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Abstract

We consider models for both deterministic one-time and continuous stochastic parameter change in a

continuous time autoregressive model around a deterministic trend function. For the latter we focus

on the case where the autoregressive parameter itself follows a first-order autoregression. Exact

discrete time analogue models are detailed in each case and compared to corresponding parameter

change models adopted in the discrete time literature. The relationships between the parameters

in the continuous time models and their discrete time analogues are also explored. For the one-

time parameter change model the discrete time models used in the literature can be justified by the

corresponding continuous time model, with a only a minor modification needed for the (most likely)

case where the changepoint does not coincide with one of the discrete time observation points. For

the stochastic parameter change model considered we show that the resulting discrete time model is

characterised by an autoregressive parameter the logarithm of which follows an ARMA(1,1) process.

We discuss how this relates to models which have been proposed in the discrete time stochastic

unit root literature. The implications of our results for a number of extant discrete time models

and testing procedures are discussed.

Keywords: Time-varying parameters, continuous and discrete time, autoregression, trend break,

unit root, persistence change, explosive bubbles, random coefficient models.

JEL Classification: C22.

1 Introduction

In recent years a wide variety of models for discrete time series data have been proposed in the literature

which seek to allow for time-dependent structural change in the parameters of the model. Leading ex-

amples include the random coefficient and time-varying parameter ARMA model classes, models with

∗Both authors gratefully acknowledge financial support provided by the Economic and Social Research Council of the
United Kingdom under research grant ES/M01147X/1. Authors’ E-mail Addresses: mchamb@essex.ac.uk (M. Cham-
bers), robert.taylor@essex.ac.uk (R. Taylor)
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time-varying unconditional variances, models with piecewise deterministic trends, stochastic unit root

models, persistence change models, and the recent literature based on models of (periodically collaps-

ing) explosive bubbles. In this paper, for a relatively simple continuous time first order autoregressive

process about a deterministic trend, we demonstrate the impact of parameter change in the autore-

gressive parameter, the parameters of the deterministic trend, and the scale factor in the continuous

time process on its discrete time analogue.

We will consider two forms of parameter change in the continuous time model we consider. The first

allows for a deterministic one-time change in the coefficients of the continuous time model, while in the

second we let the autoregressive parameter itself follow a continuous time first-order autoregression. In

the one-time change case, we derive the resulting discrete time analogue model and show that this takes

a similar form to the corresponding one-time change model specified directly in discrete time, with

the exception that the parameters of the former additionally vary, relative to their values in both the

pre- and post-break regimes, for the first discrete time observation point after the changepoint, unless

this coincides with one of the discrete time observation points. This is an important exercise because

it is implicitly assumed in the discrete time literature that the underlying parameter change coincides

with a discrete time observation point. This assumption is clearly unlikely to hold in practice and our

set-up allows us to investigate the consequences of this for the discrete time models. We also explore

the relationship between the parameters in the continuous time model and its discrete time analogue.

Here we show that a one-time change in the autoregressive parameter in the continuous time model

induces breaks in both the autoregressive parameter and the innovation variance parameter in the

discrete time analogue model. A one-time change in the autoregressive parameter also induces breaks

in the intercept and trend terms in the single equation discrete time analogue model. The implications

of these results for a number of extant discrete time models and testing procedures including unit root

tests, trend break tests, and bubble detection procedures are discussed.

The analysis of structural breaks based on a continuous time model has been the focus of other re-

cent research. Jiang, Wang and Yu (2016) consider a break in the drift parameter in a continuous time

random walk process defined on the unit interval and derive the exact distribution of the continuous

record estimator of the break point when the values of the other parameters are known; the distribu-

tion is found to be asymmetric and tri-modal. They also consider a continuous time approximation

to a discrete time structural break model and derive the limiting in-fill asymptotic distribution of the

break-point estimator and propose bias correction using an indirect inference estimator. The analysis
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is developed further in Jiang, Wang and Yu (2017) who consider an Ornstein-Uhlenbeck specification

without drift in which the continuous time autoregressive parameter is subject to a structural break.

An exact discrete time model is derived as well as the limit distribution of the least squares break-point

estimator. Continuous record asymptotics are developed by Casini and Perron (2017) for a partial

structural change in a linear regression model with a single break, the data being generated by an

underlying diffusion process. The consistency and convergence rate of the the least-squares estimate

of the break date are derived in this framework. Our contribution here is more methodological and

differs from these other approaches in that we consider the implications for extant structural change

models when one begins with an underlying continuous time specification.

Time-varying parameter models, which can allow for continual rather than a single one-time change

in parameters, have also attracted attention from a continuous time perspective. Robinson (2009)

provides some results in a multivariate context and discusses various issues related to modelling and

inference with such systems. More recently Tao, Phillips and Yu (2017) analyse a continuous time

system containing a random persistence parameter, deriving a discrete time representation and relating

it to existing models in the literature. Their motivation for considering such models is to allow for

extreme sample path behaviour in asset prices, and they find evidence of such behaviour in an empirical

application. Our contribution lies in deriving an exact discrete time representation corresponding

to a continuous time model with a time-varying autoregressive parameter whose law of motion is

determined by a stochastic differential equation. We show that the discrete time analogue relates to

the stochastic unit root class of discrete time models.

The remainder of the paper is organised as follows. Section 2 outlines our continuous time model

which allows for a one-time deterministic change in its parameters. Exact discrete time representa-

tions are derived for both single-equation (Dickey-Fuller) and components forms and compared with

commonly used discrete time one-change models. The implications of these results are discussed for

a variety of associated discrete time estimation and testing procedures. Section 3 considers the case

where the autoregressive parameter itself follows a first-order autoregression, again deriving the exact

discrete time analogue. Section 4 concludes. Mathematical proofs are provided in the appendix.
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2 One-Time Deterministic Parameter Change

2.1 The Continuous Time Model and its Exact Discrete Time Representation

We consider a scalar random variable, y(t), that satisfies, for 0 < t ≤ T , the following components

representation in continuous time:

y(t) = µ0 + δ0t+ µ11(t>τT ) + δ11(t>τT )t+ z(t), (2.1)

dz(t) =
(
ρ0 + ρ11(t>τT )

)
z(t)dt+

(
σ0 + σ11(t>τT )

)
dB(t), (2.2)

where 1x is the indicator function that equals one if x is true and equals zero otherwise, dB(t) is the

increment in a standard Brownian motion process,1 0 < τL ≤ τ ≤ τU < 1 and T denotes the data

span. In this general framework a one-time deterministic change in the values of the parameters of

the model occurs at t = τT which may therefore affect any or all of the deterministic trend function,

the autoregressive parameter and the variance.

