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Abstract 

In this paper a steganographic method is proposed to improve the capacity of the hidden secret data and to 

provide an imperceptible stego-image quality. The proposed steganography algorithm is based on the 

wavelet packet decomposition (WPD) and neutrosophic set. First, an original image is decomposed into 

wavelet packet coefficients. Second, the generalized parent-child relationships of spatial orientation trees 

for wavelet packet decomposition are established among the wavelet packet subbands. An edge detector 

based on the neutrosophic set named (NSED) is then introduced and applied on a number of subbands. 

This leads to classify each wavelet packet tree into edge/non-edge tree to embed more secret bits into the 

coefficients in the edge tree than those in the non-edge tree. The embedding is done based on the least 

significant bit substitution scheme. Experimental results demonstrate that the proposed method achieves 

higher embedding capacity with better imperceptibility compared to the published steganographic 

methods.  
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1. Introduction 
 

Due to the development of computer networks, internet and digital media, the information security has 

become increasingly important. Several techniques such as cryptography, steganography, coding, are 

widely used in the field of information security to manipulate information messages such as data hiding. 

The information security systems provide two main disciplines: information encryption and information 

hiding [19, 20]. Information encryption, or cryptography, is a process of scrambling the data such that it 

cannot be understood. On the other hand, information hiding, as the name implies is to make sure the 

added information is invisible. It can be further classified into watermarking and steganography [19, 20]. 

Watermarking is used to protect the copyright and it guarantees the integrity of the transmitted data.  

mailto:ghan@ut.ac.ir
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Steganography is a technique of hiding an information message into a cover object (as a text, image, 

video, or audio segment) such that a human observer cannot perceive that message. Among the different 

kind of cover objects, the digital image is commonly used as a host image to convey information message 

in it. Steganographic system starts hiding information by indicating the redundant bits in the cover image, 

the bits which can be modified without destroying the object. These redundant bits are replaced with data 

from the secret message to create a stego-image.  

Unlike the watermarking techniques in which the robustness against attacks is its objective, the 

steganography techniques pay more attention to the three aspects: capacity, imperceptibility and security 

against steganalysis. Capacity (payload) refers to the number of secret bits which can be embedded in the 

cover image. Imperceptibility refers to inability of observer to distinguish between cover image and 

stego-image. Thus, designing an effective steganography scheme requires maintaining the 

imperceptibility of the important data, increasing the payload rate and ensuring security against 

steganalysis. Many steganalytic methods are used to detect the existence of hidden message in the cover 

images such as visual and statistical attacks [23-25]. In [25], Fridrich et al. have employed a dual 

statistical method to detect the presence of hidden message in the cover images. 

In the literature, several image steganography techniques have been proposed [1–22] and they can be 

classified into two categories of spatial domain techniques and frequency-domain techniques. In the 

spatial domain steganography techniques [1-12], the secret messages are embedded directly into the cover 

image. One of these techniques is based on the least-significant-bit (LSB) substitution by utilizing some 

rules to replace LSBs of the cover image with the secret message [1–3]. Although these methods are 

simple and typically achieve high capacity with low computational complexity their embedding capacity 

is not satisfactory. Some studies [5-12] have taken into account the characteristics of the human visual 

system to improve the embedding capacity. These methods usually embed more secret message into areas 

with higher spatial variations such as edges than the smooth areas since visibility of the embedded data 

around edges and highly detailed areas can be masked. Some of these methods discriminate between 

edged areas/pixels and smooth areas/pixels by utilizing either pixel-value differencing (PVD) [4-6, 9-10] 

or edge detectors [11, 12] such as Canny and fuzzy edge detectors.    

On the other hand, several frequency domain techniques [13-18] have been proposed to obtain large 

capacity steganography and maintaining high fidelity (invisibility) simultaneously. In the frequency 

domain methods, the cover image is transformed into frequency domain coefficients using one of the 

most popular transforms such as the discrete wavelet transform (DWT), wavelet packet, and Discrete 

Cosines Transform (DCT). These transform coefficients are manipulated to hide the secret message 

among themselves. The stego-image is then obtained by applying the inverse transformation. In [13], a 

