and its derivatives

In this section, we study the qualitative behaviour of the solution of (1.3.1)-(1.3.2) and its

derivatives which are required in the convergence analyis of the numerical methods.

Lemma 2.2.1. Let a, f ∈ C3(I) and K ∈ C3(I × I). Then the solution u(t) of the problem
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(1.3.1)-(1.3.2) satisfies the following inequalities.

||u||∞,I ≤ C, (2.2.1)

|uk(t)| ≤ C
(

1 +
1

εk
exp

(
−αt
ε

))
, t ∈ I, k = 1, 2, 3. (2.2.2)

Proof. We first show that (2.2.1) holds true. To do that, we rewrite (1.3.1) in the form

u′(t) +
1

ε
a(t)u(t) = Q(t) t ∈ I, u(0) = A, (2.2.3)

where

Q(t) =
1

ε
f(t)− 1

ε

∫ t

0
K(t, s)u(s)ds.

It is clear that (2.2.3) is a first order linear differential equation. From here, using the theory of

integrating factor for linear differential equation, we obtain

u(t) =u(0) exp

(
−1

ε

∫ t

0
a(η)dη

)
+

∫ t

0
Q(ξ) exp

(
−1

ε

∫ t

ξ
a(η)dη

)
dξ

=u(0) exp

(
−1

ε

∫ t

0
a(η)dη

)
+

1

ε

∫ t

0
f(ξ) exp

(
−1

ε

∫ t

ξ
a(η)dη

)
dξ

− 1

ε

∫ t

0

[∫ ξ

0
K(ξ, s)u(s)ds

]
exp

(
−1

ε

∫ t

ξ
a(η)dη

)
dξ.

From this expression we can write

|u(t)| ≤|u(0)| exp

(
−1

ε

∫ t

0
a(η)dη

)
+

1

ε

∫ t

0
|f(ξ)| exp

(
−1

ε

∫ t

ξ
p(η)dη

)
dξ+

1

ε

∫ t

0

[∫ ξ

0
|K(ξ, s)||u(s)|ds

]
exp

(
−1

ε

∫ t

ξ
p(η)dη

)
dξ.

If K̄ = max
I×I
|K(t, s)| and since a(t) ≥ α, it follows that

|u(t)| ≤|A| exp

(
−αt
ε

)
+

1

α
||f ||∞

(
1− exp

(
−αt
ε

))
+

1

ε
K̄

∫ t

0

[∫ ξ

0
|u(s)|ds

]
exp

(
−α(t− ξ)

ε

)
dξ

≤|A| exp

(
−αt
ε

)
+

1

α
||f ||∞

(
1− exp

(
−αt
ε

))
+

1

α
K̄

(
1− exp

(
−αt
ε

))∫ t

0
|u(s)|ds

≤|A|+ 1

α
||f ||∞ +

1

α
K̄

∫ t

0
|u(s)|ds.
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Then, applying the Gronwall’s inequality to this last estimate, we obtain

|u(t)| ≤
(
|A|+ 1

α
||f ||∞

)
exp

(
1

α
K̄t

)
,

which proves (2.2.1).

Next, to show (2.2.2) for k = 1, we differentiate equation (1.3.1) to obtain

v′(t) + a(t)v(t) = F (t), (2.2.4)

where

u′(t) = v(t), u′(0) = v(0), and (2.2.5)

F (t) = f ′(t)− a′(t)u(t)−K(t, t)u(t)−
∫ t

0

∂

∂t
K(t, s)u(s)ds.

Futhermore, from (1.3.1) and taking into account (1.3.2) we obtain

|u′(0)| ≤ |f(0)− a(0)u(0)|
ε

=
|f(0)− a(0)A|

ε
≤ C

ε
. (2.2.6)

It follows from (2.2.4) that

v(t) = v(0) exp

(
−1

ε

∫ t

0
a(η)dη

)
+

1

ε

∫ t

0
F (ξ) exp

(
−1

ε

∫ t

ξ
a(η)dη

)
dξ,

which means in view of (2.2.5) that

u′(t) = u′(0) exp

(
−1

ε

∫ t

0
a(η)dη

)
+

1

ε

∫ t

0
F (ξ) exp

(
−1

ε

∫ t

ξ
a(η)dη

)
dξ.

Next, using (2.2.6) we get

|u′(t)| ≤ C

ε
exp

(
−1

ε

∫ t

0
a(η)dη

)
+

1

ε

∫ t

0
|F (ξ)| exp

(
−1

ε

∫ t

ξ
a(η)dη

)
dξ. (2.2.7)

Evidently, if a,f ∈ C1(I) and K ∈ C1(I × I), then

1

ε

∣∣∣∣∫ t

0
F (ξ) exp

(
−1

ε

∫ t

ξ
a(η)dη

)
dξ

∣∣∣∣ ≤ C.
And hence, (2.2.7) becomes

|u′(t)| ≤C
ε

exp

(
−αt
ε

)
+ C. (2.2.8)

Thus, this completes the proof for k = 1.

To prove (2.2.2) for k = 2, we differentiate (2.2.4) to obtain

v′′(t) + a(t)v′(t) = G(t) (2.2.9)
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where

u′′(t) = v′(t), u′′(0) = v′(0), and

G(t) = F ′(t)− a′(t)v(t).

From (2.2.4) and taking into consideration (2.2.6) we obtain

|u′′(0)| ≤ |F (0)− a(0)u′(0)|
ε

≤ C

ε2
. (2.2.10)

It follows from (2.2.9) that

v′(t) = v′(0) exp

(
−1

ε

∫ t

0
a(η)dη

)
+

1

ε

∫ t

0
G(ξ) exp

(
−1

ε

∫ t

ξ
a(η)dη

)
dξ.

Consequently,

u′′(t) = u′′(0) exp

(
−1

ε

∫ t

0
a(η)dη

)
+

1

ε

∫ t

0
G(ξ) exp

(
−1

ε

∫ t

ξ
a(η)dη

)
dξ,

so that from (2.2.10) we have

|u′′(t)| ≤ C

ε2
exp

(
−1

ε

∫ t

0
a(η)dη

)
+

1

ε

∫ t

0
|G(ξ)| exp

(
−1

ε

∫ t

ξ
a(η)dη

)
dξ. (2.2.11)

Obviously, if a,f ∈ C2(I) and K ∈ C2(I × I), then

1

ε

∣∣∣∣∫ t

0
G(ξ) exp

(
−1

ε

∫ t

ξ
a(η)dη

)
dξ

∣∣∣∣ ≤ C,
And from (2.2.11), we obtain

|u′′(t)| ≤C
ε2

exp

(
−αt
ε

)
+ C. (2.2.12)

Thus, this completes the proof for k = 2. Following a similar procedure, we obtain (2.2.2) for

k = 3.

2.3 The numerical method

Now, we shall provide a few notations and define some finite difference operators which will be

employed to discretize the continuous problem in this section and the subsequent sections. Let

N be an even and positive integer. Consider the following uniform partition of the unit interval

[0, 1]: t0 = 0, ti = t0 + ih, h = 1/N, i = 1(1)N, tN = 1. We denote the above mesh by ωh,

with ωh = ωh ∪ {t = 0}. Notice that the above uniform partition breaks up the interval [0, 1]

into N subintervals of equal length.

22

http://etd.uwc.ac.za/



To simplify the notations, we set gi = g(ti) for any function g while yi denotes an approxima-

tion of u at the point ti. Throughout the work, we use gt̃,i = (gi−gi−1)/h and gi−1/2 = g(ti−h/2)

for any mesh function gi defined on ωh.

In our estimates, we use the maximum norm defined by ||g||∞ = max
[0,1]
|g(t)| and for any

discrete function gt̃,i, we also define the corresponding discrete norm ||g||∞,ωh
≡ ||g|| = max

1≤i≤N
|gi|.

2.3.1 Fitting factor and difference scheme

This section deals with the discretization of the continuous problem on the uniform mesh ωh.

To this end, a fitting factor [4] is constructed and then blended with some quadrature rules to

contruct the fully fledged numerical method.

Using the exponential basis function and interpolating quadrature rules with weights and

remainder terms in the integral form, Amiraliyev and Şevgin [4] designed an exponential fitted

operator finite difference method to solve (1.3.1)-(1.3.2) as follows. They considered the identity

χ−1i h−1
∫ ti

ti−1

Luϕi(t)dt = χ−1i h−1
∫ ti

ti−1

f(t)ϕi(t)dt, 1 ≤ i ≤ N, (2.3.1)

where the exponential basis function ϕi(t) is given by

ϕi(t) = exp

(ai− 1
2

ε
(t− ti)

)
, (2.3.2)

and the coefficient function χi in (2.3.1) can be explicitly expressed by evaluating the exponential

function ϕi(t) over the interval [ti, ti−1], that is

χi = h−1
∫ ti

ti−1

ϕi(t) = h−1
∫ ti

ti−1

exp

(ai− 1
2

ε
(t− ti)

)
dt

=
h−1ε

ai− 1
2

exp

(
−
ai− 1

2

ε
ti

)[
exp

(ai− 1
2

ε
t

)]ti
ti−1

=
h−1ε

ai− 1
2

exp

(ai− 1
2

ε
(−ti)

)[
exp

(ai− 1
2

ε
ti

)
− exp

(ai− 1
2

ε
ti−1

)]
=

ε

hai− 1
2

(
1− exp

(ai− 1
2

ε
(−(ti − ti−1))

))
=

ε

hai− 1
2

(
1− exp

(
ai− 1

2

(
−h
ε

)))
.

It then follows that

h−1
∫ ti

ti−1

ϕi(t)dt =
1

ρai− 1
2

(
1− exp(−ρai− 1

2
)
)
, (2.3.3)

where ρ = h
ε . Note that the function ϕi(t) satisfies

23

http://etd.uwc.ac.za/



−εϕ′i(t) + ai− 1
2
ϕi(t) = 0, ϕ(ti) = 1, (2.3.4)

and that

χ−1i h−1
∫ ti

ti−1

ϕi(t)dt = 1. (2.3.5)

Rearranging (2.3.1) leads to

χ−1i h−1ε

∫ ti

ti−1

u′(t)ϕi(t)dt+ χ−1i h−1ai− 1
2

∫ ti

ti−1

u(t)ϕi(t)dt

+χ−1i h−1
∫ ti

ti−1

ϕi(t)

(∫ t

0
K(t, s)u(s)ds

)
dt = fi− 1

2
−R(1)

i . (2.3.6)

where

R
(1)
i = χ−1i h−1

∫ ti

ti−1

[a(t)− a(ti− 1
2
)]u(t)ϕi(t)dt+ χ−1i h−1

∫ ti

ti−1

[f(ti− 1
2
)− f(t)]ϕi(t)dt.

To reduce the integrals in (2.3.6), the following quadrature rules will be used [6]:

•
∫ b

a
p(t)f(t)dt =

[∫ b

a
p(t)dt

]
{σf(b) + (1− σ)f(a)} (2.3.7)

+ f(a; b)

∫ b

a
(t− t(σ))p(t)dt+R(f).

•
∫ b

a
p(t)f ′(t)dt =f(a; b)

∫ b

a
p(t)dt+ R̃(f). (2.3.8)

The truncation errors R(f) and R̃(f) are given by

R(f) =

∫ b

a
dtp(t)

∫ b

a
f (n)(ξ)Kn−1(t, ξ)dξ, n = 1 or 2, (2.3.9)

and

R̃(f) = −
∫ b

a
dtp′(t)

∫ b

a
f (n)(ξ)Kn−1(t, ξ)dξ, n = 1 or 2, (2.3.10)

with

t(σ) =σb+ (1− σ)a, f(a; b) =
[f(b)− f(a)]

b− a
,

Ts(λ) =
λs

s!
if λ > 0; Ts(λ) = 0, if λ < 0,

Ks(t, ξ) =Ts(t− ξ)− (b− a)−1(t− a)(b− ξ)s, s = 0 or 1,

and σ a real parameter. In some cases, very often the case when approximating by time, the

second term in (2.3.7) is included in the remainder. Thus, employing (2.3.7) and (2.3.8) on the
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interval [ti−1 , ti] and taking into consideration the fact that ϕi(t) satisfies (2.3.4) we have

χ−1i h−1ε

∫ ti

ti−1

u′(t)ϕi(t)dt+ χ−1i h−1ai− 1
2

∫ ti

ti−1

u(t)ϕi(t)dt

+ χ−1i h−1
∫ ti

ti−1

ϕi(t)

(∫ t

0
K(t, s)u(s)ds

)
dt

= εut̃,iχ
−1
i h−1

∫ ti

ti−1

ϕi(t)dt+ ai− 1
2
χ−1i h−1

∫ ti

ti−1

ϕi(t)dt

[σui + (1− σ)ui−1] + ut̃,iχ
−1
i h−1ai− 1

2
×
∫ ti

ti−1

(t− tσi )ϕi(t)dt

+ χ−1i h−1
∫ ti

ti−1

ϕi(t)dt

[
σ

∫ ti

0
K(ti, s)u(s)ds+ (1− σ)

∫ ti−1

0
K(ti−1, s)u(s)ds

]
+ χ−1i h−1

∫ ti

ti−1

ϕi(t)dt×
∫ ti

ti−1

d

dξ

[∫ ξ

0
K(ξ, s)u(s)ds

]
[H(T − ξ)− σ]dξ.

We can write the above expression in the form.

εut̃,i

[
χ−1i h−1

∫ ti

ti−1

ϕi(t)dt+ ai− 1
2

∫ ti

ti−1

(t− tσi )ϕi(t)dt

]

+ ai− 1
2
χ−1i h−1

∫ ti

ti−1

ϕi(t)dt [σui + (1− σ)ui−1]

+ χ−1i h−1
∫ ti

ti−1

ϕi(t)dt

[
σ

∫ ti

0
K(ti, s)u(s)ds+ (1− σ)

∫ ti−1

0
K(ti−1, s)u(s)ds

]
+ χ−1i h−1

∫ ti

ti−1

ϕi(t)dt×
∫ ti

ti−1

d

dξ

[∫ ξ

0
K(ξ, s)u(s)ds

]
[H(T − ξ)− σ]dξ.

= εθiut̃,i + ai− 1
2
uσi +

[
σ

∫ ti

0
K(ti, s)u(s)ds+ (1− σ)

∫ ti−1

0
K(ti−1, s)u(s)ds

]
+

∫ ti

ti−1

d

dξ

[∫ ξ

0
K(ξ, s)u(s)ds

]
[H(T − ξ)− σ]dξ, (2.3.11)

where we have used (2.3.5),

θi = 1 + χ−1i h−1ai− 1
2
ε−1

∫ ti

ti−1

(t− tσi )ϕi(t)dt, (2.3.12)

and

uσi = σui + (1− σ)ui−1.

The function H(T − ξ) is a Heaviside function.

Furthermore, applying also (2.3.7) for σ = 1
2 to the following two integrals in the right hand

side of the relation (2.3.11) :∫ ti

0
K(ti, s)u(s)ds

∫ ti−1

0
K(ti−1, s)u(s)ds
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we obtain ∫ ti

0
K(ti, s)u(s)ds =

i∑
j=1

hi
2

[K(ti, tj)uj +K(ti, tj−1)uj−1] +R
(3)
i (2.3.13)

∫ ti−1

0
K(ti−1, s)u(s)ds =

i−1∑
j=1

hi
2

[K(ti−1, tj)uj +K(ti−1, tj−1)uj−1] +R
(4)
i (2.3.14)

R
(3)
i =

i∑
j=1

∫ tj

tj−1

(tj− 1
2
− ξ) d

dξ
[K(ti, ξ)u(ξ)]dξ

R
(4)
i =

i−1∑
j=1

∫ tj

tj−1

(tj− 1
2
− ξ) d

dξ
[K(ti−1, ξ)u(ξ)]dξ

As a result, from (2.3.6) and (2.3.11) we obtain the expression

εθiut̃,i + ai− 1
2
uσi + σ

h

2

i∑
j=1

[K(ti, tj)uj +K(ti, tj−1)uj−1]+

(1− σ)
h

2
K̃(t0, ..., ti−1;u0, ..., ui−1) = fi− 1

2
−Ri, (2.3.15)

where

K̃(t0, ..., ti−1;u0, ..., ui−1) =

 0 for i = 1,∑i−1
j=1[K

σ(ti, tj)uj +Kσ(ti, tj−1)uj−1] for i > 2.