Remark 1: The deterministic component specified in (2.1) is the continuous time analogue of the

deterministic component specified in Model C of Perron (1989,p.1364), which allows for a change in

both the slope and level of the series. The continuous time analogue of the deterministic component

specified in Model A of Perron (1989), which allows only for a change in level, obtains setting δ1 = 0

in (2.1). Finally, the continuous time analogue of the deterministic component specified in Model B

of Perron (1989), which allows for a change in the slope of the trend function but with no change

in the underlying level, is given by imposing µ1 ≡ −δ1(τT ) in (2.1), which is equivalent to replacing

δ11(t>τT )t in (2.1) by δ11(t>τT )(t− τT ) and setting µ1 = 0. �

Remark 2: The formulation in (2.1)-(2.2) allows for a one-time change in any or all of the autore-

gressive, deterministic trend and scale parameters of the continuous time model. The results which

follow generalise in an entirely obvious way if we were to allow for multiple such deterministic changes

in these parameters. Suppose we allow for a finite number, m say, of such changepoints. Here, rather

than the two regimes which occur in the exact discrete time representation given in Theorem 1 we

would now obtain m + 1 such regimes each separated by an interregnum period of the type given in

(2.8) wherever the changepoint did not coincide with a discrete time observation point. This would

1The variance of the increment is dt.
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therefore allow, for example, for the possibility that the autoregressive parameter displays a break at

a different point in time from a break in the parameters of the deterministic trend function. �

Taking the differential of (2.1), substituting for dz(t) using (2.2) and for z(t) using (2.1), results

in the following stochastic differential equation for y(t):

dy(t) =
{(
δ0 + δ11(t>τT )

)
−
(
ρ0 + ρ11(t>τT )

) [(
µ0 + µ11(t>τT )

)
+
(
δ0 + δ11(t>τT )

)
t
]

+
(
ρ0 + ρ11(t>τT )

)
y(t)

}
dt+

(
σ0 + σ11(t>τT )

)
dB(t), 0 < t ≤ T. (2.3)

The two regimes are given by

dy(t) = [π0 + γ0t+ ρ0y(t)] dt+ σ0dB(t), 0 < t ≤ τT, (2.4)

where π0 := δ0 − ρ0µ0 and γ0 := −ρ0δ0, and

dy(t) = [π1 + γ1t+ α1y(t)] dt+ ν1dB(t), τT < t ≤ T, (2.5)

where π1 := δ0 + δ1 − (ρ0 + ρ1)(µ0 + µ1), γ1 := −(ρ0 + ρ1)(δ0 + δ1), α1 := ρ0 + ρ1 and ν1 := σ0 + σ1.

In what follows we assume that y(t) is a stock variable2 such that the observed sequence is obtained

at equispaced sampling intervals of length 0 < h ≤ 1 resulting in {yth = y(th)}Nt=1. The sample size is

N and Nh = T .3

The continuous time framework allows for the possibility that the changepoint does not coincide

with any observation point th but can lie at some point between two observations at times th − h

and th. While this may be less important for high frequency data it is potentially of value when

observations are made less frequently, say monthly or quarterly or even annually. For example, with

UK quarterly macroeconomic data, a new government that implements different policies following a

general election in the middle of a quarter may affect the model parameters at a point in time which

does not coincide with the observed process. The continuous time model defined in (2.1) and (2.2)

2Qualitatively similar results to those given in this paper for stock variables are also be obtained for the case where
y(t) is a flow variable; the only change is that the resulting discrete time analogue models will be driven by errors
which follow moving average, rather than serially uncorrelated, processes. Furthermore the results concerning quasi-GLS
detrending for a stock variable derived in Chambers (2015) would also need appropriate modification for use in unit root
testing problems when the variable is a flow.

3The results which follow are derived for an arbitrary sampling interval length, h. In order to compare the resulting
discrete time models that obtain with those used in the extant discrete time literature, which do not take the sampling
frequency into account, we may simply set h = 1 which leads to the usual sample index t = 1, ..., T .

5



allows for such possibilities.

The solution to (2.3), which is unique in the mean square sense, is given by

y(t) = exp
{(
ρ0 + ρ11(t>τT )

)
t
}
y(0)

+

∫ t

0
exp

{(
ρ0 + ρ11(t>τT )

)
(t− r)

}{(
δ0 + δ11(t>τT )

)
−
(
ρ0 + ρ11(t>τT )

) [(
µ0 + µ11(t>τT )

)
+
(
δ0 + δ11(t>τT )

)
r
]}
dr

+
(
σ0 + σ11(t>τT )

) ∫ t

0
exp

{(
ρ0 + ρ11(t>τT )

)
(t− r)

}
dB(r), t > 0. (2.6)

This solution enables the dynamic evolution of yth in terms of its past values to be determined. It

is convenient, in what follows, to assume that t0h < τT < t1h = (t0 + 1)h, i.e. that the changepoint

occurs at some point between the observations t0h and t1h where t1 := (t0 + 1). We will, however,

subsequently consider the specific cases where the changepoint coincides with one of these observation

points.

In Theorem 1 we now provide the exact discrete time representation in single equation form for

the observed process.4 Corresponding results for the corresponding components form representation

will subsequently be discussed in Remarks 5 and 6.

Theorem 1 Let y(t) be generated by (2.1) and (2.2). Then observations made at equispaced sampling

intervals of length h satisfy the following exact discrete time representation:

yth = c00 + c01th+ φ0yth−h + η0,th, t = 1, . . . , t0, (2.7)

yth = cb0 + cb1th+ φbyth−h + ηb,th, t = t1, (2.8)

yth = c10 + c11th+ φ1yth−h + η1,th, t = t1 + 1, . . . , N, (2.9)

where the autoregressive coefficients are given by

φ0 := exp{ρ0h}, φb := exp{ρ0h+ ρ1(t1h− τT )}, φ1 := exp{(ρ0 + ρ1)h},
4The dependence of the parameters of the discrete time representation on the sampling interval h has been suppressed

purely for notational convenience.
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the intercepts are given by

c00 := hφ0δ0 + (1− φ0)µ0,

cb0 := hφbδ0 + (1− φb)µ0 + µ1 − exp{(ρ0 + ρ1) (t1h− τT )} (µ1 + δ1τT ) ,

c10 := hφ1 (δ0 + δ1) + (1− φ1) (µ0 + µ1) ,

and the trend parameters are given by

c01 := (1− φ0) δ0, cb1 := δ1 + (1− φb) δ0, c11 := (1− φ1) (δ0 + δ1) .