DCT-based steganographic method for images was proposed. The method takes into consideration the 
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similarities of the DCT coefficients between the adjacent image blocks to embed the secret message by 

quantizing the difference of the coefficients instead of the coefficients themselves. In [14], an adaptive 

data hiding technique based on discrete wavelet transform was proposed. The cover image is partitioned 

into 8×8 non overlapping blocks and the Haar wavelet transform is then applied on each block. A data 

hiding capacity function is defined to determine the capacity of the embedding secret message in the 

transform coefficients. In [15] a similar adaptive data hiding technique with an optimum pixel adjustment 

algorithm (OPA) was proposed to minimize the embedding error. Bhattacharyya et al. [16] introduced a 

steganographic scheme based on integer wavelet transform (IWT) through a lifting scheme. In this 

method, the stego-image is obtained by using the pixel mapping method (PMM) to embed two bits of the 

secret message into the selected subband coefficients. However, the quality of the stego-image and the 

size of the payload produced using this method are low. Consequently, for further improvement in the 

hiding capacity, Seyyedi and Ivanov [17] also proposed a steganography technique based on integer 

wavelet transform. The cover image is divided into 8×8 non-overlapping blocks and 2D IWT is applied to 

each block. The coefficients in each transformed block are then partitioned into two subsets and the secret 

message is embedded in the proper subset. 

The key aim in all of the image steganography methods whether spatial or transform is to increase the 

data hiding capacity without causing any noticeable distortions in the cover image. Therefore, in this 

paper, a steganographic technique based on WPD and neutrosophic set (NS) is proposed. The proposed 

approach has the following advantages: 1) the approach is hierarchical which facilitates constructing 

WPTs), the status of each tree (which consists of a number of coefficients) is 

represented by only one bit. This leads to preserve the quality of the stego-image; 2) the embedded secret 

message is hardly detectable by the human visual system (HVS) due to adding more embedding bits in 

the edge trees than the non-edge ones; 3) high payload is hidden due to the proposed Neutrosophic Set-

based Edge Detector (NSED); and 4) the proposed method is robust against statistical RS, pixel difference 

histogram and universal steganalysis. 

The remainder of the paper is organized as follows: the introduced edge detection approach is given in 

Section 2. Section 3 describes the proposed embedding and extraction procedures. In Section 4, 

experimental results are presented, and, finally, the paper is concluded in Section 5. 

 
 

2. Neutrosophic set-based edge detection (NSED) 

 

Edge detection is an important issue in image processing and analysis. It is used in a wide range of 

applications such as image enhancement, recognition, compression, retrieval, watermarking, hiding, and 

segmentation [26]. Numerous methods of edge detection have been proposed to detect edges in still 
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images. Among them the gradient-based edge detection methods such as Sobel, Canny, Robert, Prewitt 

are most popular. In these methods, a pixel is classified as an edge if the value of its gradient is greater 

than a threshold. The performance of these methods is limited because they are very sensitive to noise.  

Recently fuzzy logic-based edge detection techniques have also been proposed [27-30]. The image in 

reality is fuzzy and the edges are not clear since each pixel of an image has a degree of belonging to a 

region or a boundary. Fuzzy theory has been applied into edge detection due to its powerful ability to deal 

with the ambiguity within an image. Amarunnishad et al. [27] proposed a simple fuzzy complement edge 

operator which is able to detect a large number of edge pixels in an image and it provides a better visual 

quality edge image than the competitive fuzzy edge detector (CFED) proposed by Liang and Looney [28]. 

To increase the number of edge pixels, Chen et al [11] proposed a hybrid edge detector. In this method, 

the 'Canny' edge detector and the fuzzy complement edge operator were combined. Several methods have 

been proposed based on fuzzy rules [29, 30]. In most of these methods, adjacent pixels around a center 

are assumed to be in some classes. Fuzzy system inference is then implemented using an appropriate 

membership function defined for each class. In [29], a simple fuzzy logic-based edge detection algorithm 

was proposed. The algorithm scans the image using a 2×2 pixels window. Fuzzy inference system has 

four inputs, which are the four pixels within the scanning window, and one output that decides whether 

the pixel under consideration is “black”, “white” or “edge” pixel. This method uses sixteen fuzzy rules to 

investigate discontinuity of adjacent points around a specific pixel. For a better edge detection 

performance, a similar method was proposed in [30] with a modification to the number of inputs, where 

eight inputs are used and produced from the scanning the image using a 3×3 pixels window. The 

trapezoidal and the triangular membership functions are then used for the inputs and the output 

respectively. Finally, existence of edges is determined by considering the membership values and 

applying fuzzy rules. Although fuzzy logic-based edge detection algorithms are more flexible and robust 

than the gradient-based edge detection methods, they are more computationally expensive. 