The remainder term is

Ri = χ−1i h−1
∫ ti

ti−1

[a(t)− a(ti− 1
2
)]u(t)ϕi(t)dt+ χ−1i h−1

∫ ti

ti−1

[f(ti− 1
2
)− f(t)]ϕi(t)dt

+

∫ ti

ti−1

d

dξ

[∫ ξ

0
K(ξ, s)u(s)ds

]
[H(T − ξ)− σ]dξ

+
i∑

j=1

∫ tj

tj−1

(tj− 1
2
− ξ) d

dξ
[K(ti, ξ)u(ξ)]dξ + w̃i, (2.3.16)

where

w̃i =

 0 for i = 1,∑i−1
j=1

∫ tj
tj−1

(tj− 1
2
− ξ) ddξ [K(ti−1, ξ)u(ξ)]dξ for i > 2,

and

Kσ(ti, .) = σK(ti, .) + (1− σ)K(ti−1, .). (2.3.17)

Simplifying (2.3.12) yields

θi =
ρai− 1

2
[(1− σ) + σ exp(−ρai− 1

2
)]

1− exp(−ρai− 1
2
)

,
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which we refer to as the fitting factor. Neglecting the remainder term Ri in (2.3.15) we obtain

the following scheme to approximate the solution of the problem (1.3.1)-(1.3.2):

Lhyi ≡ εθiyt̃,i + ai− 1
2
yσi +

σh

2
[K(ti, ti)yi +K(ti, ti−1)yi−1] +

h

2
K̃(t0, ..., ti−1; y0, ..., yi−1),

= fi− 1
2
, i = 1(1)N, (2.3.18)

y(0) = y0, (2.3.19)

where

K̃(t0, ..., ti−1; y0, ..., yi−1) =

 0 for i = 1,∑i−1
j=1[K

σ(ti, tj)yj +Kσ(ti, tj−1)yj−1] for i > 2.

In matrix notation, the scheme in (2.3.18) is a lower triangular linear system

WỸ = F̃ ,

where W is the matrix of the system and F the unknown column vector. The different entries

of the matrix W and components of the column vector F̃ are given by

W11 = εθ1
h + σ

2 (a0 + a1) + hσ
2 K11, i = 1,

Wii = rci , i = 2(1)N,

Wi,i−1 = r−1i,i−1, i = 2(1)N,

Wi,j = r−2i,i−1, i = 3(1)N ; j = 1(1)i− 2,

F1 = 1
2(f0 + f1)− (−εθ1h + 1

2(1− σ)(aa1 + a1) + hσ
2 K11)U0, i = 1,

Fi = 1
2(fi−1 + fi)− (h2 (σKi,0 + (1− σ)Ki−1,0))U0, i = 2(1)N.

where

rci = εθi
h + σ

2 (ai + ai−1) + hσ
2 Kii,

r−i,i−1 = −εθi
h + (1−σ)

2 (ai + ai−1) + hσ
2 Ki,i−1 + 1

2h(σKi,i−1+

h
2 (σKi,i−1 + (1− σ)Ki−1,i−1),

r−i,i−1 = h(σKi,j + (1− σ)Ki−1,j).

2.3.2 Some useful features of the scheme

In this section, we provide statements and proofs of lemmas which are required in the analysis

of the numerical method presented above.

Lemma 2.3.1. Consider the following difference operator

lyi ≡ Aiyi −Biyi−1, 1 ≤ i ≤ N, (2.3.20)
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where

Ai =
εθi
h

+ ai− 1
2
σ +

σhK(ti, ti)

2
, Bi =

εθi
h
− ai− 1

2
(1− σ). (2.3.21)

(I) The difference operator (2.3.20) satisfies the discrete maximum principle: If the operator

lyi ≥ 0, i ≥ 1, and y0 ≥ 0, then yi ≥ 0 , i ≥ 0.

(II) The solution of the difference initial value problem

lyi = Fi, i ≥ 1,

y0 = µ

satisfies the inequality

||yi||∞ ≤ |µ|+ α−1 max
0≤i≤N

|Fi|. (2.3.22)

(III) If Fi ≥ 0 is nondecreasing and Ai −Bi ≥ α > 0, then

|yi| ≤ |µ|+ α−1Fi, i ≥ 1. (2.3.23)

Proof.

(I) Let j be such that Ψj = min
0≤i≤N

Ψi and assume that Ψj < 0. Then it is clear that Ψj ≤ Ψj−1.

It follows that

lΨj = AjΨj −BjΨj−1

= AjΨj −BjΨj +BjΨj −BjΨj−1

= (Aj −Bj)Ψj +Bj(Ψj −Ψj−1) < 0.

Which contradicts our assumptions. Therefore Ψj ≥ 0. Thus Ψi ≥ 0, i = 0(1)N .

(II) Consider two mesh functions which we define by

Ψi = |µ|+ 1

α
max
0≤i≤N

|Fi| ± yi. (2.3.24)

It is clear that for i = 0

Ψ0 = |µ|+ 1

α
max
0≤i≤N

|F0| ± y0

≥ 0,
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and that for i ≥ 1

lΨi = Ai

[
|µ|+ 1

α
max
0≤i≤N

|Fi| ± yi
]
−Bi

[
|µ|+ 1

α
max
0≤i≤N

|Fi−1| ± yi−1
]

= (Ai −Bi)|µ|+
1

α

[
Ai max

1≤i≤N
|Fi| −Bi max

1≤i≤N
|Fi−1|

]
+Ai(±yi)−Bi(±yi−1)

= (Ai −Bi)|µ|+
1

α

[
Ai max

1≤i≤N
|Fi| −Bi max

1≤i≤N
|Fi−1|

]
± (Aiyi)−Biyi−1)

= (Ai −Bi)|µ|+
1

α

[
Ai max

1≤i≤N
|Fi| −Bi max

1≤i≤N
|Fi−1|

]
± lyi

= (Ai −Bi)|µ|+
1

α

[
Ai max

1≤i≤N
|Fi| −Bi max

1≤i≤N
|Fi−1|

]
± Fi

≥ (Ai −Bi)|µ|+
1

α

[
Ai max

1≤i≤N
|Fi| −Bi max

1≤i≤N
|Fi|
]
± Fi

≥ (Ai −Bi)|µ|+
Ai −Bi

α
max
1≤i≤N

|Fi| ± Fi.

Since (Ai −Bi)/α ≥ 1 , we have.

lΨi ≥ 0.

Employing the discrete maximum principle (part I) of this Lemma yields Ψi ≥ 0 and so

||yi||∞ ≤ |µ|+
1

α
max
0≤i≤N

|Fi|, (2.3.25)

as required.

(III) Likewise, consider the two mesh functions,

Ψi = |µ|+ 1

α
Fi ± yi.

It can be easily seen that for i = 0, Ψ0 ≥ 0 and that for i ≥ 1 we have

lΨi = Ai
[
|µ|+ 1

α
|Fi| ± yi]−Bi[|µ|+

1

α
|Fi−1| ± yi−1|]

= (Ai −Bi)|µ|+
1

α
[Ai|Fi| −Bi|Fi−1|] +Ai(±yi)−Bi(±yi−1)

= (Ai −Bi)|µ|+
1

α
[Ai|Fi| −Bi|Fi−1|]± (Aiyi −Biyi−1)

= (Ai −Bi)|µ|+
1

α
[Ai|Fi| −Bi|Fi−1|]± lyi

= (Ai −Bi)|µ|+
1

α
[Ai|Fi| −Bi|Fi−1|]± Fi,

Since Fi is nondecreasing, we have

lΨi ≥ (Ai −Bi)|µ|+
1

α
[Ai|Fi| −Bi|Fi|]± Fi

≥ (Ai −Bi)|µ|+
Ai −Bi

α
|Fi| ± Fi.

≥ 0.
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In virtue of the discrete maximum principle (part I) of this Lemma, we conclude that

Ψi ≥ 0, thus

|yi| ≤ |µ|+
1

α
Fi.

The uniqueness of the solution is guaranteed by the discrete maximum principle. The ex-

istence follows easily since, for linear problems, the existence of the solution is implied by its

uniqueness.

Lemma 2.3.2. Under the condition

α+
σkh

2
≥ α∗ > 0 (2.3.26)

for the difference operator

lhvi := εθivt̃,i + ai− 1
2
vσi +

σh

2
Kiivi (2.3.27)

we have

||v||∞ ≤ |v0|+
1

α∗
max
1≤i≤N

|lvi|, (2.3.28)

where

k =

 K∗, σ > 0

K∗, σ < 0, K∗ ≤ Kii ≤ K∗and Kii = K(ti, ti).

Proof. The difference expression (2.3.27) can be rewritten as

lyi ≡ Aiyi −Biyi−1,

where A and B are given by (2.3.21). From here, it is clear that

Ai > ai− 1
2

+
σhK(ti, ti)

2
> 0 and Bi =

ai− 1
2

exp(−ρai− 1
2
)

1− exp(−ρai− 1
2
)
> 0,

since from (2.3.26),

Ai −Bi = ai− 1
2

+ σhK(ti,ti)
2 > 0. (2.3.29)

Therefore, (2.3.28) is direct consequence of (2.3.22).
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The next lemma shows the stability of the discrete problem (2.3.18)-(2.3.19).

Lemma 2.3.3. Let the difference operator lhyi be defined by (2.3.27). Then for discrete problem

(2.3.18)-(2.3.19), we have

|lhyi| ≤ Ch
i∑

j=1

|yj−1|+ ||f ||∞, 1 ≤ i ≤ N. (2.3.30)

Proof. Using (2.3.17), we rewrite (2.3.18) as

|lhyi| ≤
∣∣∣fi− 1

2

∣∣∣+

∣∣∣∣∣∣σh2
i−1∑
j=1

K(ti, tj)yj

∣∣∣∣∣∣+

∣∣∣∣hσ2 K(ti, ti−1)yi−1

∣∣∣∣+

∣∣∣∣∣∣hσ2
i−1∑
j=1

K(ti, tj−1)yj−1

∣∣∣∣∣∣
+

∣∣∣∣∣∣h(1− σ)

2

i−1∑
j=1

[K(ti−1, tj)yj +K(ti−1, tj−1)yj−1]

∣∣∣∣∣∣
≤

∣∣∣fi− 1
2

∣∣∣+

∣∣∣∣∣∣σh2
i−1∑
j=1

K(ti, tj)yj

∣∣∣∣∣∣+

∣∣∣∣∣∣hσ2
i∑

j=1

K(ti, tj−1)yj−1

∣∣∣∣∣∣
+

∣∣∣∣∣∣h(1− σ)

2

i−1∑
j=1

[K(ti−1, tj)yj +K(ti−1, tj−1)yj−1]

∣∣∣∣∣∣
From here, taking into account the fact that the kernel is bounded, we obtain

lhyi ≤||f ||+ Ch
i∑

j=1

|yj−1|+ Ch
i−1∑
j=1

|yj |+ Ch
i−1∑
j=1

|yj−1|

≤Ch
i∑

j=1

|yj−1|+ |f |∞.

This ends the proof.

Lemma 2.3.4. Under the condition (2.3.26) for the solution of the difference scheme (2.3.18)-

(2.3.19) we have

|yi| ≤ (α−1∗ ||f ||∞ + |A|) exp(α−1∗ Cti), 1 ≤ i ≤ N. (2.3.31)

Proof. Let

vi =

 h
∑i

j=1 |yj−1|, i > 0,

0, i = 0,

where

vt̃,i = |yi−1|.
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It follows from inequality (2.3.30) that

lhyi ≤ Cvi + ||f ||∞,

y0 = A.

By the discrete maximum principle we have

|yi| ≤ wi,

where wi is the solution of the problem

lhwi ≤ Cvi + ||f ||∞,

w0 = |A|.

From here, in view of (2.3.22) we have

|yi| ≤ wi ≤ α−1∗ (Cvi + ||f ||∞) + |A| (2.3.32)

as a result

vt̃,i = |yi−1| ≤ α−1∗ (Cvi−1 + ||f ||∞) + |A|.

Then applying the difference analogue of the differential inequality gives

wi ≤ α−1∗ (||f ||∞ + |A|)α∗C−1(exp(α−1Cti∗ − 1)),

which together with (2.3.32) proves (2.3.31).

2.4 Uniform error estimate

In this section, we carry out the convergence analysis of the method presented in section (2.3).

To this end, we use the following error function zi = yi − ui, where yi is the solution of the

difference problem (2.3.18)-(2.3.19) and ui the solution of the continuous problem (1.3.1)-(1.3.2)

at the mesh point ti. Note that the error function zi, i = 0(1)N , satisfies the discrete problem

lhzi ≡εθizt̃,i + [ai− 1
2
yσi − ai− 1

2
uσi ] +

σh

2
[K(ti, ti)yi −K(ti, ti)ui]+

σh

2
[K(ti, ti−1)yi−1 −K(ti, ti−1)ui−1] + K̃ = Ri, i = 1(1)N (2.4.1)

z0 =0, (2.4.2)
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where Ri is given by (2.3.16) and

K̃ =

 0 i = 1,

h
2

∑i−1
j=1 {[Kσ(ti, tj)yj −Kσ(ti, tj)uj ] + [Kσ(ti, tj−1)yj−1 −Kσ(ti, tj−1)uj−1]} i > 2.

The next Lemma gives the main estimates of the truncation error for the method (2.3.18)-

(2.3.19).

Lemma 2.4.1. Let a, f ∈ C1(I), K ∈ C1
1 (I×I). Then for the remainder term Ri of the scheme

(2.3.18)-(2.3.19), we have

||Ri||∞,ωh
≤ Ch. (2.4.3)

Proof. The remainder term (2.3.16) of the scheme (2.3.18) can be rewritten as

Ri = R
(1)
i +R

(2)
i +R

(3)
i +R

(4)
i ,

where

R
(1)
i =χ−1i h−1

∫ ti

ti−1

[a(t)− a(ti− 1
2
)]u(t)ϕi(t)dt+ χ−1i h−1

∫ ti

ti−1

[f(ti− 1
2
)− f(t)]ϕi(t)dt, (2.4.4)

R
(2)
i =

∫ ti

ti−1

[
d

dξ

∫ ξ

0
K(ξ, s)u(s)ds

]
[H(t− ξ)− σ]dξ, (2.4.5)

R
(3)
i =

i∑
j=1

∫ tj

tj−1

(tj− 1
2
− ξ) d

dξ
[K(ti, ξ)u(ξ)] dξ, (2.4.6)

R
(4)
i =

 0 for i = 1,∑i−1
j=1

∫ tj
tj−1

(tj− 1
2
− ξ) ddξ [K(ti−1, ξ)u(ξ)]dξ for i > 1.

(2.4.7)

We first prove that for (2.4.4) the estimate

|R(1)
i | ≤ Ch, 1 ≤ i ≤ N, (2.4.8)

holds true. We rewrite (2.4.4) as

|R(1)
i | =

∣∣∣χ−1i h−1
∫ ti

ti−1

[
a(t)− a(ti− 1

2
)
]
u(t)ϕi(t)dt+χ−1i h−1

∫ ti

ti−1

[
f(ti− 1

2
)− f(t)

]
ϕi(t)dt

∣∣∣
≤ χ−1i h−1

∫ ti

ti−1

∣∣∣[a(t)− a(ti− 1
2
)
]
u(t)ϕi(t)

∣∣∣dt+χ−1i h−1
∫ ti

ti−1

∣∣∣[f(ti− 1
2
)− f(t)

]
ϕi(t)

∣∣∣dt.
Using the intermediate value theorem we obtain

|a(t)− a(ti−1/2)| = |a′(ϑi)||t− ti− 1
2
| ≤ C1h, ϑi ∈ (ti− 1

2
, t),

|f(ti−1/2)− f(t)| = |f ′(υi)||ti− 1
2
− t| ≤ C2h, υi ∈ (t, ti− 1

2
).
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Thus, it is clear that (2.4.8) is true.

For R
(2)
i we have,

|R(2)| ≤
∫ ti

ti−1

∣∣∣[ d
dξ

∫ ξ

0
K(ξ, s)u(s)ds

]
[H(t− ξ)− σ]

∣∣∣dξ,
and after applying Leibnitz rule we get

|R(2)| ≤max(|σ|,|1−σ)|)
{∫ ti

ti−1

|K(ξ, ξ)| |u(ξ)| dξ +

∫ ti

ti−1

∣∣∣∣∫ ξ

0

∂

∂ξ
K(ξ, s)u(s)ds

∣∣∣∣ dξ}
≤max(|σ|,|1−σ)|)

{∫ ti

ti−1

K̄|u(ξ)|dξ +

∫ ti

ti−1

∣∣∣∣∫ ξ

0
K̄u(s)ds

∣∣∣∣ dξ
}
.