In addition, the disturbances, η0,th, η1,th and ηb,t1h, are individually and mutually serially uncorrelated

with variances given by, respectively,

ω2
0 := σ20

(exp{2ρ0h} − 1)

2ρ0
, ω2

1 := (σ0 + σ1)
2 (exp{2(ρ0 + ρ1)h} − 1)

2(ρ0 + ρ1)
,

and

ω2
b := σ20 exp{2(ρ0 + ρ1) (t1h− τT )}(exp{2ρ0 (τT − t0h)} − 1)

2ρ0

+(σ0 + σ1)
2 (exp{2(ρ0 + ρ1) (t1h− τT )} − 1)

2(ρ0 + ρ1)
.

�

Remark 3: It is clear from Theorem 1 that a break in the continuous time autoregressive parameter

affects all of the discrete time parameters in (2.7)-(2.9) including the disturbance variance, not just

the discrete time autoregressive parameter. Moreover, a break in the continuous time trend parameter

affects not only the discrete time trend parameter but also the intercept. In contrast, breaks in the

continuous time intercept and scale parameters affect only the discrete time intercept and innovation

variance parameters, respectively. In the interregnum interval that contains the break point, (t0h, t1h],

there is an additional term in the intercept in (2.8), arising from the final term in the expression for

cb0 in Theorem 1, involving the true break location τT . This occurs because the parameters governing

the evolution of the continuous time process change at this point within the sampling interval and

the presence of this additional term captures this feature. Notice that the trend, autoregressive and
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innovation variance parameters in the interregnum period also differ from the corresponding values

of those parameters in the pre- and post-break periods. These observations have implications for the

conduct and interpretation of discrete time estimation and inference in cases where parameter breaks

are considered, including trend break estimation and testing, unit root testing, and bubble testing,

which we will discuss further in section 2.2. �

Remark 4: The model specified in (2.1) and (2.2) does not restrict the sign of the autoregressive

coefficients ρ0 and ρ0 + ρ1. The process y(t) is stationary/integrated/explosive according to whether

these coefficients are negative/zero/positive, respectively. Zero roots in continuous time translate into

unit roots in discrete time as is clearly seen by inspection of φ0, φb and φ1 which are all equal to unity

when φ0 = φ1 = 0 (or ρ0 + ρ1 = 0 in the case of φ1). In such cases the intercept (or drift) coefficients

are such that

c00 = hδ0, cb0 = hδ0 − δ1τT, c10 = h(δ0 + δ1)

while the discrete time trend parameters are c01 = c11 = 0 and cb1 = δ1. Hence although only a drift

term appears in the pre- and post-break periods, a linear trend term appears during the interregnum

period of the form

cb0 + cb1t1h = hδ0 + δ1(t1h− τT ).

Observe that this value lies between c00 and c10 in view of the fact that 0 ≤ t1h−τT ≤ h. Furthermore

the variances in the zero/unit root cases can be found by using the series expansion of exp{x} and

noting that (exp{hx} − 1)/x = h+O(h2x); this results in

ω2
0 = σ20h, ω2

b = σ20(τT − t0h) + (σ0 + σ1)
2(t1h− τT ), ω2

1 = (σ0 + σ1)
2h.

Note that, if λ denotes the proportion of the interregnum period prior to the break taking place, so

that τT − t0h = λh and t1h− τT = (1− λ)h, then

ω2
b = λω2

0 + (1− λ)ω2
1.

Hence with zero/unit roots the variance in the interregnum period is a weighted average of the pre-

and post-break variances. �

Remark 5: The representations for yth in the pre- and post-break periods, given in (2.7) and (2.9)
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respectively, are also consistent with a discrete time components representation. To demonstrate this,

evaluating (2.1) at an observation point in the pre-break period yields

yth = µ0 + δ0th+ zth, t = 1, . . . , t0, (2.10)

where zth = z(th). However, z(th) satisfies (2.2) and so its law of motion is given by

zth = φ0zth−h + η0,th, t = 1, . . . , t0, (2.11)

where φ0 = exp{ρ0h} and η0,th is the disturbance in (2.7). The discrete time components representa-

tion comprises (2.10) and (2.11). That it is consistent with (2.7) can be shown by noting from (2.10)

that zth = yth − µ0 − δ0th and then substituting for zth and its lag in (2.11):

yth − µ0 − δ0th = φ0 [yth−h − µ0 − δ0(th− h)] + η0,th.

Rearranging results in

yth = hφ0δ0 + (1− φ0)µ0 + (1− φ0)th+ φ0yth−h + η0,th

as required. Similar operations applied to the post-break period yield the discrete time component

representation for t = t1 + 1, . . . , N :

yth = µ0 + µ1 + (δ0 + δ1)th+ zth, (2.12)

zth = φ1zth−h + η1,th; (2.13)

this can be shown to be consistent with the single-equation representation for yth given in (2.9). �

Remark 6: It is also possible to consider a components representation for the interregnum period at

time t1h. In this case the equation for yt1h is obtained from (2.1) directly as

yt1h = µ0 + µ1 + (δ0 + δ1)t1h+ zt1h, (2.14)

where zt1h = z(t1h). It is then a matter of relating zt1h to zt0h; as in the derivation of (2.8) this

can be achieved in two steps, the first of which relates zt1h to z(τT ) over the post-break part of the
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interregnum period, the second relating z(τT ) to zt0h using the pre-break parameters. This gives

zt1h = exp{(ρ0 + ρ1)(t1h− τT )}z(τT ) + ηb1,t1h,

z(τT ) = exp{ρ0(τT − t0h)}zt0h + ηb0,τT .