To overcome the drawbacks of the existing edge detection methods, in this paper an edge detection 

method is developed based on neutrosophic set theory. Since the proposed image steganography 

technique is based on wavelet transform, WPD of the cover image is first transformed into the 

neutrosophic set (NS). α-mean and β-enhancement operations are then defined and employed to reduce 

the indeterminacy degree of the image, which is measured by the entropy of the indeterminate set. 

Finally, the edges are obtained in the neutrosphic set (NS) domain based on the gradients in two 

orthogonal directions. Details of the neutrosophic set and the introduced edge detection approach will be 

discussed in the next subsections. 
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2.1 Neutrosophic image 

 

Florentin Smarandache [31] proposed neutrosophic set (NS) as a new branch of philosophy dealing with 

the origin, nature, and scope of neutralities. In neutrosophy theory, every event not only has a certain 

degree of truth, but it also has a falsity degree and an indeterminacy degree which are independent from 

each other. It considers a theory, event, concept, or entity {A} in relation to its opposite {Anti-A} and the 

neutrality {Neut-A}, which is neither {A} nor {Anti-A}. Neutrosophy is the basis of neutrosophic sets 

and neutrosophic statistics. In a neutrosophic set, a set A is represented by three subsets: {A}, {Neut-A} 

and {Anti-A}, which are defined as truth, indeterminacy, and false subsets, respectively. NS provides a 

powerful tool to deal with the indeterminacy which is described using a membership. It was applied to 

image processing techniques, such as image segmentation, thresholding and denoising. 

An image is transformed into neutrosophic domain where a neutrosophic image PNS is defined by three 

membership sets T, I and F. In other words, a pixel P(i, j) in the image domain is transformed into the 

neutrosophic domain, PNS(i, j) = {T(i, j), I(i, j), F(i, j)}, where T(i, j), I(i, j) and F(i, j) are the membership 

values belonging to true (edge pixel) set, indeterminate set and false (non-edge pixel) set, respectively, 

which are defined as follows [32, 33]: 
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indeterminacy degree of element PNS(i, j). When T and F are correlated with I, the changes in T and F 

affect the pixel distribution of element in I and its entropy. α-mean and β-enhancement operations are 

then performed to reduce the set indeterminacy in the NS image. 

First, the α-mean operation for PNS, which is the mean value between the pixel neighbors in NS (

( )NSP  ), is defined as: 
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Second, the β-enhancement operation for PNS, ( )NSP  , is computed as: 
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where ( , )T i j  is an ( , )T i j

 ( , )T i j  After the β- enhancement operation, the set T becomes more distinct and is suitable 

for edge detection. 
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2.2. Neutrosophic edge detector 

 

In this paper, a secret message is embedded into a cover image on the wavelet domain to improve the 

robustness. A 2-level wavelet packet decomposition (WPD) is performed on a cover image. This results 

in an approximation subband (AA) and a number of detailed subbands. Only AH, AV and AD subbands 

are transformed into the neutrosophic domain NS using Eqs. (1)–(5). The indeterminacy of the NS image 

PNS is then decreased using the α-mean and β-enhancement operations on subset T of each subband using 

Eqs.(6)–(19) until the entropy of the indeterminate subset I of each subband becomes unchanged. Finally, 

the horizontal and vertical gradients (Gx and Gy) of the pixels in T of each subband are used to evaluate 

whether the pixels belong to edge pixels or not, as follows: 

2 2( , ) x yeg i j G G   

1   if  ( , ) ,
( , )

0   otherwise,

eg i j
E i j


 


    (20) 

where eg is the magnitude of the gradients. Sobel operator was used to calculate Gx and Gy. The threshold 

value of gradient  was selected to determine whether the pixels were edge pixels or non-edge pixels. The 

general procedure of the introduced neutrosophic set-based edge detection (NSED) algorithm is shown in 

Fig. 1.  

 

3. Proposed Stegnographic Scheme 

(AA)

 

 

Let R denote the node representing the lowest frequency subband (AA). It represents the root node of 

an overall tree consisting of three primary T1, T2, and T3 which represent the coarsest high frequency 

subbands (AH, AV, AD) respectively. In other words, in the wavelet packet trees (WPTs) each parent 

subband node is followed by exactly four children subbands of similar orientation at the next finer 

resolution. Thus, each coefficient of the parent node is associated with four coefficients, one coefficient of 
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each child node, at the same spatial location. The secret message bits are embedded into three primary 

trees starting from T1, T2, and T3. Each WPT includes five coefficients, where for example the primary 

tree T1 consists of one C1 coefficient in the AH subband and four coefficients (c11, c12, c13, and c14) one in 

each subband HA, HH, HV, and HD, respectively. 