Hence, using (2.2.1) we get

|R(2)
i | ≤ Ch. (2.4.9)

Next, for R
(3)
i we have

|R(3)
i | =

∣∣∣∣∣∣
i∑

j=1

∫ tj

tj−1

(tj− 1
2
− ξ) ∂

∂ξ
K(ti, ξ)u(ξ)dξ +

i∑
j=1

∫ tj

tj−1

(tj− 1
2
− ξ)K(ti, ξ)u

′(ξ)dξ

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
i∑

j=1

∫ tj

tj−1

(tj− 1
2
− ξ) ∂

∂ξ
K(ti, ξ)u(ξ)dξ

∣∣∣∣∣∣+

∣∣∣∣∣∣
i∑

j=1

∫ tj

tj−1

(tj− 1
2
− ξ)K(ti, ξ)u

′(ξ)dξ

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
i∑

j=1

∫ tj

tj−1

(tj− 1
2
− ξ)K̄u(ξ)dξ

∣∣∣∣∣∣+

∣∣∣∣∣∣
i∑

j=1

∫ tj

tj−1

(tj− 1
2
− ξ)K̄u′(ξ)dξ

∣∣∣∣∣∣
≤ Ch

(∫ ti

0
|u(ξ)|dt+

∫ ti

0
|u′(ξ)|dt

)
(2.4.10)

Since, by (2.2.2) for k = 1, ∫ ti

0
|u′(t)|dt ≤ C,

It follows from (2.4.10) that

|R(3)
i | ≤ Ch. (2.4.11)

Analogous to the proof for R
(3)
i , we have for (2.4.7),

|R(4)
i | ≤ Ch. (2.4.12)

Finally, the inequalities (2.4.8),(2.4.9),(2.4.11) and (2.4.12) imply the assertion of the lemma.

Lemma 2.4.2. Under condition of (2.3.26), the solution zi of problem (2.4.1)-(2.4.2) satisfies

||z||∞,ωh
≤ max

1≤i≤N
|Ri| (2.4.13)
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Proof. The proof follows directly from (2.3.31) by setting f = R and A = 0.

Combining the estimates in the two previous lemmas leads to the following theorem

Theorem 2.4.1. Suppose that the conditions of Lemma 2.4.1 are satisfied. Then the difference

scheme (2.3.18)-(2.3.19) applied to the continuous problem (1.3.1)-(1.3.2) on uniform mesh is

first order ε-uniformly convergent in the discrete maximum norm, i.e.,

||y − u||∞,ωh
≤ Ch.

2.5 Numerical results

To illustrate the numerical method described in this chapter, we solve two Volterra integro-

differential equations. The numerical results are presented in tabular form. In each table, we

present the maximum pointwise errors for various values of ε and N along with the corresponding

computational rates of convergence.

Example 2.5.1. [63] Consider Problem (1.3.1)-(1.3.2) where the coefficient functions are given

by

a(t) = t+ 1, K(t, s) = t+ s,

f(t) = ε cos t+ t sin t+ 2 sin t+ (t− 2tε+ ε2) exp(−t/ε) + t− 2t cos t+ εt− ε2,

u(0) = 1.

The exact solution to this problem is given by

u(t) = sin t+ exp(−t/ε).

Example 2.5.2. [4] Consider Problem (1.3.1)-(1.3.2) where the coefficient functions are given

by

a(t) = 1, K(t, s) = s,

f(t) = (2 + 9ε+ εt+ 11t+ t2) exp(−t)− 10(εt+ ε2) exp(−t/ε) + 5t2 + 10ε2 − 2,

u(0) = 10.

The exact solution to this problem is given by

u(t) = 10− (10 + t) exp(−t) + 10 exp(−t/ε).
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Since the exact solutions are available for the two test examples, the maximum errors at all

the mesh points are computed using the formula

eε,N := max
[0≤j≤1]

|uj − yj | (2.5.1)

for all the values of N . The numerical rates of convergence are calculated using the formula

rε,k := log 2

(
eNk,ε

e2Nk,ε

)
, k = 1, 2, 3, ... (2.5.2)

To evaluate the uniform maximum errors we use the formula

EN := max
0<ε≤1

|eε,k| (2.5.3)

with the corresponding ε-uniform rates of convergence obtained using

rN := log 2

(
ENk,ε

E2Nk,ε

)
, k = 1, 2, 3, ... (2.5.4)

Table 2.1: Results for Example 2.5.1: Maximum errors and maximum rates of convergence

obtained via EFOFDM (2.3.18)-(2.3.19) for σ = 0.5

ε n=40 n=80 n=160 n=320 n=640 n=1280 n=2560

10−2 2.52E-02 1.22E-02 5.64E-03 2.36E-03 8.21E-04 2.81E-04 7.02E-05

1.26 1.52 1.55 2.00 1.97 1.85

10−3 2.61E-02 1.30E-02 6.49E-03 3.20E-03 1.55E-03 7.30E-04 3.18E-04

1.02 1.04 1.09 1.20 1.44 1.52

10−4 2.61E-02 1.31E-02 6.58E-03 3.29E-03 1.64E-03 8.15E-04 4.03E-04

1.00 1.00 1.00 1.00 1.00 1.00

10−5 2.62E-02 1.31E-02 6.58E-03 3.30E-03 1.65E-03 8.24E-04 4.12E-04

1.00 1.00 1.00 1.00 1.00 1.00

10−6 2.62E-02 1.31E-02 6.59E-03 3.30E-03 1.65E-03 8.25E-04 4.12E-04

1.00 1.00 1.00 1.00 1.00 1.00
...

...
...

...
...

...
...

...

EN 2.62E-02 1.31E-02 6.59E-03 3.30E-03 1.65E-03 8.25E-04 4.12E-04

rN 1.00 1.00 1.00 1.00 1.00 1.00
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Table 2.2: Results for Example 2.5.1: Maximum errors and maximum rates of convergence

obtained via EFOFDM (2.3.18)-(2.3.19) for σ = 1

ε N = 40 N = 80 N = 160 N = 320 N = 640 N = 1280 N = 2560

10−2 2.75E-02 1.24E-02 5.64E-03 2.64E-03 1.28E-03 6.64-04 3.33E-04

1.26 1.52 1.55 2.00 1.97 1.85

10−3 3.21E-02 1.58-02 7.64E-03 3.57-03 1.61E-03 7.23E-04 3.34E-04

1.02 1.04 1.09 1.20 1.44 1.52

10−4 3.26E-02 1.63E-02 8.16E-03 4.05E-03 2.00E-03 9.70E-04 4.95E-04

1.00 1.00 1.00 1.00 1.00 1.00

10−5 3.27E-02 1.64E-02 8.21E-03 4.11E-03 2.05E-03 1.02E-03 5.09E-04

1.00 1.00 1.00 1.00 1.00 1.00

10−6 3.27E-02 1.64E-03 8.21E-03 4.11E-03 2.06E-03 1.03E-03 5.57E-04

1.00 1.00 1.00 1.00 1.00 1.00
...

...
...

...
...

...
...

...

EN 3.27E-02 1.64E-03 8.21E-03 4.11E-03 2.06E-03 1.03E-03 5.57E-04

rN 1.00 1.00 1.00 1.00 1.00 1.00

The maximum errors EN and the corresponding rates of convergence rN computed for the

numerical solution y are given in tables (2.1)-(2.4) for Examples (2.5.1) and (2.5.2). A careful

look at these tables show that the rates of convergence are monotonically growing towards one

which simply means that the method is convergent of order one and that the numerical results

are in good agreement with theoretical results as summarized in theorem 2.4.1.

2.6 Conclusion

We have investigated a numerical method for solving singularly perturbed Volterra integro-

differential equations whose solution displays one boundary layer. To construct the difference

scheme, a fitting factor was developed via the method of integral identities and exponential basis

function along with some interpolating quadrature rules with weights and remainder terms in

the integral form. We analyzed the method for stability and convergence and found it to be

convergent of order one in the maximum norm. Robustness behaviour have been displayed both

theoretical and numerical. The computations carried out on two test examples for σ = 1 and
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Table 2.3: Results for Example 2.5.2: Maximum errors and maximum rates of convergence

obtained via EFOFDM (2.3.18)-(2.3.19) for σ = 0.5

ε N = 40 N = 80 N = 160 N = 320 N = 640 N = 1280 N = 2560

10−2 1.02E-01 4.71E-02 2.47E-02 1.30E-02 6.81E-03 3.49E-03 1.77E-03

0.93 0.92 0.94 0.96 0.98 0.99

10−3 1.10E-01 5.50E-02 2.71E-02 1.31E-02 6.13E-03 3.07E-03 1.61E-03

1.02 1.05 1.10 1.00 0.93 0.93

10−4 1.11E-01 5.59E-02 2.80E-02 1.40E-02 6.94E-03 3.42E-03 1.67E-03

1.00 1.00 1.01 1.02 1.04 1.08

10−5 1.11E-01 5.59E-02 2.80E-02 1.40E-02 7.03E-03 3.51E-03 1.76E-03

1.00 1.00 1.00 1.00 1.00 1.00

10−6 1.11E-01 5.59E-02 2.80E-02 1.40E-02 7.03E-03 3.51E03 1.76E-03

1.00 1.00 1.00 1.00 1.00 1.00
...

...
...

...
...

...
...

...

EN 1.11E-01 5.59E-02 2.80E-02 1.40E-02 7.03E-03 3.51E-03 1.76E-03

rN 1.00 1.00 1.00 1.00 1.00 1.00

σ = 0.5 confirm the analytically findings given in Theorem 2.4.1.

In the next chapter, we discretize (1.3.1)-(1.3.2) on a piecewise-uniform mesh using the

midpoint difference operator along with the trapezoidal integration.
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Table 2.4: Results for Example 2.5.2: Maximum errors and maximum rates of convergence

obtained via EFOFDM (2.3.18)-(2.3.19) for σ = 1

ε N = 40 N = 80 N = 160 N = 320 N = 640 N = 1280 N = 2560

10−2 1.02E-01 4.74E-02 2.48E-02 1.31E-02 6.82E-03 3.49E-03 1.77E-03

0.94 0.92 0.94 0.96 0.98 0.99

10−3 1.10E-01 5.50E-02 2.71E-02 1.31E-02 6.13E-03 3.08E-03 1.61E-03

1.02 1.05 1.10 0.99 0.93 0.93

10−4 1.11E-01 5.58E-02 2.80E-02 1.40E-02 6.94E-03 3.42E-03 1.67E-03

1.00 1.00 1.01 1.02 1.04 1.08

10−5 1.11E-01 5.59E-02 2.80E-02 1.40E-02 7.02E-03 3.51E-03 1.75E-03

1.00 1.00 1.00 1.00 1.00 1.00

10−6 1.11E-01 5.59E-02 2.80E-02 1.40E-02 7.03E-03 3.51E-03 1.76E-03

1.00 1.00 1.00 1.00 1.00 1.00
...

...
...

...
...

...
...

...

EN 1.11E-01 5.59E-02 2.80E-02 1.40E-02 7.03E-03 3.51E-03 1.76E-03

rN 1.00 1.00 1.00 1.00 1.00 1.00
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Chapter 3

A Fitted Mesh Finite Difference

Method for SPVIDEs based on

Midpoint and Trapezoidal rules

In chapter 1, we discussed Fitted Mesh Finite Difference Methods (FMFDMs). We also sur-

veyed works showing how FMFDMs have been widely employed to various classes of singularly

perturbed differential equations. We noticed that only few researchers have engaged with this

approach for the case of singularly perturbed Volterra integro-differential equations. In this

chapter, we follow Zhongdi and Lifeng [63] to show how this approach can be used efficiently to

approximate the solution of problem (1.3.1)-(1.3.2).

We start by presenting the FMFDM followed by its convergence analysis. We then present

some computational results to attest the robustness of the scheme.

3.1 Difference scheme and mesh

In this section, we introduce a FMFDM for our model problem. Note that the piecewise-uniform

mesh constructed here is based on the bounds of the exact solution and its derivatives. Thus, let

N be a positive even integer and λ ∈ (0, 1). We divide the unit interval [0, 1] into subintervals

[0, λ] and [λ, 1]. Each of these two subintervals is divided into a uniform mesh of N/2 mesh

elements. Clearly, the mesh is uniform with N mesh subintervals if λ = 1/2. The value of λ is

λ = min

{
1

2
, 2εα−1 lnN

}
. (3.1.1)
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Therefore, the mesh is given by

ti =

 2iλ/N i = 0(1)N/2,

1− 2(1− λ)(N − i)/N i = N/2 + 1(1)N.
(3.1.2)

Further, we denote the mesh size in the subinterval [0, λ] by hi = h, with

h = 4εα−1N−1 lnN, for i = 0(1)N/2, (3.1.3)

and in [λ, 1] by hi = H with

H = 2(1− λ)N−1, for i = N/2 + 1(1)N. (3.1.4)

In the next section, to analyse the convergence of the method which we introduce below, we

shall only consider the case where λ = 2εα−1 lnN ,

and assume that ε ≤ CN−1 which is generally reasonable in practice.

On the above piecewise-uniform mesh, we denote gi := g(ti) for all the mesh points (ti)
N
i=0

in [0, 1]. In order to solve (1.3.1)-(1.3.2) numerically, [63] proposed the following finite difference

scheme.

LuNi ≡ε
uNi − uNi−1

hi
+ ai− 1

2
(uNi + uNi−1)/2 +

hi
4

[
3

2
K(ti− 1

2
, ti−1)u

N
i−1 +

1

2
K(ti− 1

2
, ti)u

N
i

]
+

K̃(t0, ..., ti−1;u
N
0 , ..., u

N
i−1) = fi− 1

2
, i = 1(1)N, (3.1.5)

uN0 =γ0, (3.1.6)

where

K̃(t0, ..., ti−1;u
N
0 , ..., u

N
i−1) =

 0, for i = 1,∑i−1
j=1

hj
2 [K(ti− 1

2
, tj)u

N
j +K(ti− 1

2
, tj−1)u

N
j−1] for i > 1,

(3.1.7)

and ai− 1
2
=a( ti−1+ti

2 ), similarly for fi− 1
2

and K(ti− 1
2
, tj). In matrix form, the scheme (3.1.5) is

given by a lower triangular linear system

Av = G,

where A is the matrix of the system and G the unknown vector. The entries of the matrix A
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and components of the vector G are given by

A11 = ε
h1

+ σ
4 (a0 + a1) + h1

16 (Ki,0 +K11) i = 1;

Aii = rci , i = 2(1)N ;

Ai,i−1 = r−i,i−1 i = 2(1)N ;

Ai,j = r−i,i−1 i = 3(1)N ; j = 1(1)i− 2;

G1 = 1
2(f0 + f1)− (−εh1 + 1

4(a0 + a1) + 3h1
16 (K11 +K1,0)y0 i = 1;

Gi = 1
2(fi−1 + fi)− (h4 (KKi +KKi−1))y0, i = 2(1)N ;

with

rci = ε
hi

+ 1
4(ai + ai−1) + hi

16(Ki−1,i +Kii);

r−i,i−1 = −ε
hi

+ 1
4(ai + ai−1) + 3hi

16 (Ki−1,i−1 +Ki,i−1) + 1
4hi−1(Ki−1,i−1 +Ki,i−1);

r−i,i−1 = 1
4(hj + hj+1)(Ki−1,j +Ki,j).

3.2 Error analyis of the scheme

Following ideas of [63] we present the convergence analysis of the method developed in previous

section. Note that the analysis of the difference scheme is based on the discrete comparison

principle and barrier function technique introduced respectively by Styness and Kellogg [36, 57].

We now introduce a number of results in forms of Lemmas on which the analyis will be based.

Lemma 3.2.1. Assume that

a(t) +
H

4
K(t, t) ≥ 2α∗ > 0. (3.2.1)

Then the operator lN defined by

lNuNi ≡ ε
uNi + uNi−1

hi
+

[
1

2
ai− 1

2
+
hi
8
K(ti− 1

2
, ti)

]
uNi , 1 ≤ i ≤ N (3.2.2)

satisfies a discrete comparison principle, i.e., if {vi} and {wi} are mesh functions that satisfy

v0 ≤ w0 and lNvi ≤ lNwi, for i = 1(1)N, then vi ≤ wi for all i.

Proof. The operator lN can be considered as a system of N linear equations in the unknowns

uNi . It is easy to verify that the coefficient matrix associated with the operator lN is diagonally

dominant and that all off diagonal entries are positives. Therefore, the matrix is an irreducible

M -matrix and has a positive inverse. Thus, if there exists two solutions vi and wi for 1 ≤ i ≤ N ,

such that v0 ≤ w0 and lNvi ≤ lNwi, for i = 1(1)N, then vi ≤ wi, 1 ≤ i ≤ N .

This discrete comparison principle is then used to prove the following stability lemma
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Lemma 3.2.2. Under the condition (3.2.1), the solution of the difference initial value problem

lNuNi = Fi, i = 1(1)N, uN0 = β (3.2.3)

satisfies the estimate.

|uNi | ≤ |β|+ α−1∗ |Fi|, i = 1(1)N, (3.2.4)

where Fi ≥ 0 is nondecreasing.