Substituting the second expression in the first results in

zt1h = φbzt0h + ηb,t1h (2.15)

where φb is defined in Theorem 1 and ηb,t1h = ηb1,t1h + ηb0,τT is the same as in (2.8). The components

representation for the interregnum period is, therefore, given by (2.14) and (2.15). However, the

implication of this representation for the single equation representation of yt1h differs slightly from

that in (2.8). Replacing zt1h = yt1h − (µ0 + µ1) − (δ0 + δ1)t1h and zt0h = yt0h − µ0 − δ0t0h in (2.15)

and rearranging yields

yt1h = c̃b0 + cb1t1h+ φbyt0h + ηb,t1h, (2.16)

which differs from (2.8) in the intercept term where c̃b0 = hφbδ0 + (1− φb)µ0 + µ1. In fact, the

two intercepts are related by cb0 = c̃b0 − exp{(ρ0 + ρ1) (t1h− τT )} (µ1 + δ1τT ). The reason for this

difference lies in the treatment of the break in trend during the interregnum period. In the single

equation approach in Theorem 1 the trend component is present in the formulation when relating yt1h

to y(τT ) and then y(τT ) to yt0h; the additional terms in cb0 arise from the deterministic integrals that

appear in these representations. In the components approach the trend terms are only substituted into

the expression once zt1h has been related to z(τT ) and z(τT ) related to zt0h. The same autoregressive

coefficient and disturbance arise in both approaches but the different treatment of the linear trend

results in a difference in the intercepts. In this sense the components approach does not fully capture

the interaction of the trend break and the temporal aggregation over the interregnum period in the

way that the single equation approach does. Of course, such matters are not a concern in models

formulated directly in discrete time where it is only possible to identify breaks that correspond with

the observation points. The continuous time setting allows these breaks to occur and to be identified

within the sampling interval. �

Remark 7: Following Remark 1 it is also of interest to relate the exact discrete time representation

in Theorem 1 to Models A and B in Perron (1989). The pre-break representation is unchanged but
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there are some differences that arise in the interregnum and post-break periods, as follows:

Model A (δ1 = 0): cb0 := hφbδ0 + (1− φb)µ0 − (exp{(ρ0 + ρ1) (t1h− τT )} − 1)µ1,

c10 := hφ1δ0 + (1− φ1) (µ0 + µ1) ,

cb1 := (1− φb) δ0,

c11 := (1− φ1) δ0.

Model B (µ1 = −δ1τT ): cb0 := hφbδ0 + (1− φb)µ0 − δ1τT,

c10 := hφ1 (δ0 + δ1) + (1− φ1) (µ0 − δ1τT ) .

The trend coefficients, cb1 and c11, remain unchanged in Model B, as do all the discrete time variances

in both models. �

Theorem 1 contains an exact discrete time representation in the most general framework where a

break occurs within a sampling interval. It is important to demonstrate that it is also valid in the

case where no break occurs and in situations where the break location coincides with one of the end

points of the affected sampling interval i.e. at t0h or at t1h. We deal with these special cases in turn:

No break: this occurs when µ1 = δ1 = ρ1 = σ1 = 0. It is immediate from the definitions that, in

this case, φ1 = φ0, c10 = c00, c11 = c01 and ω2
1 = ω2

0, and so (2.7) and (2.9) are equivalent. Turning to

(2.8), it is also clear that φb = φ0, cb0 = c00, cb1 = c01 and ω2
b = ω2

0, hence (2.8) is equivalent to (2.7)

as required.

Break at t0h: in this case, τT = t0h, and so the break occurs at the beginning of the break

period. The pre-break equation, (2.7), continuous to hold, as does the post-break equation, (2.9),

and so we need to demonstrate that (2.8) is equivalent to (2.9) in this case. We begin by noting that

t1h− τT = t1h− t0h = h and so φb = φ1 follows immediately. The intercept in this case is then

cb0 = hφ1δ0 + (1− φ1)µ0 + (1− φ1)µ1 − φ1δ1t0h

= hφ1 (δ0 + δ1) + (1− φ1) (µ0 + µ1)− φ1δ1t1h = c10 − φ1δ1t1h

(using t0h = t1h − h) while the trend coefficient is cb1 = δ1 + (1 − φ1)δ0. Combining the two terms

results in

cb0 + cb1t1h = c10 − φ1δ1t1h+ (δ1 + (1− φ1)δ0) t1h = c10 + c11t1h

as required. It is straightforward to show that ω2
b = ω2

1 which demonstrates that (2.8) is equivalent to
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(2.9).

Break at t1h: here, τT = t1h and the break occurs at the end of the break period. The pre- and

post-break equations, (2.7) and (2.9), respectively, continue to hold, and so in this case we need to

establish that (2.8) is equivalent to (2.7). We note that t1h − τT = 0 and τT − t0h = h and it is

straightforward to see that φb = φ0. The intercept becomes

cb0 = hφ0δ0 + (1− φ0)µ0 − δ1t1h = c00 − δ1t1h.

while the trend coefficient is cb1 = δ1 + (1− φ0) δ0. Combining yields

cb0 + cb1t1h = c00 − δ1t1h+ (δ1 + (1− φ0) δ0) t1h = c00 + c01t1h

while it also holds that ω2
b = ω2

0 as required.

2.2 Some Implications for Methods in Discrete Time

The results in section 2.1 have important implications for a number of widely used modelling and

testing procedures performed on discrete time data. In particular, those relating to unit root tests

which allow for breaks in the deterministic trend function and the related issue of robust trend break

testing and associated trend break fraction estimation, and the recent literatures relating to change in

the autoregressive parameter, most notably tests and detection and dating procedures for persistence

change in macroeconomic data and for rational explosive bubbles in financial data.

2.2.1 Methods Relating to Trend Breaks

Perron (1989) shows that an unmodelled broken intercept and/or trend in the data renders standard

unit root tests non-similar and heavily biases these tests towards non-rejection of the unit root null

when applied to stochastically stationary series. For a known break date in discrete time, Perron

(1989) shows that these deficiencies can be resolved using a two-step procedure whereby the levels

data are appropriately detrended in the first step. For Models A, B and C of Perron (1989) this

entails running, in the second step, an augmented Dickey-Fuller [ADF] test on the residuals from

the OLS regression of the observed data yt, t = 1, ..., T , onto Zit(t0), i ∈ {A,B,C}, where Zit(t0) is

the set of deterministic regressors implied by either: Model A, ZAt (t0) := {1, t, 1(t>t0)}; Model B,
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ZBt (t0) := {1, t, 1(t>t0)(t − t0)}; Model C, ZCt (t0) := {1, t, 1(t>t0) 1(t>t0)t}.5 Quasi-GLS detrended

analogues of this approach are developed in Perron and Rodŕıguez (2003). Here the first-step is

conducted using quasi-GLS, rather than OLS, detrending.