 

 
 
Fig. 1. Flow chart of the introduced Neutrosophic set-based edge detection (NSED). 
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Wavelet packet (WP) tree for a 2-level 

3.1. Embedding procedure  

 parent subband nodes (AH, AV, and AD)

 These edge images have the same sizes of the subbands AH, 

AV, and AD. The second stage is to determine the type of each primary tree according to the type of each 

pixel in the edge images as follows: If a pixel in an edge image is defined as edge/non-edge pixel, the 

wavelet coefficient in the corresponding (a coarse scale) parent node at the same spatial location is also an 

edge/non-edge coefficient. Then all the wavelet descendent coefficients of the same orientation in the 

same spatial location at finer scaled subbands are likely to be edge/non-edge coefficients. Therefore, the 

corresponding primary WPT is also defined as edge/non-edge tree. The coefficients C1, C2, and C3 in the 

subbands AH, AV, and AD are used to store the status of the three primary trees T1, T2, and T3, 

respectively. The status of each primary tree, Ti is defined as ‘1’/'0' if Ti is an edge/non-edge tree. Unlike 

other embedding algorithms [11] and [12], where the status of each pixel is stored, the status of each 

primary tree is represented by one bit and is stored inside the LSB of coefficient Ci. This leads to maintain 

the quality of the stego-image. 

After embedding the status of a primary tree in the LSB of coefficient Ci, the last stage

 is to embed the secret message bits into each primary tree starting from T1, then T2 

and finally T3. For instance, to embed the secret message bits into T1, a bit of the secret message is 

embedded into the second LSB of C1. The remaining secret bits are then embedded into the four 

descendent/children coefficients (c11, c12, c13, and c14) at finer scaled subbands (HA, HH, HV, and HD) 

R

T2 T3
T1

c11 c12 c13 c14

C1 C2
C3

c21 c22 c23 c24 c31 c32 c33 c34
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according to the type of the primary tree T1. If the type of tree is non-edge then k bits of the secret 

message are inserted into each child coefficient using the LSBs substitution technique. But if the type of 

tree is edge then k+1 LSBs in each descendent coefficient are replaced with k+1 secret message bits

 Unlike [11], only one parameter k represents the number of 

non-edge's in the proposed scheme. 

To explain the proposed embedding algorithm in detail, suppose a primary tree T1 is taken out of a 

WPT which its root R is located at a spatial coordinate (x, y). Its five coefficients C1(x, y), c11(x, y), c12(x, 

y), c13(x, y), and c14(x, y) have values of -42, -18, 2, 21, and -3, respectively. The binary representation of 

each wavelet coefficient is the binary representation of the absolute value of the wavelet coefficient 

concatenated with a bit representing the sign bit which is located at the most significant bit (MSB). 

each wavelet coefficient

 wavelet  cmax and equals  max2log cn 

the sign bit  If the wavelet coefficient is positive, the sign bit is 0, otherwise it 

is 1. herefore the binary representation of these wavelet coefficients at T1 are 

(10000101010)2, (10000010010)2, (00000000010)2, (00000010101)2, and (10000000011)2. Assume that 

based on detector, pixel P1(x, y) in  is determined as an edge pixel (i.e. its value is 

one). The status of T1 at (x, y) becomes an edge tree and its value is stored in the LSB of coefficient C1(x, 

y). In this case the coefficient value -42 which equals (10000101010)2 is replaced by -43 which equals 

(10000101011)2. Also, assume that k is set to two and the secret message bitstream to be embedded in tree 

T1 is '010111000111011…' (where the bold bit means the first secret message bit entering to the 

embedding algorithm). The first secret message bit '0' will be embedded into the second LSB of 

coefficient C1(x, y) after embedding the status. So, the new value of this coefficient -43= (10000101011)2 

becomes -41= (10000101001)2. Since this tree is an edge tree and k=2, the three (k+1) LSBs of 

coefficients c11(x, y), c12(x, y), c13(x, y), and c14(x, y) are replaced with the following secret message bits 

'101', '110', '001', and '110', respectively. The new values of these coefficients become -

21=(10000010101)2, 6=(00000000110)2, 17=(00000010001)2, and -6=(10000000110)2. Similarly, the 

secret message is embedded into trees T2 and T3 based on the type of each tree. The entire embedding 

procedure in this example is shown in Fig. 3. The embedding algorithm can be summarized as follows: 

 

Input: Cover image C of size N×M pixels and a secret message SE.  