Proof. Consider the barrier function given by

Wi = |β|+ α−1∗ |Fi| ± uNi ,

Then

lNWi = ε
|β|+ α−1∗ |Fi| ± uNi − (|B|+ α−1∗ |Fi−1| ± uNi−1)

hi
+[

1

2
ai− 1

2
+
hi
8
K(ti− 1

2
, ti)

]
(|B|+ α−1∗ |Fi| ± uNi )

=
ε

hi

[
|Fi| − |Fi−1|

α∗
+(±uNi −(±uNi−1))

]
+

[
1

2
ai− 1

2
+
hi
8
K(ti− 1

2
, ti)

]
(|B|+α−1∗ |Fi| ± uNi )

=
ε

hi

[
|Fi| − |Fi−1|

α∗

]
+

[
1

2
ai− 1

2
+
hi
8
K(ti− 1

2
, ti)

]
(|B|+ α−1∗ |Fi|)+

ε

hi
(±uNi − (±uNi−1)) +

[
1

2
ai− 1

2
+
hi
8
K(ti− 1

2
, ti)

]
(±uNi )

=
ε

hiα∗
[|Fi| − |Fi−1|] +

[
1

2
ai− 1

2
+
hi
8
K(ti− 1

2
, ti)

]
(|B|+ α−1∗ |Fi|)± lNuNi

=
ε

hi

[
|lNuNi | − |lNuNi−1|

α∗

]
+

[
1

2
ai− 1

2
+
hi
8
K(ti− 1

2
, ti)

]
(|B|+ α−1∗ |Fi|)± lNuNi ≥ 0

≥0.

It then follows from the discrete comparison principle (Lemma 3.2.1) that

Wi ≥ 0, ∀i.

Thus

|β|+ α−1∗ |Fi| ± uNi > 0,

which implies that

|uNi | ≤ |β| ± α∗|Fi| (3.2.5)

as required.
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Lemma 3.2.3. There exists a constant C such that∫ tj

tj−1

(1 + ε−1 exp(−αt/2ε))dt ≤ CN−1 lnN, for j = 1(1)N.

Proof. For j = N/2 + 1(1)N , we write∫ tj

tj−1

(1 + ε−1 exp(−αt/(2ε)))dt =
[
t+ 2εα−1(ε−1 exp(−αt/(2ε)))

]tj
tj−1

=
[
t+ 2α−1 exp(−αt/(2ε))

]tj
tj−1

= hj − 2α−1[exp(−αtj/(2ε))− exp(−αtj−1/2ε)]

= CN−1 − 2α−1 [exp (−αtj/(2ε))− exp(−αtj−1/(2ε))]

≤ CN−1 − 2α−1 exp(−αtN/2/(2ε))

{tN/2 = 2εα−1 lnN at N/2 = j − 1}

≤ CN−1 − 2α−1N−1

≤ CN−1. (3.2.6)

For j = 1(1)N/2∫ tj

tj−1

(1 + ε−1 exp(−αt/2(ε))dt =
[
t+ 2εα−1(ε−1 exp(−αt/(2ε)))

]tj
tj−1

= hj − 2α−1 [exp(−αtj/(2ε))− exp(−αtj−1/(2ε))]

≤ CN−1 − 2α−1(exp(−αtj/2ε)− exp(−αtj/(2ε))×

exp(αtj/(2ε))× exp(αtj−1/(2ε)))

≤ CN−1 − 2α−1 exp(−αtj/2ε)(1− exp(αhj/(2ε))

≤ CN−1 + Cε−1hj exp(αtj/(2ε))

≤ CN−1 lnN. Since hj = 4εα−1N−1 lnN (3.2.7)

Combining (3.2.6) and (3.2.7) completes the proof.

The next lemma deals with the analyis of the truncation error of the trapezoidal integration

in approximating the Volterra integral.

Lemma 3.2.4. For 1 ≤ i ≤ N , there exists a constant C such that

τi =
∣∣∣hi

4

[
3

2
K(ti− 1

2
, ti−1)ui−1 +

1

2
K(ti− 1

2
, ti)ui

]
+ K̃(t0, ..., ti−1;u0, ..., ui−1)−∫ t

i− 1
2

0
K(ti− 1

2
, s)u(s)ds

∣∣∣ ≤ CN−2 ln2N,
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where K̃(t0, ..., ti−1;u0, ..., ui−1) is given by (3.1.7).

Proof. The truncation error of the trapezoidal integration in the approximation of the Volterra

integral satisfies the following inequality

τi ≤

∣∣∣∣∣hi4
[

3

2
K(ti− 1

2
, ti−1)ui−1 +

1

2
K(ti− 1

2
, ti)ui

]
−
∫ t

i− 1
2

ti−1

K(ti− 1
2
, s)u(s)ds

∣∣∣∣∣+∣∣∣∣K̃(t0, ..., ti−1;u0, ..., ui−1)−
∫ ti−1

0
K(ti− 1

2
, s)u(s)ds

∣∣∣∣ .
Since the kernel K(s, t) is bounded by K̄ = max

I×I
|K(t, s)|, we have

τi ≤

∣∣∣∣∣Chi[ui−1 + ui]− C
∫ t

i− 1
2

ti−1

u(s)ds

∣∣∣∣∣+

∣∣∣∣∣∣C
i−1∑
j=1

hj [u
N
j + uNj−1]− C

∫ ti−1

0
u(s)ds

∣∣∣∣∣∣ .
From here, taking Taylor series expansion with integral form of the remainder for u, ui−1 and

uj−1 around the points ti and tj respectively leads to

τi ≤ Chi
∫ t

i− 1
2

ti−1

|u′′(t)|(t− ti−1)dt+ C

i−1∑
j=1

hj

∫ tj

tj−1

|u′′(t)|(t− tj−1)dt.

Thereafter employing Lemma 2.2.1 for k = 2, we obtain

τi ≤ Chi
∫ t

i− 1
2

ti−1

(1 + ε−2 exp(−αt/ε))(t− ti−1)dt+ C
i−1∑
j=1

hj

∫ tj

tj−1

(1 + ε−2 exp(−αt/ε))(t− tj−1)dt

≤ C max
1≤j≤i

∫ tj

tj−1

(1 + ε−2 exp(−αt/ε))(t− tj−1)dt. (3.2.8)

Now, we shall utilize the following inequality [17]: For any positive monotonically decreasing

function g defined on [a, b] and arbitrary k ∈ N , we have∫ b

a
g(x)(x− a)k−1 ≤ 1

k

[∫ b

a
g(x)1/kdx

]k
(3.2.9)

Hence, the above inequality for k = 2 implies that

τi ≤
∫ tj

tj−1

(1 + ε−2 exp(−αt/ε))(t− tj−1)dt ≤
1

2

{∫ tj

tj−1

(1 + ε−2 exp(−αt/ε))dt

}2

.

The proposition of the Lemma follows from this inequality and the result of Lemma 3.2.3.

Combining the results in Lemma 2.2.1, 3.2.3 and 3.2.4, we obtain the following theorem

[63] which shows that in practice the method (3.1.5)-(3.1.6) developed on the piecewise-uniform

mesh is uniformly convergent of almost second kind.
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Theorem 3.2.1. Let u be the exact solution of (1.3.1)-(1.3.2) and uN the solution of the discrete

problem (3.1.5)-(3.1.6). Then under the condition (3.2.1), for the difference problem (3.1.5)-

(3.1.6) we have

|ui − uNi | ≤ CN−2 ln2N, 0 ≤ i ≤ N. (3.2.10)

Proof. For 0 ≤ i ≤ N , in view of (3.1.5) and (3.2.2) we have∣∣lN (ui − uNi )
∣∣ =

|lNui − {fi− 1
2

+
1

2
ai− 1

2
uNi−1 −

3hi
8
K(ti− 1

2
, ti−1)u

N
i−1} − K̃(t0, ..., ti−1;u

N
0 , ..., u

N
i−1)|

≤
∣∣∣∣ε(ui − ui−1hi

− u′
i− 1

2

)∣∣∣∣+
∣∣∣hi

8
K(ti− 1

2
, ti)ui −

∫ t
i− 1

2

0
K(ti− 1

2
, s)u(s)ds+

1

2
ai− 1

2
ui−

ai− 1
2
ui− 1

2
+

1

2
ai− 1

2
uNi−1 +

3hi
8
K(ti− 1

2
, ti−1)u

N
i−1 − K̃(t0, ..., ti−1;u

N
0 , ..., u

N
i−1)

∣∣∣
≤
∣∣∣∣ε(ui − ui−1hi

− u′
i− 1

2

)∣∣∣∣+

∣∣∣∣12ai− 1
2
ui − ai− 1

2
ui− 1

2
+

1

2
ai− 1

2
ui−1

∣∣∣∣+

∣∣∣∣12ai− 1
2
(ui−1 − uNi−1)

∣∣∣∣+∣∣∣hi
4

[
3

2
K(ti− 1

2
, ti−1)ui−1+

1

2
K(ti− 1

2
, ti)ui

]
+K̃(t0, ..., ti−1;u0, ..., ui−1)−

∫ t
i− 1

2

0
K(ti− 1

2
,, s)u(s)ds

∣∣∣+∣∣∣∣3hi8
K(ti− 1

2
, ti)(ui−1 − uNi−1)

∣∣∣∣+
∣∣∣K̃(t0, ..., ti−1;u0 − uN0 , ..., ui−1 − uNi−1)

∣∣∣ .
Using the assumption that the kernel and all its derivatives are bounded, we get

≤
∣∣∣∣ε(ui − ui−1hi

− u′
i− 1

2

)∣∣∣∣+

∣∣∣∣12ai− 1
2
ui − ai− 1

2
ui− 1

2
+

1

2
ai− 1

2
ui−1

∣∣∣∣+

∣∣∣∣12ai− 1
2
(ui−1 − uNi−1)

∣∣∣∣+
C
∣∣∣hi [ui−1 + ui] + C

i−1∑
j=1

hj [uj + uj−1]− C
∫ t

i− 1
2

0
u(s)ds

∣∣∣+ C
∣∣(ui−1 − uNi−1)∣∣+

C

∣∣∣∣∣∣
i−1∑
j=1

hj [uj − uNj + uj−1 − uNj−1]

∣∣∣∣∣∣ .
Again, using Taylor series expansion with integral form of the remainder for u′

i− 1
2

, ui− 1
2
, ui−1,

uj−1, u
N
j−1 respectively about the points ti and tj together with the result of Lemma 3.2.4 we

have ∣∣lN (ui − uNi )
∣∣ ≤Cε∫ ti

ti−1

|u′′′(t)|(t− ti−1)dt+ C

∫ ti

ti−1

|u′′(t)|(t− ti−1)dt+

CN−2 ln2N + C

i−1∑
j=1

hj |uj − uNj |.

Further, using Lemma 2.2.1 for k = 2, leads to the inequality

∣∣lN (ui − uNi )
∣∣≤ C ∫ ti

ti−1

(1 + ε−2 exp(αt/ε))(t− ti−1)dt+CN−2 ln2N +C
i−1∑
j=1

hj |uj − uNj |.
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Furthermore, to bound the integral in this last expression we utilize again the inequality (3.2.9)

for k = 2:

∣∣lN (ui − uNi )
∣∣ ≤ C{∫ ti

ti−1

(1 + ε−1 exp(αt/(2ε)))dt

}2

+ CN−2 ln2N + C
i−1∑
j=1

hj |uj − uNj |,

which in view of Lemma 3.2.3 we write

∣∣lN (ui − uNi )
∣∣ ≤ CN−2 ln2N + C

i−1∑
j=1

hj |uj − uNj |.

Applying the discrete comparison principle (Lemma 3.2.1) we obtain

|ui − uNi | ≤ wi, 0 ≤ i ≤ N,

where wi satisfies the problem

lNwi =

 CN−2 ln2N, i = 1,

CN−2 ln2N + C
∑i−1

j=1 hj |uj − uNj |, 1 ≤ i ≤ N,

w0 = 0.

From here, it is clear from the stability result (Lemma 3.2.2) that

|ui − uNi | ≤ |wi| ≤ CN−2 ln2N + C
i−1∑
j=1

hj |uj − uNj |

and consequently

|ui−1 − uNi−1| ≤ CN−2 ln2N + C

i−2∑
j=1

hj |uj − uNj |.

Finaly, application of the recurrence inequality gives

|ui − uNi | ≤ CN−2 ln2N, for i = 0(1)N.

3.3 Numerical results

To illustrate the performance of the proposed numerical method, we give some numerical results

for three test examples. The maximum error of solution and the rates of convergence are

evaluated using fomulae (2.5.1)-(2.5.4).
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Example 3.3.1. [63] Consider problem (1.3.1)-(1.3.2) with

a(t) = t+ 1,K(t, s) = t+ s,

f(t) = ε cos t+ t sin t+ 2 sin t+ (t− 2tε+ ε2) exp

(
−t
ε

)
+ t− 2t cos t+ εt− ε2,

u(0) = 1.

The exact solution to this problem is

u(t) = sin t+ exp

(
−t
ε

)
.

Example 3.3.2. [63] Consider problem (1.3.1)-(1.3.2) with

a(t) = 2,K(t, s) = s,

f(t) = ε− exp

(
−t
ε

)
+ 2t+ 2 exp

(
−t
ε

)
+

1

3t3
− tε exp

(
−t
ε

)
− ε2 exp

(
−ε
t

)
+ ε2,

u(0) = 1.

The exact solution to this problem is given by

u(t) = t+ exp

(
−t
ε

)
.

Example 3.3.3. [4] Consider problem (1.3.1)-(1.3.2) with

a(t) = 1,K(t, s) = s,

f(t) = (2 + 9ε+ εt+ 11t+ t2) exp(−t)− 10(εt+ ε2) exp

(
−t
ε

)
+ 5t2 + 10ε2 − 2,

u(0) = 10.

The exact solution to this problem is given by

u(t) = 10− (10 + t) exp(−t) + 10 exp

(
−t
ε

)
.

Table 3.1 and 3.3 provide the maximum ε-uniform errors and the corresponding rates of

convergence. From these two tables, one can observe that the rate of convergence are increasing

towards 2 which indicates that the numerical results are essentially in agreement with our

theoretical outcomes outlined in Theorem 3.2.1.
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Table 3.1: Results for Example 3.3.1: Maximum errors and maximum rates of convergence

obtained via FMFDM (3.1.5)-(3.1.6)

ε n=40 n=80 n=160 n=320 n=640 n=1280 n=2560

10−2 2.92E-03 9.91E-04 3.15E-04 8.84E-05 4.72E-05 4.73E-05 4.73E-05

1.55 1.65 1.83 0.90 -0.00 -0.00

10−3 2.94E-03 1.01E-03 3.36E-04 1.08E-04 3.38E-05 1.02E-05 2.93E-06

1.53 1.59 1.63 1.67 1.72 1.80

10−4 2.94E-03 1.01E-03 3.36E-04 1.08E-04 3.40E-05 1.04E-05 3.13E-06

1.53 1.59 1.63 1.67 1.70 1.73

10−5 2.94E-03 1.01E-03 3.36E-04 1.08E-04 3.40E-05 1.04E-05 3.13E-06

1.53 1.59 1.63 1.67 1.70 1.73
...

...
...

...
...

...
...

...

EN 2.94E-03 1.01E-03 3.36E-04 1.08E-04 3.40E-05 1.04E-05 3.13E-06

rN 1.53 1.59 1.63 1.67 1.70 1.73

Table 3.2: Results for Example 3.3.2: Maximum errors and maximum rates of convergence

obtained via FMFDM (3.1.5)-(3.1.6)

ε n=40 n=80 n=160 n=320 n=640 n=1280 n=2560

10−2 4.38E-03 1.57E-03 5.65E-04 2.38E-04 1.89E-04 1.87E-04 1.87E-04

1.47 1.24 0.33 0.01 0.00 0.00

10−3 4.22E-03 1.48E-03 4.96E-04 1.60E-04 5.07E-05 1.59E-05 5.21E-06

1.57 1.62 1.66 1.67 1.60 1.24

10−4 4.21E-03 1.47E-03 4.94E-04 1.60E-04 5.00E-05 1.53E-05 4.62E-06

1.57 1.63 1.67 1.70 1.73 1.75

10−5 4.21E-03 1.47E-03 4.94E-04 1.59E-04 5.00E-05 1.53E-05 4.61E-06

1.57 1.63 1.67 1.70 1.73 1.75
...

...
...

...
...

...
...

...

EN 4.21E-03 1.47E-03 4.94E-04 1.59E-04 5.00E-05 1.53E-05 4.61E-06

rN 1.57 1.63 1.67 1.70 1.73 1.75
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Table 3.3: Results for Example 3.3.3: Maximum errors and maximum rates of convergence

obtained via FMFDM (3.1.5)-(3.1.6)

ε n=40 n=80 n=160 n=320 n=640 n=1280 n=2560

10−2 1.89E-02 4.69E-03 1.17E-03 2.93E-04 7.32E-05 1.83E-05 4.57E-06

2.00 2.00 2.00 2.00 2.00 2.00

10−3 4.21E-02 1.47E-02 4.94E-03 1.59E-03 5.00E-04 1.53E-04 4.61E-05

1.57 1.63 1.67 1.70 1.73 1.75

10−4 4.21E-02 1.47E-02 4.94E-03 1.59E-03 5.00E-04 1.53E-04 4.61E-05

1.57 1.63 1.67 1.70 1.73 1.75

10−5 4.21E-02 1.47E-02 4.94E-03 1.59E-03 5.00E-04 1.53E-04 4.61E-05

1.57 1.63 1.67 1.70 1.73 1.75
...