Specialising our results in Theorem 1 and related results in Remarks 5, 6 and 7 to the case

where only the intercept and/or trend coefficients can display structural change and setting h = 1,

as in footnote 2, it is clear from a comparison with the corresponding discrete time models in Perron

(1989,p.1364), inter alia, that the two-step approaches developed in the discrete time literature remain

appropriate for data obtained by discrete time sampling from the continuous time model in (2.1)-(2.2).

This is because although in the single equation representation given in Theorem 1 the interregnum

observation at t = t1 in (2.8) will have different parameter values on the intercept and trend terms

from those which apply in either (2.7) or (2.9) (excepting the case where the changepoint coincides

with t0 or t1), this is not the case in the components form discussed in Remarks 5 and 6.

Where the break date occurs at an unknown point in discrete time, the approaches outlined above

have been extended in two separate ways. The first proposed in, inter alia, Zivot and Andrews (1992),

performs the approach outlined in Perron (1989) for all possible break dates within a pre-defined set

of dates and forms a unit root test based on the most negative of the resulting set of ADF statistics.

In contrast to the two-step approach of Perron (1989), however, Zivot and Andrews (1992) include

the deterministic variables directly in the ADF regression. As (2.8) shows, this is not appropriate

for data obtained by discrete time sampling from (2.1)-(2.2) (unless the breakpoint coincides with an

observation point) and the impulse dummy 1(t=t0+1) should be included in the ADF regression.

In the second approach the unknown location of the break in the deterministic trend function is first

estimated. An obvious estimator, discussed in Perron and Zhu (2005) and Kim and Perron (2009), is

the levels estimator obtained as the location which minimises the sum of squared residuals (SSR) from

the OLS regression of yt onto either ZAt (s), ZBt (s) or ZCt (s), according to which of Models A, B and

C is specified, taken over the set of possible break dates s ∈ {tL, tL + 1, ...., tU}, such that tL := bπT c

and tU := T − bπT c, with π ∈ (0, 1) a user-defined trimming parameter and b·c denoting the integer

part of its argument. The corresponding quasi-GLS estimator is considered in Carrion-i-Silvestre et

al. (2009). For Model C, a first difference estimator of the trend break location can also be used by

5In the case of Models A and C, in order to obtain ADF tests which are invariant to any serial correlation present in
the driving shocks, Vogelsang and Perron (1989) show that the impulse dummy variable 1(t=t0+1) (and, where the ADF
regression contains p lagged dependent variables, p lags of this impulse dummy) also needs to be included in the ADF
regression. When using GLS detrending the impulse dummy 1(t=t0+1) (and lags thereof) does not need to be included
in the second step ADF regression.
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estimating the location of a level break in the first differences of the data. The foregoing estimators

are all based on static estimation. An alternative estimator, originally proposed in Hatanaka and

Yamada (1999) and discussed further in Kim and Perron (1998), minimises the SSR from the dynamic

OLS regression of yt onto either yt−1, Z
i
t(s) and 1(t=s+1) for i ∈ {A,C} or onto yt−1, Z

i
t(s), 1(t=s+1)

and 1(t≥s) for i = B. In each case, one then proceeds as above but using the estimated break date in

place of the true break date.6 It should again be clear that the estimators based on static regressions

all remain appropriate for data obtained by discrete time sampling from the continuous time model in

(2.1)-(2.2). In the case of the dynamic estimator of Hatanaka and Yamada (1999) the presence of the

dummy variable 1(t=s+1) already included in the estimated regression accounts for the interregnum

term in (2.8).

Allowing for unnecessary broken intercept and trend variables in the unit root test specification

leads to a loss of power to reject the unit root null when the data are stochastically stationary.

As a consequence, pre-tests for the presence of breaks in the deterministic trend function that are

robust as to whether the series contains an autoregressive unit root or is stochastically stationary have

been proposed in this literature; see inter alia, Harvey, Leybourne and Taylor (2007), Perron and

Yabu (2009) and Sayginsoy and Vogelsang (2011). All of these pre-test methods are based on static

regressions and so again will remain valid as formulated for data obtained by discrete time sampling

from (2.1)-(2.2).

Finally, if we also allow the scale factor in (2.2) to display a one-time break then provided the

heteroskedasticity-robust wild bootstrap implementations of the foregoing unit root test procedures,

discussed in, for example, Cavaliere et al. (2011), are employed then these will remain valid without

alteration for data obtained by discrete time sampling from (2.1)-(2.2). The large sample properties

of the break fraction estimators and trend break pre-tests outlined above are unaffected by breaks in

the scale factor.

2.2.2 Methods Relating to Breaks in the Autoregressive Parameter

Models allowing for deterministic changes in the autoregressive parameter have proved empirically

useful in both applied macroeconomics where they provide a framework for testing for persistence

change whereby a series admits a unit root in some periods but is mean reverting in other periods,

and in empirical finance where they underlie testing procedures for the presence of rational explosive

6Albeit for Models B and C, Kim and Perron (2009) show that the OLS levels estimator has to be trimmed around
the estimate of the break date.
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bubbles in price data.

A number of the methods proposed in the literature for persistence change testing and for detect-

ing explosive price bubbles have been developed which are based on the same underlying statistical

methodology which derives from the familiar ADF model where the autoregressive coefficient is al-

lowed to display deterministic breaks. The former is typified by, inter alia, Banerjee et al. (1992),

Leybourne et al. (1995) and Leybourne et al. (2007), and the latter by Phillips et al. (2011), Homm

and Breitung (2012), Phillips et al. (2015), and Astill et al. (2017), inter alia. In these approaches a

test is based not on a full sample ADF test statistic but rather on functions of sequences of subsample

ADF statistics. Most commonly these sequences are based on either recursive subsamples, backward

recursive subsamples, rolling subsamples, or rolling-recursive subsamples. In the case of persistence

change, left-tailed tests are based on the smallest sub-sample ADF statistic in the computed sequence

(i.e. the sub-sample ADF statistic which gives most weight to a stationary alternative). For bubble

detection, right-tailed tests are based on the largest sub-sample ADF statistic (i.e. the sub-sample

ADF statistic which gives most weight to an explosive alternative). In the persistence change tests, a

linear trend tends to be allowed for, possibly with a level and/or trend break, while in the explosive

bubbles literature an intercept is usually deemed sufficient.