Output: Stego- image S.  

Step 1: Read cover image C and Apply cover image adjustment to C as in [17].  

Step 2: Read the secret message SE.  
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Step 3: Perform two levels WPD on the cover image C.  

Step 4: Perform neutrosophic edge detector (NSED) on the subbands AH, AV, and AD to obtain the 

corresponding edge images EAH, EAV, and EAD, respectively.  

Step 5: Construct the three primary trees T1, T2, and T3. Determine the type of each tree based on the edge 

images EAH, EAV, and EAD.  

Step 6: secret message bits are first embedded in T1 as follows: 

Step 6.1:  Embed the type of T1 (edge/non-edge) in the LSB of C1. 

Step 6.2:  Start embedding the secret message bits, where the first secret message bit is embedded 

into the second LSB of coefficient C1.  

Step 6.3:  If the type of T1 is non-edge then embed k secret message bits into k LSBs of each 

coefficient c11, c12, c13, and c14, else embed k+1 secret message bits into each of these 

coefficients. 

Step 7: Repeat Step 6 for T2 and T3. 

Step 8: Perform inverse wavelet packet transform to obtain stego-image S.  

 
3.2. Extracting procedure  

 
In the extraction, the secret message bits embedded into each tree can be retrieved. Upon receiving a 

stego-image from a sender, the receiver receives the parameter k and uses the extraction algorithm to 

obtain the secret message as follows: First, a 2-level WPD is performed on the stego-image S and the 

wavelet packet trees are constructed to generate T1, T2, and T3. Second, the status of the primary tree T1 is 

extracted from the LSB of coefficients C1 in subband AH. The secret message bits are retrieved by first 

extracting the first bit of this message from the second LSB of C1. The following bits of the secret 

message are then extracted based on the type of the primary tree. If the status of T1 is non-edge, then k 

LSBs are extracted from each coefficient c11, c12, c13, and c14 in subbands HA, HH, HV, and HD, 

respectively. Otherwise k+1 LSBs are extracted from these coefficients. Finally, the secret message bits 

are recovered from the primary trees T2 and T3 in the same way. The extracted bits are concatenated to 

obtain the embedded secret message bits SE. 
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Edge image EAH

Edge image EAV Edge image EAD

 

 

 

 

4. Experimental Results 

Several experiments were performed to evaluate the efficiency of the proposed data hiding algorithm in 

terms of data hiding payload and fidelity benchmarks. In these experiments, 256-grayscale images of 

128×128 and 512×512 pixel resolutions were used. The secret message was generated randomly. The 

fidelity (invisibility) of a secret message using a steganography method is measured by various similarity 
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metrics such as Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). In this paper, the 

quality of stego-image is evaluated subjectively by the human visual system (HVS). Moreover, the 

objective quality of the stego-image is measured in term of the PSNR, defined as: 

2

10

255
10log ,PSNR

MSE
     (21) 

where MSE is the mean squared error of the stego-image ( , )S i j  with respect to the cover image ( , )C i j . 

For an N×M size image, MSE is defined as: 

2

1 1

1
( ( , ) ( , )) .

N M

i j

MSE C i j S i j
N M  

 


   (22) 

 

Another evaluation criterion of a steganography method is the capacity (data payload) that can be 

defined as the number of secret bits that can be hidden in the cover image pixels. It is given as: 

 
( ) .

Embedded bits
payload bpp

N M



   (23) 

The embedding capacity depends on the steganography method and the texture of the cover image. It is 

given either in absolute measurement such as bits per pixel (bpp) or in relative percentage. 

 

the proposed data hiding algorithm  -

based and wavelet-based approaches of -based

[11] [12] These figures also compare the data hiding capacity (payload) and the 

corresponding PSNR of the proposed method with the methods of  and . For these methods, k 

LSBs of a proper number of 

edge LSBs that is greater than k and achieve minimal distortion for each 4×4 block used for the proposed,

 and  methods, respectively. In these figures, the results of Lena image are only provided for 

method of  because it has no results for figures

 and 
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  k=1 k=2 k=3 k=4 

Chen et al' 
 scheme [11] 

  

 

 

 

 

 

 

 
PSNR (dB) 47.1 41.6 37.5 32.0 

Payload (bpp) 0.65 1.15 2.1 2.76 

Tseng et al' 

scheme [12] 

  

 

 

 

 

 

 

