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Abstract

This paper proposes a multivariate copula-based volatility model for estimating Value-at-Risk

(VaR) in the banking sector of selected European countries by combining dynamic conditional

correlation (DCC) multivariate GARCH (M-GARCH) volatility model and copula functions. Non-

normality in multivariate models is associated with the joint probability of the univariate models’

marginal probabilities —the joint probability of large market movements, referred to as tail de-

pendence. In this paper, we use copula functions to model the tail dependence of large market

movements and test the validity of our results by performing back-testing techniques. The results

show that the copula-based approach provides better estimates than the common methods cur-

rently used and captures VaR reasonably well based on the differences in the numbers of exceptions

produced during different observation periods at the same confidence level.

Keywords: Value-at-risk, dynamic conditional correlation, GARCH, copulas, volatility.

JEL classification: C15, C58, G11, G32.

1 Introduction

Value-at-Risk (VaR) is a standard risk measure in financial risk management and is widely used

in the banking sector and other financial institutions. It summarises the worst possible loss of a

portfolio of financial assets at a given confidence level over a given time period. European banks

began adopting VaR in the early 1990s (Holton, 2002). International bank regulators also influenced

the development and use of VaR when the Basel Committee on Banking Supervision (BCBS) chose

VaR as the international standard method for evaluating the market risk of a portfolio of financial

assets for regulatory purposes (Goodhart, 2011).

There are many methods to estimate VaR (e.g., Holton (2003), Jorion (2007), Malz (2011)

and the references therein), and the most common methods used by banks include the variance-

covariance method (developed by J.P. Morgan using its RiskMetrics in 1993), historical simulation,

and the Monte Carlo simulation. Due to their simplicity, the variance-covariance and historical

simulation methods have been prevalent in the banking sector and financial institutions for calcu-

lating VaR (Pérignon and Smith, 2010). These methods are based on the assumption that asset

returns are independently and identically normally distributed. This assumption contradicts em-

pirical evidence by Sheikh and Qiao (2010), which shows that in many cases, financial asset returns

are not independent and normally distributed and are, in fact, leptokurtic and fat-tailed, leading
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to underestimation or overestimation of VaR; this is because extremely large positive and negative

asset returns are more common in practice than normally distributed models.

Another drawback of these methods is in the estimation of the conditional volatility of financial

returns. Most financial asset returns exhibit heavy tails with respect to conditional volatility over

time. Berkowitz et al. (2011) also showed evidence of changing volatility and non-normality using

desk-level data from a large international commercial bank. VaR models are highly dependent on

the type of volatility model used. A good volatility model should be able to capture the behaviour

of the tail distribution of asset returns, be easily implemented for a wide range of asset returns,

and be easily extensible to portfolios with many risk factors of different kinds (Malz, 2011). For

multivariate volatility models of VaR, we must focus on the tail dependence, which is the principal

factor associated with non-normality.

Many volatility models have been proposed, for example, the generalised autoregressive condi-

tional heteroskedasticity (GARCH) models and its extensions have been used to capture the effects

of volatility clustering and asymmetry in VaR estimation. Many studies have applied a variety of

univariate GARCH models in VaR estimation; see So and Philip (2006), Berkowitz and OBrien

(2002), and McNeil and Frey (2000). In addition, Kuester et al. (2006) provides an extensive review

of VaR estimation methods with a focus on univariate GARCH models. The results of all these

studies suggest that GARCH models provide more accurate VaR estimates than traditional meth-

ods. Because financial applications typically deal with a portfolio of assets with several risk factors

(as considered in this study), a multivariate GARCH (M-GARCH) model would be very useful for

VaR estimation. Univariate VaR models focus on an individual portfolio, whereas the multivariate

approach explicitly model the correlation structure of the covariance or volatility matrix of multiple

asset returns over time. Bauwens and Laurent (2012) provides a comprehensive review of univariate

volatility models and their applications.

Numerous M-GARCH models have since been developed, for example, Tsay (2013); Fengler

and Herwartz (2008); Engle and Kroner (1995); Bollerslev et al. (1994) and the references therein.