It is clear from our results in Theorem 1 and Remarks 5 and 6 that, even without a one-time level

or trend break, the coefficients on the interregnum term in (2.8) will differ from those in (2.7) and

(2.9) in cases where the autoregressive parameter displays a one-time break that does not coincide

with an observation point.7 As with the discussion in section 2.2.1, an implication of this is that for

data obtained by discrete time sampling from the continuous time model in (2.1)-(2.2) the subsample

ADF tests should be detrended (either by OLS or quasi-GLS) in levels (for the relevant subsample)

rather than by including the deterministic regressors directly into the subsample ADF regression. The

former is indeed done by Leybourne et al. (1995) and Leybourne et al. (2007) in the approaches

they propose, but the latter is done by Banerjee et al. (1992), Phillips et al. (2011), Phillips et al.

(2015) and Astill et al. (2017). Additionally, because the innovation variance differs across (2.7),

(2.8) and (2.9) when either the autoregressive parameter or the scale factor in (2.3) displays a break,

wild bootstrap implementations of the foregoing tests should be employed. Indeed, as Harvey et al.

(2011,p.549) argue “... volatility changes in innovations to price series processes could be induced by

the presence of a speculative bubble, but equally it could be the case that changes in volatility occur

7Empirical applications of bubble testing have tended to use monthly price data, so even here it seems, a priori, very
unlikely that the break would happen to occur at an observation point.
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without an explosive bubble period occurring.” For the case of the bubble detection test of Phillips et

al. (2011), wild bootstrap implementations have been developed in Harvey et al. (2016), although like

Phillips et al. (2011) they include the deterministic component in the subsample ADF regressions.

3 Stochastically Time-Varying Parameters

3.1 The Continuous Time Model and its Exact Discrete Time Representation

In this section we specify a continuous time model in which the deterministic trend parameters remain

constant but the autoregressive parameter is allowed to be stochastically time-varying. The model is

defined by the pair of stochastic differential equations

dy(t) = [µ+ δt+ α(t)y(t)] dt+ σydBy(t), t > 0, (3.1)

dα(t) = [γ + βα(t)] dt+ σαdBα(t), t > 0, (3.2)

subject to the initial conditions y(0) = y0 and α(0) = α0. In this system B(t) := (By(t), Bα(t))′ is

a bivariate Brownian motion process and it is assumed that E(By(t)Bα(t)) = 0. If β = 0 then α(t)

evolves as a continuous time Gaussian random walk with drift but could be stationary (β < 0) or

explosive (β > 0) depending on the sign of β. The solution to (3.2) is given by

α(t) = exp{βt}α0 +

∫ t

0
exp{β(t− r)}γdr + σα

∫ t

0
exp{β(t− r)}dBα(r), t > 0, (3.3)

but the solution to (3.1) does not take on a similar form owing to the time variation in α(t); only

when α(t) = α for all t does the solution take the familiar form

y(t) = exp{αt}y0 +

∫ t

0
exp{α(t− r)} (µ+ δr) dr + σy

∫ t

0
exp{α(t− r)}dBy(r), t > 0. (3.4)

But (3.4) does not hold in the more general model of (3.1) and (3.2) with α simply replaced by

α(t). Instead, a generalisation of equation (8.3) of Soong (1973, p.219) to allow for the deterministic
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component yields the solution

y(t) = exp

{∫ t

0
α(s)ds

}
y0 +

∫ t

0
exp

{∫ t

r
α(s)ds

}
(µ+ δr)dr

+σy

∫ t

0
exp

{∫ t

r
α(s)ds

}
dBy(r), t > 0. (3.5)

The solution takes on a more complicated form, replacing exponentials involving the constant α with

exponentials of integrals of the process α(t) over the same interval. Nevertheless this solution forms

the basis of the derivation of an exact discrete time representation for the observed process.

Some results concerning multivariate continuous time systems with a time-varying autoregressive

coefficient matrix are provided by Robinson (2009). His model does not contain any deterministic

components but does, also, allow the variance matrix to vary over time as well as being multivariate in

nature. No assumption concerning the dynamic evolution of the autoregressive parameters is made and

the focus is more concerned with the second-order properties of the process rather than discrete time

representations, although some discussion of semi- and non-parametric, as well as fully parametric,

approaches is given. Our alternative approach yields the following discrete time representation for

yth = y(th) with h, as before, denoting the (fixed) sampling interval.

Theorem 2 Let y(t) be generated by (3.1) and (3.2). Then observations made at equispaced sampling

intervals of length h satisfy the following exact discrete time representation:

yth = c0,th + c1,thth+ φthyth−h + ηth, t = 1, . . . , N, (3.6)

where, for t = 1, . . . , N ,

φth := exp

{∫ th

th−h
α(s)ds

}
,

c0,th :=

∫ h

0
exp

{∫ th

th−r
α(s)ds

}
(µ− δr)dr,

c1,th := δ

∫ h

0
exp

{∫ th

th−r
α(s)ds

}
dr,

and ηth is, conditionally on {α(s); s ≤ th}, a serially uncorrelated normally distributed random
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disturbance with mean zero and variance

σ2η,th := σ2y

∫ h

0
exp

{
2

∫ th

th−r
α(s)ds

}
dr, t = 1, . . . , N. (3.7)

Furthermore, φth satisfies the law of motion

log φth = βhγh+ exp{βh} log φth−h + ξth, t = 1, . . . , N, (3.8)

where βh := (exp{βh}−1)/β and ξth is a normally distributed first-order moving average process with

mean zero and variance and autocovariance given by, respectively,

E(ξ2th) =
σ2α
β2

[
(exp{2βh}+ 1)h− 1

β
(exp{2βh} − 1)

]
,

E(ξthξth−h) =
σ2α
β2

[
1

2β
(exp{2βh} − 1)− h exp{βh}

]
.

�

Remark 8: The discrete time representation for yth in Theorem 2 is time-varying in all of its param-

eters, including the disturbance variance, even though it is only the continuous time autoregressive

parameter that varies with time. This is due to the discrete time sampling of the continuous time

process – the dynamics operate within the sampling interval and permeate through all the resulting

discrete time parameters via α(t) (or integrals thereof). �

Remark 9: An interesting feature of the representation in Theorem 2 concerns the dynamic evolution

of the discrete time autoregressive parameter φth whose logarithm is an ARMA(1,1) process; the

dynamics of φth itself would obey a much more complicated multiplicative process of the form

φth = φ
exp{βh}
th−h exp{βhγh+ ξth}, t = 1, . . . , N.