...
...

...
...

...
...

EN 4.21E-02 1.47E-02 4.94E-03 1.59E-03 5.00E-04 1.53E-04 4.61E-05

rN 1.57 1.63 1.67 1.70 1.73 1.75

3.4 Conclusion

In this chapter, we have investigated a class of FMFDMs to solve (1.3.1)-(1.3.2). The problem

was discretized using the standard backward difference operator along with the midpoint differ-

ence operator and trapezoidal integration on a piecewise-uniform mesh of Shishkin type. The

method was analysed for convergence and stability and shown to be convergent of almost second

order. The numerical results displayed in table 3.1 and 3.3 are in agreement with the theoretical

results summarized in the Theorem 3.2.1.
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Chapter 4

A Fitted Mesh Finite Difference

Method for SPVIDEs based on

Right and Left Side Rectangle Rules

This chapter presents another FMFDM to solve (1.3.1)-(1.3.2). The method is composed of an

implicit finite difference scheme on a piecewise-uniform mesh of Shiskin type. The right and

composite left side rectangle rules with the weights and remainder terms in intergral form have

been used to discretize the integral part of the problem. This method was applied by Kudu

et al. [38] to solve a linear singularly perturbed Volterra delayed integro-differential equation.

In the next Section, we construct the scheme. The analysis of the fitted mesh finite difference

method proposed is given in Section 4.3. Section 4.4 deals with numerical verifications. Section

4.5 is devoted to conclusion of the chapter.

4.1 Mesh and scheme

We derive the fitted finite difference scheme on the following piecewise-uniform division: ψN =

{0 = t0 < t1 < t2 < ... < tN−1 < tN = 1}, where the mesh widths will be defined as hi = ti−ti−1.

The notations and assumptions used in chapter 2 are again considered here. It is known that

the class of problems given by (1.3.1)-(1.3.2) exhibits one boundary layer, hence we define the

piecewise-uniform mesh as follows. Let N be a positive even integer. We consider a slight variant
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of the transition parameter given by Şevgin in [54]

δ = min{1/2, α−1ε| ln ε|} (4.1.1)

and partition evenly each of the subintervals [0, δ] and [δ, 1] into N/2 subintervals. The mesh

is uniform if δ = 1/2 and piecewise uniform if δ = α−1ε| ln ε|. Then the corresponding mesh

points are

ti =

 −α−1ε ln
[
1− (1− ε) 2iN

]
, i = 0(1)N/2,

δ + 2(1−δ)
N (i− N

2 ), i = N/2 + 1(1)N.
(4.1.2)

Assumption: we shall assume that δ = α−1ε| ln ε|, so that the mesh is fine on [0, δ] and coarse

in [δ, 1]. To construct the numerical method, we integrate (1.3.1) over the interval [ti−1, ti]:

εh−1i

∫ ti

ti−1

u′(t)dt+ h−1i

∫ ti

ti−1

a(t)u(t)dt+ h−1i

∫ ti

ti−1

{∫ t

0
K(t, s)u(s)ds

}
dt = h−1i

∫ ti

ti−1

f(t)dt.

Applying right side rectangle rule we obtain the relation

εut̃,i + aiui + h−1i

∫ ti

ti−1

{∫ t

0
K(t, s)u(s)ds

}
dt+R

(1)
i (4.1.3)

where the error R
(1)
i term is calculated using the formula (2.3.10):

R
(1)
i = −h−1i

∫ ti

ti−1

(t− ti−1)
d

dt
[a(t)u(t)− f(t)] dt. (4.1.4)

Next, repeating this process for the integral part in (4.1.3), we get

h−1i

∫ ti

ti−1

{∫ t

0
K(t, s)u(s)ds

}
dt = h−1i (ti − ti−1)

∫ ti

0
K(ti, s)u(s)ds+R

(2)
i , (4.1.5)

where the discretization error R
(2)
i is evaluated using (2.3.9):

R
(2)
i = −h−1i

∫ ti

ti−1

(t− ti−1)
d

dt

[ ∫ t

0
K(t, s)u(s)ds

]
dt. (4.1.6)

Moreover, applying the composite left side rectangle rule to the integral term in (4.1.5), we

obtain ∫ ti

0
K(ti, s)u(s)ds =

i−1∑
j=0

hj+1K(ti, tj)uj +R
(3)
i

where utilizing the formula (2.3.9), we obtain

R
(3)
i =

i∑
j=1

∫ tj

tj−1

(tj − s)
d

ds
[K(ti, s)u(s)]ds. (4.1.7)
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As a result, we obtain the following equation

εut̃,i + aiui +

i−1∑
j=0

hj+1K(ti, tj)uj +Ri = fi i = 1(1)N, (4.1.8)

where Ri is given by the linear combination

Ri = R
(1)
i +R

(2)
i +R

(3)
i . (4.1.9)

Neglecting Ri in (4.1.8), we obtain the finite difference scheme

LNyi = εyt̃,i + aiyi +
i−1∑
j=0

hj+1K(ti, tj)yj = fi i = 1(1)N, (4.1.10)

y(0) = B. (4.1.11)

In matrix notation, the scheme (4.1.10)-(4.1.11) is given by lower triangular system Ay = F ,

where A is the matrix of the system and F is the unknown vector. The entries of the matrix A

and the vector F are given by

Aii = rci , i = 1(1)N ;

Ai,i−1 = r−1i,i−1 i = 2(1)N ;

Ai,j = r−2i,i−1 i = 3(1)N ; j = 1(1)i− 2;

F1 = f1 − ( ε
h1
− h1K10)y0 i = 1;

Fi = fi − h1K10, i = 2(1)N ;

with

rci = ε
hi

+ ai;

r−1i,i−1 = −ε
hi

+ hiKi,i−1;

r−2i,i−1 = hj+1Ki,j .

4.2 Stability and convergence analysis of scheme

This section presents the stability results and the error analysis for the numerical method pro-

posed in Section 4.1. The main ε-uniform convergence result in this chapter is also given at the

end of the section.

The error function, which we define by τi = yi−ui, i = 0(1)N , is the solution of the discrete

problem

lNτi = Ri i = 0(1)N (4.2.1)

τ = 0 (4.2.2)
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where Ri is given by (4.1.9). The next two Lemmas are devoted to the stability bound of the

scheme.

Lemma 4.2.1. [38] Consider the following difference problem

lNvi := εvt̃,i + aivi = Fi i = 0(1)N, (4.2.3)

v0 = B. (4.2.4)

Let |Fi| ≤ Fi and Fi a nondecreasing function. Then the solution of (4.2.3)-(4.2.4) satisfies

|vi| ≤ |B|+ α−1Fi, i = 0(1)N. (4.2.5)

Proof. Consider the barrier function

Φ±i = ±vi + |B|+ α−1Fi. (4.2.6)

For i=0, we have

Φ±0 = ±v0 + |B|+ α−1F0

= ±B + |B|+ α−1F0

≥ 0,

and for i ≥ 1,

lNΦ±i := εΦ±
t̃,i

+ aiΦ
±
i

:= ε(±vt̃,i + |B|+ α−1Ft̃,i) + ai(±vi + |B| ± α−1Fi)

:= [ε(±vt̃,i) + ai(±vi)] + (ε+ ai)|B| ± εα−1Ft̃,i + aiα
−1Fi

:= ±Fi + aiα
−1Fi + (ε+ ai)|B|+ εα−1Ft̃,i,

we have

lNΦ±i ≥ ±Fi + aiα
−1Ft̃,i. ( Since as F is nondecreasing,Ft̃,i = (Fi −Fi−1)/h ≥ 0)

≥ Fi + Fi

≥ 0.

Applying the maximum principal, yields

Φ±i ≥ 0,
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which means that

|vi| ≤ |B|+ α−1Fi, i = 0(1)N, (4.2.7)

as required.

Lemma 4.2.2. Let yi be the solution of (4.1.10)-(4.1.11). Then result

||y||∞,ψN
≤ (B + α−1||fi||∞, ψN ) exp(α−1K̄). (4.2.8)

Proof. The difference equation (4.1.10) can be rewritten in the form

εyt̃,i + aiyi = Fi, (4.2.9)

where

Fi = fi −
i−1∑
j=0

hj+1K(ti, tj)yj .

Thus, we have

|Fi| ≤ |fi|+
i−1∑
j=0

hj+1K̄|yj |) ≤ ||f ||∞,ψN
+

i−1∑
j=0

hj+1K̄|yj |.

Furthermore applying Lemma 4.2.1, we have

|yi| ≤ |B|+ α−1||f ||∞,ψN
+ α−1

i−1∑
j=0

hj+1K̄|yj |,

≤ |B|+ α−1||f ||∞,ψN
+ α−1

i∑
j=1

hjK̄|yj−1|,

so that according to Grownall’s inequality we obtain

|yi| ≤ (|B|+ α−1||f ||∞,ψN
) exp(α−1K̄tj) ≤ (|B|+ α−1||f ||∞,ψN

) exp(α−1K̄).

We now carry out the error analysis of the method.

Lemma 4.2.3. Let the assumptions of Lemma 2.2.1 be satisfied. Then for the truncation error

Ri, we have

||R||1, ψN ≤ CN−1. (4.2.10)
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Proof. To prove (4.2.10), it suffices to establish that the functions ||Rdi ||1, (d = 1, 2, 3) involved

in the expression for Ri admit the estimate

||Rki ||1 ≤ CN−1, k = 1, 2, 3. (4.2.11)

Using the hypothesis of Lemma 2.2.1 on an arbitrary mesh we obtain

R
(1)
i ≤ C{hi +

∫ ti

ti−1

|u′(t)|dt}, i = 1(1)N, (4.2.12)

which in view of (2.2.2), for k = 1, yields

R
(1)
i ≤ C{hi +

1

ε

∫ ti

ti−1

exp(−αt/ε)dt}, i = 1(1)N. (4.2.13)

For (4.1.6) we have,

|R(2)
i | = h−1i

∫ ti

ti−1

(t− ti−1)
∣∣∣ d
dt

[ ∫ t

0
K(t, s)u(s)ds

]∣∣∣dt
Upon applying Leibniz rule, we obtain

|R(2)
i | ≤

∫ ti

ti−1

|K(t, t)||u(t)|dt+

∫ ti

ti−1

∣∣∣ ∫ t

0

∂

∂t
K(t, s)u(s)ds

∣∣∣dt
≤
∫ ti

ti−1

K̄|u(t)|dt+

∫ ti

ti−1

∣∣∣ ∫ t

0
K̄u(s)ds

∣∣∣dt.
In virtue of Lemma 2.2.1, we obtain

|R(2)
i | ≤ Chi, i = 1(1)N. (4.2.14)

Further,

|R(3)
i | =

∣∣∣ i∑
j=1

∫ tj

tj−1

(tj − s)
d

dt

[
K(ti, s)u(s)

]
ds
∣∣∣

≤
i∑

j=1

∫ tj

tj−1

(tj − s)
∣∣∣ ∂
∂t
K(ti, s)u(s)

∣∣∣ds+
∣∣∣ i∑
j=1

∫ tj

tj−1

(tj − s)K(ti, s)u
′(s)
∣∣∣ds

≤
i∑

j=1

∫ tj

tj−1

(tj − s)
∣∣∣K̄u(s)

∣∣∣ds+
∣∣∣ i∑
j=1

∫ tj

tj−1

(tj − s)K̄u′(s)
∣∣∣ds

≤ Chi
{∫ ti

0
|u(s)|ds+

∫ ti

0
|u′(s)|ds

}
. (4.2.15)

Now, applying (2.2.1) and (2.2.2) for k = 1 we get

|R(3)
i | ≤ Chi, i = 1(1)N, (4.2.16)
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where

hi =

 −α
−1ε ln

[
1− (1− ε) 2iN

]
+ α−1ε ln

[
1− (1− ε)2(i−1)N

]
, i = 0(1)N/2,

2(1−δ)
N , i = N/2 + 1(1)N.

(4.2.17)

As indicated earlier, we only consider the case where δ < 1/2 i.e., δ = α−1ε| ln ε| and analyse

the truncation error Ri on the inner region, [0, δ] and the outer region, [δ, 1] separately. In the

layer region [0, δ], by (2.2.2) for k = 1, the inequality (4.2.12) becomes

|R(1)
i | ≤ C

[
hi + α−1

(
exp

(
−αti−1

ε

)
+ exp

(
−αti

ε

))]
, i = 1(1)N/2, (4.2.18)

and, since [54]

hi = ti − ti−1 = −α−1ε ln

[
1− (1− ε) 2i

N

]
+ α−1ε ln

[
1− (1− ε)(2(i− 1))

N

]
≤ 2α−1(ε− 1)N−1 (4.2.19)

and

exp(−αti−1/ε) + exp(−αti/ε) = 2(1− ε)N−1. (4.2.20)

It then follows from (4.2.18) that

|R(1)
i | ≤ C{2α

−1(1− ε)N−1 + 2(1− ε)α−1N−1} = 4α−1CN−1, i = 0(1)N/2. (4.2.21)

Analogously for the estimate (4.2.14) and (4.2.16) we have

|R(2)
i | ≤ 2α−1εCN−1, i = 0(1)N/2, (4.2.22)

and

|R(3)
i | ≤ 2α−1εCN−1, i = 0(1)N/2. (4.2.23)

Combining (4.2.21), (4.2.22) and (4.2.23) for the inner region [0, δ], we get

|Ri| ≤ CN−1, i = 0(1)N/2. (4.2.24)

In the outer layer region [δ, 1], assuming as in [54] that

|u′(t)| ≤ C (or ε−1 exp(−αt/ε) ≤ 1), thus, application of Lemma 2.2.1 for k = 1, leads to

|R(1)
i | ≤ Ch, i = N/2 + 1(1)N. (4.2.25)

Following the same lines of discussion as above, we have

|R(1)
i | ≤ CN

−1, i = N/2 + 1(1)N, (4.2.26)
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|R(2)
i | ≤ 2CN−1, i = N/2 + 1(1)N, (4.2.27)

and

|R(3)
i | ≤ 2CN−1, i = N/2 + 1(1)N. (4.2.28)

From (4.2.26)-(4.2.28), we obtain for the outer region

|Ri| ≤ CN−1, i = N/2 + 1(1)N. (4.2.29)

Inequalities (4.2.24) and (4.2.29) immediately lead to the estimate (4.2.11).

Lemma 4.2.4. Suppose that τi is the solution of Problem (4.2.3)-(4.2.4). Then, we have

||τi||∞,ψN
≤ C||Ri||∞,ψN

. (4.2.30)

Proof. The proof follows directly from (4.2.8) by taking f ≡ R and B ≡ 0.

We are now ready to present the main result of this chapter. The following theorem indicates

that, in practice, the scheme (4.1.10)-(4.1.11) is first order convergent independently of the

perturbation parameter on the piecewise-uniform Shishkin mesh.

Theorem 4.2.1. Assume that the conditions of Lemma 2.2.1 are satisfied up to k = 1. Then

the solution of the problems (4.1.10)-(4.1.11) converges to the solution of (1.3.1)-(1.3.2) and

satisfies

||u− y||∞,ψN
≤ CN−1. (4.2.31)

Proof. The proof follows directly by combining the two previous lemmas.

Remark 4.2.1. Note that the above ε-uniform result does not contain the so called “locking

factor” which usually surfaces when discretisations are made on Shishkin meshes. In fact, esti-

mates of the type ||y − u||∞,ψN
≤ CN−1 lnN are encountered when the choice of the transition

point is dependent on some factor of lnN . Our choice of the transition point was inspired by

[54], which uses a factor of | ln ε| (See (4.1.1)).

4.3 Numerical verification

In this section we perform numerical experiments on two test singularly perturbed Volterra

integro-differential equations.
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Example 4.3.1. [63] Consider the problem (1.3.1)-(1.3.2), where

a(t) = t+ 1, K(t, s) = t+ s,

f(t) = ε cos t+ t sin t+ 2 sin t+ (t− 2tε+ ε2) exp

(
−t
ε

)
+ t− 2t cos t+ εt− ε2,

u(0) = 1.

The exact solution to this problem is given by

u(t) = sin t+ exp

(
−t
ε

)
Example 4.3.2. [4] Consider the problem (1.3.1)-(1.3.2) where

a(t) = 1, K(t, s) = s,

f(t) = (2 + 9ε+ εt+ 11t+ t2) exp(−t)− 10(εt+ ε2) exp

(
−t
ε

)
+ 5t2 + 10ε2 − 2,

u(0) = 10.