 
PSNR (dB) 42.18 41.03 38.18 33.58 

Payload (bpp) 0.91 1.66 2.41 3.16 

Proposed 

  

 

 

 

 

 

 

 
PSNR (dB) 47.9923 43.9953 37.8979 31.2724 

Payload (bpp) 1.1077 1.8577 2.6077 3.3577 

Performance comparison of the proposed, Chen and Tseng algorithms based on edge detectors on 

128×128 Lena cover image.
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  k=1 k=2 k=3 k=4 

Tseng et al' 
scheme [12] 

  

 

 

 

 

 

 

 
PSNR (dB) 41.47 40.22 37.04 32.47 

Payload (bpp) 1.06 1.80 2.56 3.32 

Proposed 

  

 

 

 

 

 

 

 
PSNR (dB) 48.2059 44.4381 39.073 32.4385 

Payload (bpp) 1.0938 1.8438 2.593 3.3438 

Performance comparison of the proposed and Tseng algorithms based on edge detectors on 
128×128 Baboon cover image.

  k=1 k=2 k=3 k=4 

Tseng et al' 
scheme [12] 

 
 

 

 

 

 

 

 

 

 
PSNR (dB) 41.94 40.75 37.84 32.77 

Payload (bpp) 0.93 1.68 2.43 3.18 

Proposed 

  

 

 

 

 

 

 

 
PSNR (dB) 48.1412 44.1685 37.8818 31.2576 

Payload (bpp) 1.0957 1.8457 2.5957 3.3457 

Performance comparison of the proposed and Tseng algorithms based on edge detectors on 

128×128 Tiffany cover image. 
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  k=1 k=2 k=3 k=4 

Tseng et al' 
scheme [12] 

  

 

 

 

 

 

 

 
PSNR (dB) 41.99 40.88 38.16 33.61 

Payload (bpp) 0.90 1.65 2.40 3.16 

Proposed 

  

 

 

 

 

 

 

 
PSNR (dB) 48.2975 44.4831 38.4235 31.7221 

Payload (bpp) 1.0725 1.8225 2.5725 3.3225 

Performance comparison of the proposed and Tseng algorithms based on edge detectors on 

128×128 Peppers cover image. 

  k=1 k=2 k=3 k=4 

Tseng et al' 

scheme [12] 

  

 

 

 

 

 

 

 
PSNR (dB) 42.03 40.95 38.12 33.4 

Payload (bpp) 0.92 1.67 2.41 3.16 

Proposed 

  

 

 

 

 

 

 

 
PSNR (dB) 48.1340 44.3644 38.5412 31.9394 

Payload (bpp) 1.1008 1.8508 2.6008 3.3508 

Performance comparison of the proposed and Tseng algorithms based on edge detectors on 

128×128 Lake cover image. 
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  k=1 k=2 k=3 k=4 

Tseng et al' 
scheme [12] 

  

 

 

 

 

 

 

 
PSNR (dB) 42.10 41.02 38.16 33.60 

Payload (bpp) 0.90 1.65 2.40 3.15 

Proposed 

  

 

 

 

 

 

 

 
PSNR (dB) 48.1884 44.1542 37.9409 31.4595 

Payload (bpp) 1.0803 1.8303 2.5803 3.3303 
 

Fig. 9. Performance comparison of the proposed and Tseng algorithms based on edge detectors on 

128×128 Jet cover image. 

 

The performance of the proposed algorithm was also tested using some natural images downloaded from 

the available Photo Galleries https://photogallery.sc.egov.usda.gov/res/sites/photogallery/ and 

https://www.flickr.com/photos/. The selected images were resampled to 256×256 pixel resolutions and 

converted into grayscale. Fig. 10 shows the visual quality, PSNR of the stego-images and the payload 

obtained by the proposed method using various k values.  

  

 

https://www.flickr.com/photos/
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 k=1 k=2 k=3 k=4 

  

 

 

 

 

 

 

 
PSNR (dB) 48.2274 44.6025 39.0370 32.5760 

Payload (bpp) 1.0814 1.8314 2.5814 3.3314 

  

 

 

 

 

 

 

 
PSNR (dB) 48.5211 44.6926 38.1699 31.6285 

Payload (bpp) 1.0088 1.7588 2.5088 3.2588 

  

 

 

 

 

 

 

 
PSNR (dB) 48.4081 44.6290 38.5323 31.9916 

Payload (bpp) 1.0269 1.7769 2.5269 3.2769 

  

 

 

 

 

 

 

 
PSNR (dB) 48.3913 44.6554 38.5303 31.9985 

Payload (bpp) 1.0488 1.7988 2.5488 3.2988 

Fig. 10. Results of the proposed algorithm using various k values for four natural images.