In cases where α(t) is a continuous time random walk (with drift), so that β = 0, then log φth is a

discrete time ARMA(1,1) process with a unit root given by

log φth = γh2 + log φth−h + ξth, t = 1, . . . , N ;
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here we have used the fact that βh = h+O(βh2) and hence limβ→0 βh = h. By taking a series expansion

of exp{βh} and exp{2βh} and letting β → 0 it can be shown that the variance and autocovariance of

ξth satisfy

E(ξ2th) =
2

3
σ2αh

3 and E(ξthξth−h) =
1

6
σ2αh

3.

�

Remark 10: The form of the deterministic trend term in Theorem 2 is also more complicated than

would typically be envisaged in a discrete time specification. In fact, although the continuous time

linear trend is deterministic, the trend in the discrete time representation is stochastic owing to the

integrals of α(t) appearing (in exponentiated form) in the definitions of c0,th and c1,th. Again this

is due to the way the the autoregressive parameter process α(t) percolates through all components

within each observation interval. �

Remark 11: The properties of the discrete time disturbance term, ηth, are summarised in Theorem

2 conditionally on α(t). Deriving the exact unconditional properties is complicated by the fact that

it is the exponential of integrals of α(t) that determine ηth. The proof of Theorem 2 reveals that

ηth = σy

∫ th

th−h
exp

{∫ th

r
α(s)ds

}
dBy(r), t = 1, . . . , N.

The assumed lack of correlation between Bα and By means that the major challenge in deriving

the autocovariances of ηth lies in evaluating autocovariances of exponential of integrals of α(t). One

thing that is clear from the autoregressive nature of α(t) is that ηth will be serially correlated with

stochastic variances and autocovariances. Again this derives from the operation of the stochastic

autoregressive parameter α(t) within the sampling interval despite the continuous time innovations

being uncorrelated with constant variances. �

The exact discrete time representation of the continuous time model in (3.1)–(3.2) given in Theorem

1 has interesting parallels with the class of discrete time stochastic unit root models. In particular,

the behaviour of the autoregressive parameter φth in (3.6), which is such that its logarithm follows

an ARMA(1,1) process can be seen to be very similar to that of the autoregressive parameter in

the discrete time stochastic unit root model specified in Equations (2.1)-(2.2)-(2.3) of Granger and

Swanson (1997,p.37). This model specifies yt = atyt−1+εt with at = exp{αt} and with αt following the

AR(1) process αt = µ+ραt−1+ηt with |ρ| < 1 and ηt and εt mutually independent IID processes. In the
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Granger and Swanson model the AR coefficient at is therefore seen to be such that its logarithm follows

a stationary AR(1) process. More recently, Lieberman and Phillips (2014,2017a,b,c) have generalised

this structure to allow αt to follow a more general linear process. So although the exact discrete time

analogue of the continuous time model in (3.1)–(3.2) does not formally belong to the class of discrete

time stochastic unit root models which have been considered to date in the literature, crucially it shares

exactly the same form of time-dependent stochastic structural change in its autoregressive parameter

as these models and, as such, provides a continuous time justification for the mechanism adopted for

stochastic change in the autoregressive parameter in the stochastic unit root class of models.

4 Conclusions

We have considered simple models of deterministic one-time parameter change and continuous stochas-

tic parameter change in a continuous time autoregressive model around a deterministic trend function.

Exact discrete time analogue representations were given and compared to extant parameter change

models proposed in the discrete time literature. For the case of deterministic parameter change these

were shown to coincide, excepting the observation immediately following the changepoint when the

changepoint does not coincide with one of the discrete time observation points. In the case of stochas-

tic parameter change we considered a continuous time model where the autoregressive parameter itself

follows a first-order autoregression. The discrete time analogue was shown to follow a model with an

autoregressive structure with the logarithm of the autoregressive parameter following an ARMA(1,1)

process, paralleling the structure seen in discrete time stochastic unit root models.

Although the continuous time models we have analysed in this paper are relatively simple, they

have nonetheless provided valuable insights into the properties of discrete time models of parameter

change, providing a theoretical justification for a number of extant models of parameter change and

statistical methods for discrete time data. It is hoped that the results in this paper will encourage

further research in this area.

A Appendix

Proof of Theorem 1. For t = 1, . . . , t0, y(t) satisfies

y(t) = exp {ρ0t} y(0) +

∫ t

0
exp {ρ0(t− r)} [µ0 + δ0r] dr + σ0

∫ t

0
exp {ρ0(t− r)} dB(r).
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Evaluating at the point th and splitting the integrals over (0, th] into integrals over (0, th − h] and

(th− h, th] we find that yth = c0,th + φ0yth−h + η0,th, where

c0,th =

∫ th

th−h
exp {ρ0(th− r)} [µ0 + δ0r] dr, η0,th = σ0

∫ th

th−h
exp {ρ0(th− r)} dB(r).

By a change of variable c0,th can be written

c0,th =

∫ h

0
exp{ρ0s}[µ0 + δ0(th− s)]ds

=

(∫ h

0
exp{ρ0s}ds

)
µ0 +

(∫ h

0
exp{ρ0s}ds

)
δ0th−

(∫ h

0
exp{ρ0s}sds

)
δ0,

and evaluating these deterministic integrals yields c0,th = c00 + c01th. A similar procedure applies for

t = t1 + 1, . . . , N in which case y(t) satisfies

y(t) = exp {(ρ0 + ρ1)t} y(0) +

∫ t

0
exp {(ρ0 + ρ1)(t− r)} [µ0 + µ1 + (δ0 + δ1)r] dr

+(σ0 + σ1)

∫ t

0
exp {(ρ0 + ρ1)(t− r)} dB(r).

This results in yth = c1,th + φ1yth−h + η1,th, where

c1,th =

∫ th

th−h
exp {(ρ0 + ρ1)(th− r)} [µ0 + µ1 + (δ0 + δ1)r] dr,

η1,th = (σ0 + σ1)

∫ th

th−h
exp {(ρ0 + ρ1)(th− r)} dB(r).

A similar change of variable and evaluation of the deterministic integrals yields c1,th = c10 + c11th.