The exact solution to this problem is given by

u(t) = 10− (10 + t) exp(−t) + 10 exp

(
−t
ε

)
.

We calculated maximum point-wise errors for various values of ε and N . We have also

calculated the computational rates of convergence. The maximum error eε,N of the solution and

the rates of convergence are evaluated using fomulae (2.5.1)-(2.5.4). Tables 4.1 and 4.2 display

maximum point-wise errors along with the rate of convergence rε,k for the two test examples.

Clearly, it can be observed from these tables that the errors are of first order convergent as the

theory indicates.

4.4 Conclusion

In this chapter we developed a descretization based on a piecewise-uniform mesh to solve (1.3.1)-

(1.3.2) . We used the standard backward difference operator on a piecewise-uniform mesh of

Shishkin type along with right and composite left side rectangle rules with weights and remainder

terms in the integral form. It is shown that the method is robust with respect to the perturbation

parameter. Two Examples were solved to show the applicability, efficiency and accuracy of the

method.
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Table 4.1: Results for Example 4.3.1: Maximum error and maximum rates of convergence

obtained via FMFDM (4.1.10)-(4.1.11)

ε N = 40 N = 80 N = 160 N = 320 N = 640 N = 1280 N = 2560

10−2 6.23E-02 3.14E-02 1.57E-02 4.30E-02 6.82E-02 6.32E-02 3.69E-02

0.96 0.14 -1.00 0.98 0.13 0.76

10−4 6.11E-02 3.08E-02 1.55E-02 7.74E-03 5.25E-03 1.46E-02 2.94E-02

0.99 0.99 0.56 -1.47 1.01 0.72

10−6 5.95E-02 3.00E-02 1.51E-02 7.55E-03 3.78E-03 1.89E-03 9.46E-04

0.99 0.99 0.99 0.99 0.12 -1.39

10−8 5.87E-02 2.96E-02 1.49E-02 7.45E-03 3.73E-03 1.87E-03 9.33E-04

0.99 0.99 0.99 0.99 0.99 0.99

10−10 5.82E-02 2.94E-02 1.47E-02 7.39E-03 3.70E-03 1.85E-03 9.26E-04

0.99 0.99 0.99 0.99 0.99 0.99

10−12 5.79E-02 2.92E-02 1.47E-02 7.36E-03 3.69E-03 1.84E-03 9.22E-04

0.99 0.99 0.99 0.99 0.99 0.99

Table 4.2: Results for Example 4.3.2: Maximum errors and maximum rates of convergence

obtained via FMFDM (4.1.10)-(4.1.11)

ε N = 40 N = 80 N = 160 N = 320 N = 640 N = 1280 N = 2560

10−2 3.77E-01 2.10E-01 1.12E-01 5.76E-02 2.92E-02 1.47E-02 7.40E-03

0.28 0.77 0.84 0.91 0.95 0.97

10−4 4.34E-01 2.18E-01 1.10E-01 5.55E-02 5.55E-02 1.47E-01 2.95E-001

0.97 0.99 0.00 -1.40 -1.00 0.72

10−6 4.40E-01 2.22E-01 1.12E-01 5.58E-02 2.80E-02 1.40E-02 7.02E-03

0.99 1.00 0.99 0.99 0.99 0.99

10−8 4.40E-01 2.23E-01 1.12E-01 5.61E-02 2.81E-02 1.40E-02 7.02E-03

0.99 0.99 0.99 0.99 0.99 0.99

10−10 4.40E-01 2.23E-001 1.12E-01 5.61E-02 2.81E-02 1.41E-02 7.03E-03

0.99 0.99 0.99 0.99 0.99 0.99

10−12 4.40E-01 2.23E-01 1.12E-01 5.61E-02 2.81E-02 1.41E-02 7.03E-03

0.99 0.99 0.99 0.99 0.99 0.99
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We have noted that the numerical results corroborate the conclusions of the convergence

analysis. However, rather than being robust for a wide range of ε, robustness is observed for

only ε < 10−8. To mitigate this drawback, we will use the well known Simpson and trapezoidal

quadrature rules in the next chapter.
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Chapter 5

New Parameter-Uniform

Discretizations of SPVIDEs on a

Piecewise Uniform Mesh.

In this chapter, we extend the method proposed in chapter 4. The new methods consist of back-

ward finite difference scheme on a piecewise-uniform mesh of Shishkin type for the differential

part. The first scheme is developed by blending the right side rectangle rule and the repeated

Simpson quadrature rule and the second is obtained by combining the same right side rectangle

rule and the repeated trapezoidal rule with weights and remainder terms in the integral form.

We show that the two methods are first order convergent with a good improvement of the accu-

racy. The chapter is organised as follows. In Section 5.1 we describe the first scheme. Section

5.1.1 is devoted to the analysis of the scheme. The second scheme is given in Section 5.2. It’s

analysis is availabe in next section. In Section 5.3, we present numerical results. The chapter

ends with concluding remarks.

5.1 Method I

To construct the fitted mesh scheme for solving the singularly perturbed problem (1.3.1)-(1.3.2),

we again integrate (1.3.1) over the open interval (ti−1, ti):

εh−1i

∫ ti

ti−1

u′(t)dt+ h−1i

∫ ti

ti−1

a(t)u(t)dt+ h−1i

∫ ti

ti−1

{∫ t

0
K(t, s)u(s)ds

}
dt = h−1i

∫ ti

ti−1

f(t)dt.
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Using the right side rectangle rule, we have

εut̃,i + aiui + h−1i (ti − ti−1)
∫ ti

0
K(ti, s)u(s)dt+R

(1)
i +R

(2)
i = fi, (5.1.1)

where R
(1)
i and R

(2)
i are respectively given by (4.1.4) and (4.1.6). Moreover applying the com-

posite Simpson rule to the integral term in (5.1.1), we obtain∫ ti

0
K(ti, s)u(s)ds =

hi
3
K(ti, ti)ui +

hi
3
K(ti, ti−1)ui−1 +

b(i/2c∑
j=1

4

3
h2j−1K(ti, t2j−1)u2j−1

+

b(i−1)/2c∑
j=1

2

3
h2jK(ti, t2j)u2j +R

(3)
i , (5.1.2)

where we have used (2.3.9) to calculate the remainder term

R
(3)
i =

b(i/2c∑
j=1

∫ t2j−1

tj−1

(t2j−1 − s)
d

ds
[K(ti, s)u(s)]ds+

b(i−1)/2c∑
j=1

∫ t2j

tj

(t2j − s)
d

ds
[K(ti, s)u(s)]ds, (5.1.3)

and b(i− 1)/2c denotes the floor function of (i− 1)/2. From (5.1.1) and (5.1.2), we have

εut̃,i + aiui +
hi
3

[K(ti, ti)ui +K(ti, ti−1)ui−1] + K̃(t0, ..., ti−1;u0, ..., ui−1) = Ri + fi,

i = 1(1)N, (5.1.4)

where we have

K̃(t0, ..., ti−1;u0, ..., ui−1) =



0 for i = 1,

(4h2j−1/3)K(ti, t2j−1)u2j−1 for i = 2,
i/2∑
j=1

4

3
h2j−1K(ti, t2j−1)u2j−1

+

b(i−1)/2c∑
j=1

2

3
h2jK(ti, t2j)u2j , for i > 2,


(5.1.5)

and the discretization error is given by

Ri = h−1i

∫ ti

ti−1

(t− ti−1)
d

dt
[a(t)u(t)− f(t)] dt

+h−1i

∫ ti

ti−1

[
(t− ti−1)

d

dt

∫ t

0
K(t, s)u(s)ds

]
dt

+

i/2∑
j=1

∫ t2j−1

ti−1

(t2j−1 − s)
d

ds
[K(ti, s)u(s)]ds (5.1.6)

+

b(i−1)/2c∑
j=1

∫ t2j

tj

(t2j − s)
d

ds
[K(ti, s)u(s)]ds.
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Neglecting Ri in (5.1.4), we propose the following difference scheme for solving the problem

(1.3.1)-(1.3.2):

LNyi ≡ εyt̃,i + aiyi +
hi
3

[K(ti, ti)yi +K(ti, ti−1)yi−1] + K̃(t0, ..., ti−1; y0, ..., yi−1) = fi,

i = 1(1)N, (5.1.7)

y0 = β, (5.1.8)

where K̃(t0, ..., ti−1, u0, ..., ui−1) is given by (5.1.5) by replacing the u′s by the y′s. In matrix

notation, the scheme (5.1.7)-(5.1.8) is the lower triangular linear system AX = F where the

various entries of the matrix A and components of the column-vector F are given by

Aii = rci , i = 1(1)N,

Ai,i−1 = r−1i,i−1
i = 2(2)N,

Ai,i−1 = r−2i,i−1
i = 3(2)N,

Ai,j = r−3i,i−1
i = 3(1)N ; j = 1(2)i− 2,

Ai,j = r−4i,i−1
i = 3(1)N ; j = 2(2)i− 2,

F1 = f1 − (− ε
h1

+ h1
3 K10)β i = 1,

Fi = fi, i = 2(1)N,

with

rci = ε
hi

+ ai + hi
3 Kii,

r−1i,i−1
= −ε

hi
+ hi

3 Ki,i−1 + 4
3hi−1Ki,i−1,

r−2i,i−1
= −ε

hi
+ hi

3 Ki,i−1 + 2
3hi−1Ki,i−1,

r−3i,i−1
= 4

3hjKi,j ,

r−4i,i−1
= 2

3hjKi,j .

In the rest of this section, we present some results whithout proofs. These results are needed to

ascertain existence and uniqueness of the solution as well as the stability of the scheme. For the

proofs of these results we refer the reader to Section 2.3.2 of Chapter 2.

Lemma 5.1.1. Consider the following difference operator

lNyi ≡Miyi −Qiyi−1, 1 ≤ i ≤ N, (5.1.9)

where Mi > Qi > 0 are given. The difference operator (5.1.9) satisfies the discrete maximum

principle: Assume that the mesh function ψi satisfies ψ0 ≥ 0. Then the operator lNψi ≥ 0, for

all i ≥ 1, implies that ψi ≥ 0 for all i ≥ 0
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With the help of this discrete maximum principle, the following lemma which provides the

bounds of the solution is obtained.

Lemma 5.1.2. Let lNyi be given by (5.1.9) and φi a nondecreasing mesh function . If Mi−Qi ≥

α > 0, then for the solution of the difference initial value problem

lNyi = φi, i ≥ 1,

y0 = β,

the following inequality holds

||yi||∞ ≤ |β|+ α−1 max
0≤i≤N

|φi|. (5.1.10)

Lemma 5.1.3. Suppose that

α+
hi
3
K(ti, ti) ≥ α∗ > 0, i = 1(1)N, (5.1.11)

then for the difference operator

lNyi = εyt̃,i + aiyi +
hi
3
K(ti, ti)yi (5.1.12)

we have

||y||∞ ≤ |y0|+ α−1∗ max
0≤i≤N

|lNyi| (5.1.13)

Lemma 5.1.4. Let the difference operator lNyi be given by (5.1.12). Then for the difference

problem (5.1.7)-(5.1.8) we have

|lNyi| ≤ ||f ||∞ + C
i∑

j=1

hj |yj−1| 1 ≤ i ≤ N. (5.1.14)

For this particular lemma, we provide the main lines of the proof as this is different from

proofs in Chapter 2.

Proof. From scheme (5.1.7) we have

|lNyi| ≤ |fi|+

∣∣∣∣∣∣
i
2∑
j=1

4

3
h2j−1K(ti, t2j−1)u2j−1

∣∣∣∣∣∣+

∣∣∣∣∣∣
b(i−1)/2c∑
j−1

2

3
h2jK(ti, t2j)u2j

∣∣∣∣∣∣ .
If one classifies the weights in the summation and considers i, j as total mesh points for the

partitions of odd and even mesh points, then one has

lNyi ≤ ||f ||+ |
i∑

j=1

w̃ijhjK(ti, tj)uj−1| (5.1.15)
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where

w̃ij =

 4
3 1 ≤ j ≤ i/2 i, j (odd)

2
3 1 ≤ j ≤ b(i− 1)/2c i, j (even).

(5.1.16)

The proposition of the lemma follows directly by taking into account the boundedness of K(t, s).

Lemma 5.1.5. Let the condition (5.1.11) be satisfied. Then for the solution of the difference

scheme (5.1.7)-(5.1.8), we have

|yi| ≤ (α−1∗ ||f ||∞ + |β|) exp(α−1∗ Cti), 1 ≤ i ≤ N. (5.1.17)

5.1.1 Convergence analysis of method I

To investigate the convergence of our method, note that the error function τi = ui−yi, i ∈ [0, N ],

satisfies the discrete problem

lNτi ≡ ετi + [aiui − aiyi] +
hi
3

[K(ti, ti)ui −K(ti, ti)yi] +

hi
3

[K(ti, ti−1)ui−1 +K(ti, ti−1)yi−1] + K̃ = Ri, i = 1(1)N, (5.1.18)

τ0 = 0, (5.1.19)

where ui and yi are solutions of the problem (1.3.1)- (1.3.2) and (5.1.7)-(5.1.8) respectively. Here

the remainder term Ri is given by (5.1.6) and

K̃ =



0, for i = 1,

(4h2j−1/3)[K(ti, t2j−1)u2j−1 −K(ti, t2j−1)y2j−1], for i = 2,
i/2∑
j=1

4

3
h2j−1[K(ti, t2j−1)u2j−1 −K(ti, t2j−1)y2j−1]

+

b(i−1)/2c∑
j=1

2

3
h2j [K(ti, t2j)u2j −K(ti, t2j)y2j ] for i = 3(1)N.

Lemma 5.1.6. Let the assumptions of Lemma 2.2.1 be guaranteed up to k = 1. Then for the

truncation error Ri, the following estimates holds:

||R||1,ψN
≤ CN−1 (5.1.20)
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Proof. The remainder term of the scheme (5.1.7) can be rewritten as

Ri = R
(1)
i +R

(2)
i +R

(3)
i , (5.1.21)

where R
(1)
i and R

(2)
i are respectively given by (4.1.4) and (4.1.6) and

R
(3)
i ≤

i
2∑
j=1

∫ t2j−1

tj−1

(t2j−1 − s)
d

ds
K(ti, s)u(s)ds+

b(i−1)/2c∑
j=1

∫ t2j

tj

(t2j − s)
d

ds
K(ti, s)u(s)ds. (5.1.22)

Following the discussions from Chapter 4 Section 4.2, the inequalities R
(1)
i and R

(2)
i immediately

lead to

|R(1)
i | ≤ C

{
hi +

1

ε

∫ ti

ti−1

exp(−αt/ε)dt
}
, i = 1(1)N. (5.1.23)

and

|R(2)
i | ≤ Chi i = 1(1)N. (5.1.24)

Furthermore, for R
(3)
i , we rewrite

|R(3)
i | ≤

i
2∑
j=1

∫ t2j−1

tj−1

(t2j−1 − s)
∣∣∣∣ ddsK(ti, s)u(s)

∣∣∣∣ ds
+

b(i−1)/2c∑
j=1

∫ t2j

tj

(t2j − s)
∣∣∣∣ ddsK(ti, s)u(s)

∣∣∣∣ ds. (5.1.25)

Using (5.1.16), the above inequality becomes

|R(3)
i | ≤

∣∣∣∣∣∣
i∑

j=1

∫ tj

tj−1

(tj − s)w̃ij
d

ds
K(ti, s)u(s)

∣∣∣∣∣∣ ds. (5.1.26)

Thus, by similar procedure as the one employed in deriving in (4.2.15), we get for R
(3)
i

|R(3)
i | ≤ Chi, i = 1(1)N, (5.1.27)

where hi is given by (4.2.17). Now, by a similar process to the one adopted in chapter 4 for the

error analysis, the truncation error of the scheme (5.1.7)-(5.1.8) is examined separetely in the

subdomains [0, δ] and [δ, 1] for δ = α−1ε| ln ε|. Therefore in [0, δ], using (4.2.19) and (4.2.20), we

deduce from (5.1.23) that

|R(1)
i | ≤ CN

−1, i = 1(1)N/2, (5.1.28)

67

http://etd.uwc.ac.za/



so that by similar arguments (5.1.24) and (5.1.27) become,

|R(2)
i | ≤ CN

−1, i = 1(1)N/2, (5.1.29)

|R(3)
i | ≤ CN

−1, i = 1(1)N/2. (5.1.30)

Combining (5.1.28)-(5.1.30) we obtain the estimate

|Ri| ≤ CN−1, i = 1(1)N/2. (5.1.31)

Next, in [δ, 1], recalling that |u′(t)| ≤ C, hereby we get

|R(1)
i | ≤ Ch, i = N/2 + 1(1)N. (5.1.32)

In a similar way as above, we obtain

|R(1)
i | ≤ CN

−1, i = N/2 + 1(1)N. (5.1.33)

|R(2)
i | ≤ CN

−1, i = N/2 + 1(1)N, (5.1.34)

|R(3)
i | ≤ CN

−1, i = N/2 + 1(1)N. (5.1.35)

From (5.1.33)-(5.1.35) for the subdomain [δ, 1] we obtain

|Ri| ≤ CN−1, i = N/2 + 1(1)N. (5.1.36)

And this completes the proof.