Bauwens et al. (2006) divide M-GARCH models into three categories: (1) direct generalisation

of univariate GARCH models (e.g., exponentially-weighted moving average (EWMA), vector error

correction (VEC), BEKK, etc.), (2) linear combinations of univariate GARCH models (e.g., gener-

alised orthogonal GARCH (GO-GARCH), principal component GARCH (PGARCH), etc.), and (3)

nonlinear combinations of univariate GARCH models (e.g., dynamic conditional correlation (DCC)

and constant conditional correlation (CCC) models). The article by Silvennoinen and Teräsvirta

(2009) gives a concise review of most common M-GARCH models; parametric and semi-parametric

models and their properties. See also Ghalanos (2015) for more details on M-GARCH models.

Most volatility models fail to satisfy the positive definite conditions of the covariance matrix of

asset returns. In this study, we employed the M-GARCH DCC volatility model by Engle (2002)

because of conditions (as seen later) that will guarantee the conditional volatility matrix to be

positive-definite almost surely. Furthermore, the DCC model allows the correlation matrix of asset

returns to be time varying and thus reflects the current market conditions.

Non-normality in multivariate models is associated with the joint probability of the univariate

models’ marginal probabilities, that is, the joint probability of large market movements referred to

as tail dependence. The VaR estimation for a portfolio of assets can become very difficult due to

the complexity of joint multivariate distributions. To overcome these problems, we use the copula
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theory, which enables us to construct a flexible multivariate distribution with different margins

and different dependence structures; this allows the joint distribution of a portfolio to be free

from assumptions of normality and linear correlation. Additionally, copulas can easily capture

extreme dependencies such as tail dependence, while the normal distribution assumes no extreme

dependencies.

The copula theory was first developed by Sklar (1959) and later introduced to the finance litera-

ture by Embrechts et al. (2002), Frey and McNeil (2003), and Li (2000). Consequently, Embrechts

et al. (2002) introduced the application of copula theory to financial asset returns, and Patton

(2004) expanded the framework of the copula theory with respect to the time-varying nature of

financial dependence schemes. The copula theory has also been used in risk management to mea-

sure the VaR of portfolios, including both unconditional (Cherubini and Luciano (2001), Embrechts

et al. (2001), and Cherubini et al. (2004)) and, recently, conditional distributions (Silva Filho et al.

(2014), Huang et al. (2009) and Fantazzini (2008)).

This paper thus presents an approach of estimating VaR using an M-GARCH DCC volatility

model and copulas. To the best of our knowledge, this is the first paper to report the results

for estimating VaR in banking sector of selected European countries, namely; Germany, United

Kingdom (UK), Sweden, France, Italy, Spain, and Greece. Therefore, this work offers a new

contribution to the literature in this study area.

The rest of the paper is structured as follows: Section 2 presents the methodology of the

proposed approach, the DCC model and copula functions. Section 3 discusses the data used,

empirical results and back-testing the VaR model, followed by the conclusion in Section 4.

2 Methodology

2.1 The Dynamic Conditional Correlation (DCC) model

To properly understand the volatility matrix of the DCC model, it is important to first understand

the mean and variance equations of the GARCH(1,1) model. The GARCH(1,1) model, first pro-

posed by Bollerslev (1986), allows conditional variance to be dependent upon previous lags. The

GARCH(1,1) model has the following form

ri,t = µi + ai,t, ai,t = σi,tηi,t (1a)

σ2
i,t = αi + βia

2
i,t−1 + γiσ

2
i,t−1, (1b)

for i = 1, . . . , N, t = 1, . . . , T,

where ri,t are the log return series of daily stock prices, µi are the conditional means of the log

returns, ai,t are the residuals of the mean equation (Eqn. (1a), ηi,t represents white noise with zero

mean and unit variance, σi,t are the conditional volatility series from the variance equation (Eqn.

(1b)), N represents the total number of stocks under investigation, T is the sample size, and α, β

and γ are the GARCH parameters.