 ) 
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100 % , Pro Oth

Oth

HC HC

HC


  

  

 

p

 

 

hiding algorithms,  

Table 1: Performance comparison of the proposed algorithm and the algorithms based on pixel-value 

differencing (PVD).  

×512)

 

k=3

∆ ∆ ∆ ∆

 

 

 
 

 

 
 

Table 2: Performance comparison of the proposed algorithm and PBPVD [4] algorithm based on PVD.  
 

×512) k=3 k=3
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Table 3: Performance comparison of the proposed algorithm and the algorithms based on IWT.

×512)

4.2 Security against statistical RS-steganalysis 

The RS-steganalysis method was proposed in [25] to exploit the correlation of images in the spatial 

domain. In RS Analysis, all the pixels of a cover image are partitioned into three groups: the regular 

group Rm or R−m, the singular group Sm or S−m, and the unusable group. This steganalysis is based on 

discrimination function (DF) with two flipping masks, m and –m, where m = [0110] and −m = [0 − 1 – 1 

0]. The parameters Rm, R−m, Sm and S−m are used to find the magnitude of pixel block using DF function. 

The RS statistical analysis will not detect the hidden message in the cover image when m mR R > 

m mS S  . Otherwise, the cover image has hidden message, where in this case R−m and Sm increases, 

whereas Rm and S−m decreases and the image becomes insecure by RS analysis. 

The security of the proposed method against the statistical RS steganalysis method [25] is shown in 

Fig. 11. In this figure, the x-axis represents the percentage of data hiding capacity in the stego-image and 

the y-axis indicates the percentage of the regular and singular pixel groups with masks m and −m. From 

the RS-diagram shown in Fig. 11 the singular and regular parameters of the stego-images are close to 

each other between the curves Rm and R−m, and between Sm and S−m even when increasing the embedding 

capacity. This proves that the proposed method is secure against statistical RS-analysis.  

The differences of RS detection results between Rm and R−m, and between Sm and S−m for the Chen et 

al. and the proposed methods at k equals 2 and 3 and with 100% embedding capacity are illustrated in 

Table 4. The results in this table indicate that the proposed method retains slightly smaller average 
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differences in regular groups (1.166%) and singular groups (1.256%) for all images (at k=2) as compared 

to Tseng et al' method [12]. That means fewer artifacts can be detected which demonstrates the ability of 

the proposed method to resist against RS-steganalysis. 

 

 

 

  
(a) (b) 

  
(c) (d) 

 

Fig. 11. RS-analysis graphs by the proposed method of stego-images. (a) Lena k=2; (b) Lena k=4; (c) 

Baboon k=2; (d) Baboon k=4. 

Table 4:  between 

×128)

k=2 k=3

Tseng et al' Tseng et al'
| Rm − R−m | | Sm − S−m | | Rm − R−m | | Sm − S−m | | Rm − R−m | | Sm − S−m | | Rm − R−m | | Sm − S−m | 

0.0092 0.0098 0.0071 0.0073 0.0168 0.0104 0.0079 0.0071 
0.0199 0.0119 0.011 0.0119 0.0086 0.0174 0.0186 0.0202 
0.0074 0.0162 0.014 0.0174 0.0134 0.0159 0.0125 0.0125 
0.0223 0.0174 0.0042 0.008 0.0186 0.0083 0.0109 0.0129 
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0.0235 0.0165 0.0101 0.004 0.0235 0.0165 0.0028 0.0073 
0.0174 0.0095 0.0236 0.0268 0.0061 0.0018 0.014 0.0082 

0.016617 0.01355 0.011667 0.012567 0.0145 0.011717 0.011117 0.011367 

 analysis

δ δ

δ

δ

 

Table 5: Comparing the values of the absolute difference between the difference histograms (δh) of 

different methods. 

×512) k=3

432
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4.4 Security against universal steganalysis  

Universal steganalysis is also known as blind steganalysis which is the modern approach to attack the 

stego images without any prior knowledge about the type of the used steganographic algorithm. These 

blind detectors are built using machine learning, such as using a classifier trained on the extracted features 

from the cover and stego images to identify the differences between the cover and stego features. There 

are many steganalysis features that are suitable for detection of spatial and JPEG steganography. Among 

spatial domain feature sets, the second-order subtractive pixel adjacency matrix (SPAM) [34] and the 

spatial rich model (SRM) [35] were proposed. In [36], a feature set named discrete cosine transform 

residual (DCTR) was proposed for steganalysis of JPEG images. These extracted features were based on 

undecimated DCT coefficients and trained as binary classifiers implemented using the FLD ensemble 

[37]. 