Lemma 5.1.7. Under the conditions (5.1.11) and Lemma 5.1.5, the solution τi of the problem

(5.1.18) and (5.1.19) satisfies

||τi||∞,ψN
≤ max

0≤i≤N
|Ri| (5.1.37)

The main result of this paper is contained in the following theorem which establishes a first

order ε-uniform error estimate.

Theorem 5.1.1. Let the hypothesis of Lemma 2.2.1 be guaranteed up to k = 1. Then the

following first order ε-uniform convergent inequality

||u− y||∞,ψN
≤ CN−1

holds.
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5.2 Method II

As indicated in the introduction of this chapter, the scheme we suggest in this section consists of

the right side rectangle along with the repeated trapezoidal quadrature rule. Thus, consistently

with the fitted mesh method constructed in chapters 4 as well as the one in the previous section,

we have the following expression for ui

ut̃,i + aiui +
hi
4
K(ti, ti)ui +

hi
4
K(ti, ti−1)ui−1 + K̃(t0, ..., ti−1;u0, ..., ui−1)+

Ri = fi i = 1(1)N, (5.2.1)

where

K̃(t0, ..., ti−1;u0, ..., ui−1) =

 0 for i = 1,∑i−1
j=1

hj
2 [K(ti, tj)uj +K(ti, tj−1)uj−1] for i > 1,

and the discretization error is given by

Ri =− h−1i
∫ ti

ti−1

(t− ti−1)
d

dt
[a(t)u(t)− f(t)] dt− h−1i

∫ ti

ti−1

(t− ti−1)
d

dt

[ ∫ t

0
K(t, s)u(s)ds

]
dt

+
i∑

j=1

∫ tj

tj−1

(tj − s)
d

dt
[K(ti, s)u(s)ds] . (5.2.2)

Neglecting the remainder term in (5.2.1), the following difference scheme may be used to ap-

proximate (1.3.1)-(1.3.2).

LNyi ≡ εyt̃,i + aiyi +
hi
4
K(ti, ti)yi +

hi
4
K(ti, ti−1)yi−1 + K̃(t0, ..., ti−1; yi, ..., yi−1) = fi,

i = 1(1)N, (5.2.3)

y0 = γ0, (5.2.4)

where

K̃(t0, ...ti−1; y0, ..., yi−1) =

 0 for i = 1,∑i−1
j=1

hj
2 [K(ti, tj)yj +K(ti, tj−1)yj−1], for i > 1.

The lower triangular system of linear equations (5.2.3)-(5.2.4) takes the form

AU = F, (5.2.5)
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where the various entries of the matrix A and components of the column-vector F are given by

Aii = rci , i = 1(1)N,

Ai,i−1 = r−i,i−1 i = 2(1)N,

Ai,j = r−i,i−1 i = 3(1)N ; j = 1(1)i− 1,

F1 = f1 −
(
− ε

h1
+
h1
4
K10

)
y0 i = 1,

Fi = fi −
(
h1
2
Ki0

)
y0 i = 2(1)N,

where

rci =

(
ε

hi

)
+ ai +

hi
4
Kii,

r−i,i−1 =

(
−ε
hi

)
+
hi
4
Ki,i−1 +

1

2
hi−1Ki,i−1,

r−i,i−1 =

(
hj + hj−1

2

)
Ki,j .

Here, we refer to this scheme as FMFDM. The discrete operator in the FMFDM satisfies the

following lemmas

Lemma 5.2.1. Consider the following difference operator

lNyi ≡ Viyi −Wiyi−1, 1 ≤ i ≤ N, (5.2.6)

where Vi > 0 and Wi > 0 are given. Then, for all mesh function ξi such that ξ0 ≥ 0, lNξi ≥ 0,

for all i ≥ 1, we have ξi ≥ 0 for all 0 ≤ i ≤ N .

An immediate consequence of the lemma above is the following boundedness result.

Lemma 5.2.2. Let lNyi be defined as in (5.2.6). If Vi −Wi ≥ α > 0, then for the solution of

the difference initial value problem

lNyi = Gi, i ≥ 1, (5.2.7)

y0 = ν, (5.2.8)

the following inequality holds

||y||∞ ≤ |µ|+ α−1 max
0≤i≤N

|Gi|. (5.2.9)

The proofs for the two previous lemmas are obtained by similar arguments to those used in

proving Lemma 2.3.1.
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Lemma 5.2.3. Assume that

α+
hi
4
Kii ≥ α∗ > 0, i = 1(1)N, (5.2.10)

then for the difference operator

lNvi = εvt̃,i + aivi +
hi
4
Kiivi, (5.2.11)

where Kii = K(ti, ti) we have

||vi||∞ ≤ |v0|+ α max
0≤i≤N

|lNvi|. (5.2.12)

The proof can be easly deduced from Lemma 2.3.2

Lemma 5.2.4. (Stability result). Let the difference operator lNyi be given by (5.2.11). Then

for difference problem (5.2.3)-(5.2.4) we have the following estimate

lNyi ≤ C
i∑

j=1

hj |yj−1|+ ||f ||∞, 1 ≤ i ≤ N. (5.2.13)

Proof similar to the one of Lemma 2.3.2.

Lemma 5.2.5. Let (5.2.10) be satisfied, then for the solution of the difference scheme (5.2.3)-

(5.2.4) we have the following estimate

|yi| ≤ (α−1∗ ||f ||∞ + |A|) exp(α−1∗ Cti), 1 ≤ i ≤ N. (5.2.14)

Proof. See the one of Lemma 2.3.4

5.2.1 Convergence analysis of method II

Let τi = yi − ui, 0 ≤ i ≤ N , where yi is the solution of (5.2.3)-(5.2.4) and ui the solution of

(1.3.1)-(1.3.2) at the mesh point ti. Then for the error function τi, we have

LNτi =ετt̃,i + [aiyi − aiui] +
hi
2

[K(ti, ti)yi −K(ti, ti)ui]+

hi
2

[K(ti, ti−1)yi−1 −K(ti, ti−1)ui−1] + K̃ +Ri i = 1(1)N, (5.2.15)

τ0 =0, (5.2.16)

where the remainder term Ri is given by (5.2.2) and

K̃ =

 0 for i = 1,∑i
j=1 hj{[K(ti, tj)yj −K(ti, tj)uj ] + [K(ti, tj−1)yj−1 −K(ti, tj−1)uj−1]} for i > 1.
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Lemma 5.2.6. Under the requirements of Lemma 2.2.1, for the remainder term Ri of the

scheme (5.2.3)-(5.2.4) the inequality

||R||∞,ψN
≤ CN−1 (5.2.17)

holds.

Proof. The proof of this Lemma follows directly in view of the techniques and discussions

used in proving Lemma 4.2.3 and 5.1.6 for the remainder terms.

Lemma 5.2.7. Let (5.2.10) be satisfied. Then the solution τi of the problem (5.2.15)-(5.2.16)

satisfies

||τi||∞,ψN
≤ max

0≤i≤N
|Ri|. (5.2.18)

Combining the results in the two previous lemmas, we have the convergence result

Theorem 5.2.1. Let u be the solution of (1.3.1)-(1.3.2) and y the solution of (5.2.3)-(5.2.4).

Under the conditions of Lemma 2.2.1 for k = 1, the inequality

||y − u||∞,ψN
≤ CN−1 (5.2.19)

is true.

5.3 Numerical results

In this section, we test the two numerical methods described in this chapter. To this end, the

two Volterra integro-differential equations solved in chapter two are again considered here. The

maximum errors along with the rates of convergence are given in tabular form and evaluated

using the fomulae (2.5.1)-(2.5.4).

Example 5.3.1. [63]

Consider problem (1.3.1)-(1.3.2) with

a(t) = t+ 1, K(t, s) = t+ s,

f(t) = ε cos t+ t sin t+ 2 sin t+ (t− 2tε+ ε2) exp

(
−t
ε

)
+ t− 2t cos t+ εt− ε2,

u(0) = 1.

The exact solution to this problem is given by

u(t) = sin t+ exp

(
−t
ε

)
.
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Example 5.3.2. [4]

Consider problem(1.3.1)-(1.3.2) with

a(t) = 1, K(t, s) = s,

f(t) = (2 + 9ε+ εt+ 11t+ t2) exp(−t)− 10(εt+ ε2) exp

(
−t
ε

)
+ 5t2 + 10ε2 − 2,

u(0) = 10.

The exact solution to this problem is given by

u(t) = 10− (10 + t) exp(−t) + 10 exp

(
−t
ε

)
.

Our theoretical analysis shows that the two methods developed are of first order uniformly

convergent independently of the perturbation parameter ε as mentioned in theorems 5.1.1 and

5.2.1 . This is confirmed by numerical results presented in tables 5.1-5.4 where we have computed

the maximum errors eε,N and the corresponding rates of convergence rε,k.

Table 5.1: Results for Example 5.3.1: Maximum errors and maximum rates of convergence

obtained via FMFDM (5.1.7)-(5.1.8)

ε N = 40 N = 80 N = 160 N = 320 N = 640 N = 1280 N = 2560

10−2 5.60E-03 1.12E-02 2.22E-02 4.31E-02 8.11E-02 1.32E-02 1.00E-02

0.14 -100 0.98 0.95 -0.95 0.61

10−3 6.21E-03 3.14E-03 1.58E-03 7.98E-04 4.93E-04 2.44E-04 1.58E-04

0.99 0.93 0.99 0.99 0.98 0.98

10−4 6.21E-03 3.14E-03 1.58E-03 7.90E-04 3.97E-04 1.94E-04 1.48E-04

0.99 0.99 0.99 1.00 0.99 0.98

10−5 6.21E-03 3.14E-03 1.58E-03 7.90E-04 3.95E-04 1.98E-04 9.90E-05

0.99 0.99 0.99 0.99 0.99 0.98
...

...
...

...
...

...
...

...

EN 6.21E-03 3.14E-03 1.58E-03 7.90E-04 3.95E-04 1.98E-04 9.90E-05

rN 0.98 0.99 0.99 0.99 0.99 0.99
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Table 5.2: Results for Example 5.3.2: Maximum errors and maximum rates of convergence

obtained via FMFDM (5.1.7)-(5.1.8)

ε N = 40 N = 80 N = 160 N = 320 N = 640 N = 1280 N = 2560

10−2 6.02E-02 8.18E-02 6.98E-02 3.98E-02 2.29E-02 1.24E-02 6.44E-03

-0.97 0.92 -0.62 0.00 0.64 0.81

10−3 2.26E-02 1.25E-02 5.71E-03 3.10E-03 1.45E-03 1.60E-02 7.79E-03

0.98 0.95 0.98 0.97 0.95 0.77

10−4 2.16E-02 1.11E-02 5.61E-03 2.83E-03 1.42E-03 7.42E-03 3.64E-04

0.98 0.99 0.99 0.99 0.99 0.99

10−5 2.16E-02 1.11E-02 5.61E-03 2.83E-03 1.42E-03 7.10E-04 3.55E-04

0.98 0.99 0.99 0.99 0.99 0.98
...

...
...

...
...

...
...

...

EN 2.16E-02 1.11E-02 5.61E-03 2.83E-03 1.42E-03 7.10E-04 3.55E-04

rN 0.98 0.99 0.99 0.99 0.99 0.99

Table 5.3: Results for Example 5.3.1: Maximum errors and maximum rates of convergence

obtained via FMFDM (5.2.3)-(5.2.4)

ε N = 40 N = 80 N = 160 N = 320 N = 640 N = 1280 N = 2560

10−2 2.93E-02 1.49E-02 4.30E-02 6.82E-02 6.32E-02 3.69E-02 1.01E-2

1.00 1.00 1.00 1.00 1.00 1.00

10−3 2.91E-02 1.46E-02 7.28E-03 5.25E-03 1.46E-02 2.94E-02 6.64E-03

1.00 1.00 1.00 1.00 1.00 1.00

10−4 2.89E-02 1.45E-02 7.23E-03 3.62E-03 1.81E-03 1.75E-03 5.85E-04

1.00 1.00 1.00 1.00 1.00 1.00

10−5 2.87E-02 1.44E-02 7.20E-03 3.60E-03 1.80E-03 9.01E-04 4.50E-04

1.00 1.00 1.00 1.00 1.00 1.00
...

...
...

...
...

...
...

...

EN 2.85E-02 1.43E-02 7.17E-03 3.58E-03 1.79E-03 8.95E-04 4.47E-04

rN 1.00 1.00 1.00 1.00 1.00 1.00
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Table 5.4: Results for Example 5.3.2: Maximum errors and maximum rates of convergence via

obtained FMFDM (5.2.3)-(5.2.4)

ε N = 40 N = 80 N = 160 N = 320 N = 640 N = 1280 N = 2560

10−2 2.30E-01 1.19E-01 6.02E-02 3.03E-02 1.52E-02 2.84E-02 5.65E-02

0.98 0.98 0.99 -0.90 -0.99 -0.98

10−3 2.30E-01 1.17E-01 6.01E-02 3.06E-02 1.51E-02 7.53E-03 4.86E-03

0.97 0.98 0.99 0.99 0.62 0.99

10−4 2.30E-01 1.18E-01 6.02E-02 3.01E-02 1.51E-02 7.64E-03 3.86E-03

0.97 0.98 0.99 0.99 0.99 0.99

10−5 2.30E-01 1.18E-01 6.02E-02 3.01E-02 1.51E-02 7.64E-03 3.86E-03

0.97 0.98 0.99 0.99 0.99 0.99
...

...
...

...
...

...
...

...

EN 2.30E-01 1.18E-01 6.02E-02 3.01E-02 1.51E-02 7.64E-03 3.86E-03

rN 0.97 0.98 0.99 0.99 0.99 0.99

5.4 Conclusion

In this chapter, we proposed two fitted finite difference schemes to solve (1.3.1)-(1.3.2). While

the first one is developed using the right side rectangle rule along with the repeated Simpson’s

quadrature rule to discrete the integral part of the problem, the second consisted in a combination

of the right side rectangle rule with the repeated trapezoidal integration. In both cases, the

backward difference operator have been utilized to discretize the derivative part of the problem.

In order for the two methods to be ε-uniform, a piecewise-uniform mesh of Shishkin type was

considered.

We have shown that the proposed schemes are both uniformly convergent of order one with

respect to the perturbation parameter and of the mesh parameter. However, as compared to

the method of the previous chapter, we have noticed that the two methods are more accu-

rate. Numerical computations have been performed on two Volterra equations to illustrate our

theoretical results.

In the next chapter we suggest a new fitted operator finite difference method.
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Chapter 6

A new Exponentially Fitted

Operator Finite Difference Method

for SPVIDEs

In this chapter, we introduce a new discretization of (1.3.1)-(1.3.2). The aim of the discretization

is to improve results obtained via the method of chapter 2. The present method falls under the

class of FOFDMs.

The method uses the right side rectangle rule together with the method of integral identities

and the exponential basis function to derive the fitting factors which helps in discretizing the

derivative part of the problem. Then the trapezoidal rule with the weights and remainder terms

in the integral form is used to deal with the integral part. This is what demarcates this method

from the one in chapter 2 and others found in the literature.

The overall method is analysed for convergence and stability and found to be of first order

convergence. In comparison to the method of Chapter 2, the present method is more accurate

in the sense that it produces small nodal maximum errors.

The rest of this chapter is organized as follows. The numerical method is derived in Section

6.1. In section 6.2 we presents some qualitative results regarding the scheme. Section 6.3 is

devoted to the error analysis. Numerical results are presented in Section 6.4. A short conclusion

and discussion are given in Section 6.5.
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6.1 Derivation of the scheme

In this section the mesh is taken to be uniform. As before, let N be a positive integer. We

consider the following uniform partition of the interval [0, 1] which we denote by ψ̄N : t0 =

0, ti = t0 + ih, i = 1(1)N, tN = 1 whereh = 1/N, the step-size.

We first construct the numerical method.

To get started, we consider the identity (2.3.1) i.e.,

χ−1i h−1
∫ ti

ti−1

Luϕi(t)dt = χ−1h−1
∫ ti

ti−1

f(t)ϕi(t)dt, i = 1(1)N, (6.1.1)

where the exponential function ϕi(t) and χi are respectively variants of (2.3.2) and (2.3.3) given

by

ϕi(t) = exp
(ai
ε

(t− ti)
)
, (6.1.2)

χi = h−1
∫ ti

ti−1

ϕi(t)dt =
1− exp (−ρai)

ρai
, (6.1.3)

(ρ = h/ε).