It remains to determine the equation relating yt1h to yt0h. We begin by relating yt1h to the unob-

served value of the process at the break point, y(τT ); we have, defining α1 = ρ0 + ρ1 for convenience,

yt1h = exp {α1(t1h− τT )} y(τT ) +

∫ t1h

τT
exp {α1(t1h− r)} [µ0 + µ1 + (δ0 + δ1)r] dr

+(σ0 + σ1)

∫ t1h

τT
exp {α1(t1h− r)} dB(r). (A.1)
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Next we relate y(τT ) to the previous observation, yt0h, which yields

y(τT ) = exp {ρ0(τT − t0h)} yt0h +

∫ τT

t0h
exp {ρ0(τT − r)} (µ0 + δ0r) dr

+σ0

∫ τT

t0h
exp {ρ0(τT − r)} dB(r). (A.2)

Substituting (A.2) into (A.1) yields an expression of the form yt1h = cb,t1h + φbyt0h + ηb,t1h, where

cb,t1h =

∫ t1h

τT
exp {α1(t1h− r)} [µ0 + µ1 + (δ0 + δ1)r] dr

+ exp {α1(t1h− τT )}
∫ τT

t0h
exp {ρ0(τT − r)} [µ0 + δ0r] dr,

φb = exp {α1(t1h− τT )} exp {ρ0(τT − t0h)} = exp{ρ0h+ ρ1(t1h− τT )},

ηb,t1h = (σ0 + σ1)

∫ t1h

τT
exp {α1(t1h− r)} dB(r)

+σ0 exp {α1(t1h− τT )}
∫ τT

t0h
exp {ρ0(τT − r)} dB(r).

Evaluation of the deterministic integral defining cb,t1h yields the deterministic terms as required.

Finally, the disturbances are individually and mutually serially uncorrelated as they are defined in

terms of integrals of dB(t) over non-overlapping intervals, while their variance properties follow by

evaluating the relevant integrals. 2

Proof of Theorem 2. Evaluating the solution, (3.5), at the point th and splitting the integrals over

the intervals (0, th− h] and (th− h, th] we obtain

y(th) = exp

{∫ th−h

0
α(s)ds+

∫ th

th−h
α(s)ds

}
y0

+

∫ th−h

0
exp

{∫ th

r
α(s)ds

}
(µ+ δr)dr +

∫ th

th−h
exp

{∫ th

r
α(s)ds

}
(µ+ δr)dr

+σy

∫ th−h

0
exp

{∫ th

r
α(s)ds

}
dBy(r) + σy

∫ th

th−h
exp

{∫ th

r
α(s)ds

}
dBy(r).

Noting that, for r < th− h,

exp

{∫ th

r
α(s)ds

}
= exp

{∫ th−h

r
α(s)ds+

∫ th

th−h
α(s)ds

}
,
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the above solution can be written

y(th) = exp

{∫ th

th−h
α(s)ds

}(
y0 exp

{∫ th−h

0
α(s)ds

}
+

∫ th−h

0
exp

{∫ th−h

r
α(s)ds

}
(µ+ δr)dr

+ σy

∫ th−h

0
exp

{∫ th−h

r
α(s)ds

}
dBy(r)

)

+

∫ th

th−h
exp

{∫ th

r
α(s)ds

}
(µ+ δr)dr + σy

∫ th

th−h
exp

{∫ th

r
α(s)ds

}
dBy(r)

which is of the form yth = mth + φthyth−h + ηth, where φth is defined in the Theorem and

mth =

∫ th

th−h
exp

{∫ th

r
α(s)ds

}
(µ+ δr)dr,

ηth = σy

∫ th

th−h
exp

{∫ th

r
α(s)ds

}
dBy(r).

A change of variable from r to u = th− r shows that mth = c0,th + c1,thth while ηth is clearly serially

uncorrelated, conditional on {α(s), s ≤ th}, and its variance follows straightforwardly. The law of

motion for log φth is obtained by noting that

log φth =

∫ th

th−h
α(s)ds

and using (3.2) to derive its properties. From the solution to (3.2) we have that

α(t) =

∫ t

t−h
exp{β(t− r)}γdr + exp{βh}α(t− h) + σα

∫ t

t−h
exp{β(t− r)}dBα(r).

The first deterministic integral on the right-hand-side can be evaluated as

∫ t

t−h
exp{β(t− r)}dr =

∫ h

0
exp{βw}dw =

exp{βh} − 1

β
=: βh

and so it follows that

∫ th

th−h
α(s)ds =

∫ th

th−h
βhγds+ exp{βh}

∫ th

th−h
α(s− h)ds+ σα

∫ th

th−h

∫ s

s−h
exp{β(s− r)}dBα(r)ds.
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This is clearly in the form of (3.8) with the intercept equal to βhγh and

ξth = σα

∫ th

th−h

∫ s

s−h
exp{β(s− r)}dBα(r)ds.

The moving average properties become apparent when the double integral is split into two single

integrals whose autocovariance properties can be derived. We obtain

1

σα
ξth =

∫ th

s=r

∫ th

r=th−h
exp{β(s− r)}dBα(r)ds+

∫ r+h

s=th−h

∫ th−h

r=th−2h
exp{β(s− r)}dBα(r)ds

=

∫ th

th−h

(∫ th

r
exp{β(s− r)}ds

)
dBα(r) +

∫ th−h

th−2h

(∫ r+h

th−h
exp{β(s− r)}ds

)
dBα(r)

=

∫ th

th−h
ψ1(th− r)dBα(r) +

∫ th−h

th−2h
ψ2(th− h− r)dBα(r)

where

ψ1(th− r) =

∫ th

r
exp{β(s− r)}ds =

1

β
(exp{β(th− r)} − 1),

ψ2(th− h− r) =

∫ r+h

th−h
exp{β(s− r)}ds =

1

β
(exp{βh} − exp{β(th− h− r)}).

The covariance properties are obtained by noting that

E(ξ2th) = σ2α

∫ th

th−h
ψ1(th− r)2dr + σ2α

∫ th−h

th−2h
ψ2(th− h− r)2dr

= σ2α

∫ h

0
ψ1(r)

2dr + σ2α

∫ h

0
ψ2(r)

2dr,

E(ξthξth−h) = σ2α

∫ th−h

th−2h
ψ1(th− h− r)ψ2(th− h− r)dr

= σ2α

∫ h

0
ψ1(r)ψ2(r)dr,

and evaluating the stated integrals. 2
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