In this section, several experiments were carried out on BOSSbase 1.01 [38] to evaluate the 

performance of the proposed method. The database contains 10,000 grayscale 512×512 images. 1000 

images were selected randomly from this database. Table 6 illustrates the average PSNR and payload 

obtained by the proposed method using various k values. Moreover, the security of the proposed 

steganographic algorithm against the universal analysis was tested and compared to JPEG steganographic 

algorithms which are nsF5 [39] and the state-of-the-art JPEG domain UNIWARD [40], referred to as J-

UNIWARD. These steganographic methods were selected for the purpose of comparison as these 

methods and the proposed method perform data hiding in the transform domain. Steganalysis was 
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implemented using DCTR feature set with T = 4 and dimensionality of 8000 features as recommended in 

[36] and the linear classifier called LSMR (Least Squared Minimum-Residual) [41]. Experiments were 

carried out on the selected images with JPEG quality factor 75. The codes for the selected steganographic 

methods, feature extractor and classifier) are available for download from 

http://dde.binghamton.edu/download/. The proposed method was tested at payloads ranging from 0.2 to 

1.0 bits per pixel (bpp) which were obtained at k=1, while JPEG-domain methods were tested on the same 

payloads expressed in bits per non-zero AC DCT coefficient (bpnzAC). 

In this paper, the detection accuracy is measured using the minimal total error probability under equal 

priors (equal a priori probabilities of a cover or stego image) and it is given by [37]: 

1
min ( ), 

2FA
E FA MD

P
P P P 

 

where PFA and PMD  are the false alarm and missed detection probabilities, respectively. The detection 

accuracy is obtained on the test set averaged over ten 50/50 splits of the database (i.e., a 50/50 split for 

training and testing was used). 

Table 7 shows the detection error for the proposed, J-UNIWARD and nsF5 steganographic methods. It 

is clear from this table that the J-UNIWARD is more undetectable than the proposed and nsF5 methods 

for payloads ≤ 0.6. For larger payloads, the proposed method is more secure than the other methods by 

more than 5% in terms of the detection error. This is because the proposed method is designed to embed 

larger payloads. 

 

Table 6: The average PSNR and payload for the proposed algorithm applied on 1000 images at various 

k values. 

 k=1 k=2 k=3 

    
Average PSNR (dB) 48.3294 44.2818 38.0542 

Average Payload (bpp) 1.0467 1.7967 2.5467 

 
 

Table 7: Detection error PE for the proposed, nsF5 and J-UNIWARD steganographic methods.  

 
 Method Payload 

0.2 0.4 0.6 0.8 1.0 

nsF5 0.2283 0.0117 0.0033 0.0000 0.0000 

J-UNIWARD 0.4250 0.3450 0.2333 0.1233 0.0683 

Proposed 0.2667 0.2600 0.2117 0.1750 0.1400 

 

 

 

 

http://dde.binghamton.edu/download/


  

25 
 

5.  CONCLUSION  

In this paper a data hiding algorithm based on wavelet packet decomposition and neutrosophic set was 

proposed. In the algorithm, WPD is performed on the cover image and parent-children relationships of 

wavelet packet coefficients across the subbands are taken into consideration to construct the WPTs. The 

presented neutrosophic set-based edge detector (NSED) assists the proposed data hiding algorithm in 

determining the type of each WPT as edge/non-edge tree. This leads to embed more secret bits into the 

coefficients in the edge tree than those in the non-edge tree and then to generate a better quality stego-

image. Experimental results have shown that the proposed scheme gives better embedding payload, 

subjective and objective quality of stego-images than the other well-known spatial-based and wavelet-

based embedding methods. Furthermore, the proposed method resists the RS detection attack, the pixel 

difference histogram analysis and universal steganalysis. 
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Highlights 

 A steganographic technique based on wavelet packet decomposition (WPD) and 

neutrosophic set is proposed.  

 An edge detector based on the neutrosophic set named (NSED) is introduced.  

 An original image is decomposed into wavelet packet trees.  

 Each wavelet packet tree is classified into edge/non-edge tree to embed more secret 

bits. 

 The proposed method achieves higher embedding capacity with better imperceptibility 

compared to the recently published approaches. 

 