We note that the exponential basis function ϕi(t) satisfies (2.3.4) and (2.3.5). Thus, equation

(6.1.1) is written in the form

χ−1i h−1ε

∫ ti

ti−1

u′(t)ϕi(t)dt+ χ−1i h−1ai

∫ ti

ti−1

u(t)ϕi(t)dt+

χ−1i h−1
∫ ti

ti−1

ϕi(t)

(∫ t

0
K(t, s)u(s)ds

)
dt = fi −R(1)

i , (6.1.4)

where

R
(1)
i = χ−1i h−1

∫ t1

ti−1

[a(t)− a(ti)]u(t)ϕi(t)dt+ χ−1i h−1
∫ ti

ti−1
[f(ti)− f(t)]ϕi(t)dt.

Using quadrature rules (2.3.7) for σ = 1 and (2.3.8) on the interval [ti − ti−1] and taking into

considerartion equation (2.3.4), (6.1.4) is reduced to

εut̃,i

[
χ−1i h−1

∫ ti

ti−1

ϕi(t)dt+ χ−1i h−1ai

∫ ti

ti−1

(t− ti)ϕi(t)dt

]

+ aiχ
−1
i h−1

∫ ti

ti−1

ϕi(t)dtui + χ−1i h−1
∫ ti

ti−1

ϕi(t)dt

∫ ti

0
K(ti, s)u(s)ds+

+ χ−1i h−1
∫ ti

ti−1

ϕi(t)dt×
∫ ti

ti−1

d

dη

[∫ η

0
K(η, s)u(s)ds

]
[H(T − η)− 1]dη

=ε∆iut̃,i + aiui +

∫ ti

0
K(ti, s)u(s)ds+ χ−1i h−1

∫ ti

ti−1

ϕi(t)dt×∫ ti

ti−1

d

dη

[∫ η

0
K(η, s)u(s)ds

]
[H(T − η)− 1]dη,
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where we have used (2.3.5),

∆i = 1 + χ−1i h−1ai

∫ ti

ti−1

(t− ti)ϕi(t)dt, (6.1.5)

and H(T − η) is a Heaviside function. Moreover, applying the repeated trapezoidal integration

to the integral in the last expression we obtain∫ ti

0
K(ti, s)u(s)ds =

h

4
K(ti, ti)ui +

h

4
K(ti, ti−1)ui−1 +

h

2
K̃(t0, ...ti−1;u0, ..., ui−1) +R

(3)
i

which together with (6.1.4) lead to the following expression for u(ti):

ε∆iut̃,i + aiui +
h

4
K(ti, ti)ui +

h

4
K(ti, ti−1)ui−1 +

h

2
K̃(t0, ...ti−1;u0, ..., ui−1) +Ri = fi, i = 1(1)N, (6.1.6)

where

Ri = −χ−1i h−1
∫ t1

ti−1

[a(t)− a(ti)]u(t)ϕi(t)dt+ χ−1i h−1
∫ ti

ti−1
[f(ti)− f(t)]ϕi(t)dt+

χ−1i h−1
∫ ti

ti−1

ϕi(t)dt×
∫ ti

ti−1

d

dη

[∫ η

0
K(η, s)u(s)ds

]
[H(T − η)− 1]dη +

i∑
j=1

∫ tj

tj−1

(tj − η)
d

ds
[K(ti, η)u(η)]dη. (6.1.7)

and

K̃(t0, ..., ti−1;u0, ..., ui−1) =

 0 for i = 1,∑i−1
j=1[K(ti, tj)uj +K(ti, tj−1)uj−1] for i > 1.

Simplifying (6.1.5), we get

∆i =
ρai exp(ρai)

(1− exp(−ρai))
.

Neglecting Ri in (6.1.6) we obtain the following exponential finite difference scheme to approx-

imate (1.3.1)-(1.3.2):

Lhyi ≡ ε∆iyt̃,i + aiyi +
h

4
K(ti, ti)yi +

h

4
K(ti, ti−1)yi−1 +

h

2
K̃(t0, ...ti−1; y0, ..., yi−1) = fi, i = 1(1)N, (6.1.8)

y0 = γ0, (6.1.9)

where

K̃(t0, ...ti−1; y0, ..., yi−1) =

 0 for i = 1,∑i−1
j=1[K(ti, tj)yj +K(ti, tj−1)yj−1] for i > 1.
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The lower triangular system of linear equation (6.1.8)-(6.1.9) takes the form

AU = F,

where the entries of the matrix A and column vector F are given by:

Aii = rci , i = 1(1)N,

Ai, i− 1 = r−i,i−1 i = 2(1)N,

Ai, j = r−i,i−1 i = 3(1)N ; j = 1(1)i− 1,

F = f1 −
(
−ε∆1

h
+
h

4
KK1

)
y0 i = 1,

Fi = fi −
(
h

2
KKi

)
y0 i = 2(1)N,

with

rci =
ε∆i

h
+ ai +

h

4
Kii,

r−i,i−1 =
−ε∆i

h
+
h

4
Ki,i−1 +

1

2
hKi,i−1,

r−i,i−1 =
h

2
K(ti, tj).

In the next section, we present some useful facts of the scheme above.

6.2 Some qualitative results regarding the scheme

The results which we present (in form of lemmas) are similar to those encountered in chapter

2. For this reason, as they are similar, proofs are not provided. However, where necessary, we

provide an indication of the mains ideas of the proof.

Lemma 6.2.1. Let the difference operator

lhyi = Eiyi −Hiyi−1, 1 ≤ i ≤ N, (6.2.1)

be given, where Ei > Hi > 0. Then the difference operator (6.2.1) satisfies the following discrete

maximum principal: if lyi ≥ 0, ∀ i ≥ 0 and y0 ≥ 0, then yi ≥ 0, ∀ i ≥ 0.

Lemma 6.2.2. Let lhyi be defined as in (6.2.1). If Ei −Hi ≥ α > 0, then for the solution of

the difference initial value problem

lhyi = Fi, i ≥ 1,

y0 = µ
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the following inequality holds

||yi||∞ ≤ |µ|+ α−1 max
0≤i≤N

|Fi|. (6.2.2)

Proof. Following the technique of proof given in Lemma 2.3.1, we can prove the present

lemma.

Lemma 6.2.3. Let the condition

α+
h

4
Kii ≥ α∗ > 0, i = 1(1)N (6.2.3)

be guaranteed. Then for the difference operator

lhvi = εθivt̃,i + aivi +
h

4
Kiivi (6.2.4)

we have

||vi||∞ ≤ |v0|+ α max
0≤i≤N

|lhvi| (6.2.5)

where Kii = K(ti, ti).

Proof. The proof can be easly established by following similar arguments as the ones in

(2.3.2).

Lemma 6.2.4. (Stability result) Let the difference operator lhyi be defined by (6.2.4). Then for

difference problem (6.1.8)-(6.1.9) we have

lhyi ≤ Ch
i∑

j=1

|yj−1|+ ||f ||∞, 1 ≤ i ≤ N (6.2.6)

Lemma 6.2.5. Let (6.2.3) be satisfied, then for the solution of the difference scheme (6.1.8)-

(6.1.9) we have the following estimate

|yi| ≤ (α−1∗ ||f ||∞ + |A|) exp(α−1∗ Cti), 1 ≤ i ≤ N. (6.2.7)

6.3 Error analysis of the scheme

The main lines for the analysis of the uniform convergence given in this section are similar to

the ones from Chapter 2 Section (2.4). Let zi = yi−ui, where yi and ui are solution of problems
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(6.1.8)-(6.1.9) and (1.3.1)-(1.3.2) respectively at the mesh point ti. Then for the error function

zi, we have

Lhzi = Ri, i = 1(1)N, (6.3.1)

z0 = 0, (6.3.2)

where Ri is defined by (6.1.7).

Lemma 6.3.1. Under the requirements that a, f ∈ C1, and K ∈ C1
0 the remainder term (6.1.7)

of the scheme (6.1.8)-(6.1.9) satisfies

||R||∞,ψh
≤ Ch (6.3.3)

Proof. The local truncation error Ri has the form Ri = R
(1)
i +R

(2)
i +R

(3)
i where

R
(1)
i = −χ−1i h−1

∫ t1

ti−1

[a(t)− a(ti)]u(t)ϕi(t)dt+ χ−1i h−1
∫ ti

ti−1
[f(ti)− f(t)]ϕi(t)dt (6.3.4)

R
(2)
i = χ−1i h−1

∫ ti

ti−1

ϕi(t)dt×
∫ ti

ti−1

d

dη

[∫ η

0
K(η, s)u(s)ds

]
[H(T − η)− 1]dη (6.3.5)

R
(3)
i =

i∑
j=1

∫ tj

tj−1

(tj − η)
d

ds
[K(ti, η)u(η)]dη. (6.3.6)

Using the mean value theorem, (see discussions in Lemma 2.4.4), we have for R
(1)
i :

|a(t)− a(ti)| = |a′(ϑi)||t− ti| ≤ C1h, ϑi ∈ (ti, t),

|f(ti)− f(t)| = |f ′(υi)||ti − t| ≤ C2h, υi ∈ (t, ti).

And so, it is easy to see that

R
(1)
i ≤ Ch. (6.3.7)

Likewise, by arguments analogous to those in the proof of (2.2.2) and (2.4.9), we have

R
(2)
i =

∫ ti

ti−1

{
K(η, η)uη +

∫ η

0

∂

∂η

[
K(η, s)u(s)

]
ds

}
[H(t− η)− 1]dη

≤C

{∫ ti

ti−1

|u(η)|dη +

∫ ti

ti−1

∣∣∣∣∫ η

0
u(s)ds

∣∣∣∣ dη
}

≤Ch. (6.3.8)
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and

|R(3)
i | ≤

∣∣∣ i∑
j=1

∫ tj

tj−1

(tj − s)
∂

∂t
K(ti, s)u(s)ds

∣∣∣+
∣∣∣ i∑
j=1

∫ tj

tj−1

(tj − s)K(ti, s)u(s)ds
∣∣∣,

≤ Chi
[ ∫ ti

0
|u(s)|ds+

∫ ti

0
|u′(s)|ds

]
≤ Chi i = 1(1)N. (6.3.9)

Therefore, from (6.3.7)-(6.3.9), the proof is completed

Lemma 6.3.2. Let inequality (6.2.3) be satisfied. Then the solution zi of the problem (6.3.1)-

(6.3.2) satisfies

||zi||∞,ψh
≤ max

0≤i≤N
|Ri|. (6.3.10)

Combining the lemmas 6.3.1 and 6.3.2, we obtain the following main result.

Theorem 6.3.1. Assume that u is the exact solution of problem (1.3.1)-(1.3.2) and y its nu-

merical solution obtained via (6.1.8)-(6.1.9). Then, under assumptions that a, f ∈ C1(I) and

K ∈ C1
0 , we have

||y − u||∞,ψh
≤ Ch (6.3.11)

6.4 Numerical results

In this section, we test the two numerical methods described in this chapter. To this end, two

Volterra integro-differential equations are presented and the maximum errors along with the

rates of convergence are given in tabular form. The maximum errors at all the mesh points are

evaluated using the formula

eε,N := max
[0≤j≤1]

|u(xj)− y(xj)| (6.4.1)

for the different values of N . The numerical rates of convergence are calculated using the formula

rε,k := log2

(
eNk,ε

e2Nk,ε

)
, k = 1, 2, 3, ... (6.4.2)

The test examples are considered over the interval I = [0, 1].
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Example 6.4.1. [63] Consider problem (1.3.1)-(1.3.2) where the coefficient functions are given

by

a(t) = t+ 1, K(t, s) = t+ s,

f(t) = ε cos t+ t sin t+ 2 sin t+ (t− 2tε+ ε2) exp

(
−t
ε

)
+ t− 2t cos t+ εt− ε2,

u(0) = 1.

The exact solution to this problem is given by

u(t) = sin t+ exp

(
−t
ε

)
.

Table 6.1: Results for Example 6.4.1: Maximum errors and maximum rates of convergence

obtained via EFOFDM (6.1.8)-(6.1.9)

ε N = 40 N = 80 N = 160 N = 320 N = 640 N = 1280 N = 2560

10−1 4.61E-02 2.10E-01 4.58.E-01 6.77.01 8.23E-01 8.23E-01 9.07E-01

1.00 1.00 1.02 1.00 1.01 1.01 1.02

10−2 8.13E-03 4.07E-03 2.03E-03 1.02E-03 5.08E-04 2.24E-04 1.26E-04

1.00 1.00 1.00 1.00 1.00 1.01 1.00

10−3 8.13E-03 4.07E-03 2.04E-03 1.02E-03 5.09E-04 2.24E-04 1.27E-04

1.00 1.00 1.00 1.00 1.00 1.01 1.00

10−4 8.13E-03 4.07E-03 2.04E-03 1.02E-03 5.09E-04 2.24E-04 1.27E-04

1.00 1.00 1.00 1.00 1.00 1.01 1.00

10−5 8.13E-03 4.07E-03 2.04E-03 1.02E-03 5.09E-04 2.24E-04 1.27E-04

1.00 1.00 1.00 1.00 1.00 1.01 1.00
...

...
...

...
...

...
...

...

EN 8.13E-03 4.07E-03 2.04E-03 1.02E-03 5.09E-04 2.24E-04 1.27E-04

rN 1.00 1.00 1.00 1.00 1.00 1.01 1.00

The analysis summarised in Theorem 6.3.1 shows that the proposed numerical method is

first order uniformly convergent independently of the perturbation parameter. These theoretical

results are confirmed numerically in Table 6.1 where we computed the maximum errors eε,N and

the corresponding rates of convergence rε,k.
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6.5 Conclusion

We designed and implemented a fitted operator finite difference method for solving singu-

larly perturbed Volterra integro-differential equations. The method was developed utilizing

the method of integral identity with the use of exponential basis function and interpolating

quadrature rules with weight and remainder term in the integral form. We showed through an

error analyis that the proposed method is ε-convergent. For illustration purposes, an example

was solved via the proposed method and results corroborate the theoretical findings.
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Chapter 7

Concluding Remarks and Directions

for Future Research

This chapter focuses on a brief review of the work done in the previous chapters and highlights the

main observations in this work. This dissertation mainly contributed to the investigation, design

and analysis of robust numerical methods for solving singularly perturbed Volterra integro-

differential equations.

Since the problem under study is composed of a differential operator and an integral operator,

to construct the discrete problems, we used the fitted finite difference methods for the differential

part and various suitably chosen interpolating quadrature rules to deal with the integral operator.

The general observation that we made throughout this thesis is that the blend of the midpoint

difference operator with trapezoidal integration on piecewise uniform Shishkin meshes led to an

almost second order convergence scheme. However, using the method of integral identities with

weight and remainder terms in integral form, notwithstanding the fast convergence quadrature

rules used, we obtained first-order accurate convergence schemes. This unexpected behaviour

was observed when combining right side rectangle rule with trapezoidal and Simpson’s rule,

respectively. Numerical results were presented in each chapter to attest our theoretical findings.

Now we summarise the work by chapter. An exponentially fitted finite difference method

was considered in Chapter 2. We first presented qualitative results which play a primordial role

throughout the work in the analysis of the numerical methods. Next we provide a numerical

method which was analyzed for convergence and stability. The analysis carried out shows that

the method is first order convergent in the maximum norm.
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Chapter 3 dealt with a robust computational method on a piecewise uniform mesh. The

scheme was developed on the basis of a method consisting of a midpoint difference operator along

with trapezoidal integration. The proposed numerical method presents uniform convergence

of almost second order. This theoretical result is confirmed numerically through some test

examples.

In chapter 4, on a piecewise uniform partition, we proposed a computational numerical

method which is based on the right and repeated left side rectangle rules with weights and re-

mainder terms in the integral form. It is proved that the proposed scheme converges ε-uniformly

with first-order accuracy. We however observe that the method is ε-uniform convergent for

ε << 1. To avoid this drawback, we proposed two numerical methods in Chapter 5. Both

methods involve right side rectangle rule with Simpson and trapezoidal schemes respectively. In

order for these two methods to be ε-convergent, we used piecewise uniform meshes of Shishkin

type. As expected, we noted that the two methods are significantly more accurate than the

method of Chapter 4.

We constructed a new exponential fitted operator finite difference method (EFOFDM) in

Chapter 6. First, we computed a fitting factor using the exponential basis function which

plays an important role in discretizing the differential part of the problem. Then, we used the

trapezoidal rule to discretize the rest of the problem. The numerical computations show that

the method is stable and robust,i.e.; converges for all the values of ε and have a first-order

convergent.

Much work is still to be done. One can use the techniques developed here for nonlinear

singularly perturbed Volterra integro-differential equations. An attempt in this regard have

been made by Şevgin [54]. We would like to deepen these approaches by extending them to

various classes of singularly perturbed Volterra equations. Currently we are working in this

direction.
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