In the DCC model, the covariance matrix at time t is given by

Σt = DtρtDt, (2)
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and the conditional correlation matrix is then

ρt = D−1
t ΣtD

−1
t , (3)

where Dt is the diagonal matrix of the N conditional volatilities of the stock returns; that is,

Dt = diag
{√

σ11,t, . . . ,
√
σNN,t

}
, and σij,t is the (i, j)th element of the volatility matrix (Tsay,

2005).

Two types of DCC models have been proposed in the literature. The first type, proposed by

Tse and Tsui (2002) is given by

ρt = (1− θ1 − θ2)ρ̄+ θ1ρt−1 + θ2ψt−1, (4)

where ρ̄ is the unconditional correlation matrix of ηt, θ1 and θ2 are non-negative real numbers

satisfying 0 ≤ θ1 + θ2 < 1. ψt−1 is a correlation matrix of the most recent returns that depends on

{ηt−1 . . . ηt−m} for some integer m and is defined as

ψij,t−1 =

∑m
i=1 ηi,t−iηj,t−i√

(
∑m

i=1 η
2
i,t−i)(

∑m
i=1 η

2
j,t−i)

. (5)

The choice of the parameter m can be regarded as a smoothing parameter. The larger the m

is, the smoother the resulting correlations. Thus, a choice of m > k ensures ψt−1 and hence ρt are

guaranteed to be positive-definite.

The second type of DCC models is proposed by Engle (2002); the correlation matrix as in Eq.(3)

is defined as

ρt = (1− θ1 − θ2)ρ̄t + θ1ρt−1 + θ2ηt−1η
′
t−1, (6)

where θ1 and θ2 are non-negative real numbers and 0 < θ1 + θ2 < 1; ρt is a positive-definite matrix.

Unlike the DCC model of Tse and Tsui (2002) that requires the choice of m in practice, Eq. (6)

uses ηt−1 only so that the correlation matrix re-normalised at each time t− 1 (for details, see Tsay

(2013)). In this study, we use the DCC model of Engle (2002).

2.2 Copulas

In multivariate settings, we use the following version of Sklar’s theorem as given in Cherubini et al.

(2004) for the purpose of VaR estimation.

Sklar’s theorem: Consider an n-dimensional joint distributional function F (x), with uniform mar-

gins F1(x1), . . . , Fn(xn); x = (x1, . . . , xn), with −∞ ≤ xi ≤ ∞, then there exists a copula

C : [0, 1]n → [0, 1] such that

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)), (7)

determined under absolute continuous margins as

C(u1, . . . , un) = F (F−1
1 (u1), . . . , F−1

n (un)), (8)
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otherwise, C is uniquely determined on the range R(F1) × . . . × R(Fn). Equally, if C is a copula

and F1, . . . , Fn are univariate distribution functions, then Eq. (7) is a joint distribution function

with margins F1, . . . , Fn (Tsay, 2013).

The copula C(u1, . . . , un) has density c(u1, . . . , un) associated to it, which is defined as

c(u1, . . . , un) =
∂nC(u1, . . . , un)

∂u1, . . . , ∂un
, (9)

and is related to the density function F for continuous random variables denoted as f , by the

canonical copula representation

f(x1, . . . , xn) = c(F1(x1), . . . , Fn(xn))
n∏
i=1

fi(xi), (10)

where fi are the marginal densities that can be different from each other (Ghalanos, 2015; Tsay,

2013; Huang et al., 2009; Cherubini et al., 2004).

Cherubini et al. (2011) discuss two commonly used families of copulas in financial applications:

the elliptical and the Archimedean copulas.

Elliptical copulas are derived from the elliptical distribution by applying Sklar’s theorem. The

most common are the Gaussian and the Student’s-t copulas, which are symmetric (Cherubini et al.,

2011). Their dependence structure is determined by a standardised correlation or dispersion matrix

because of the invariant property of copulas. Consider a symmetric positive definite matrix ρ with

diag(ρ) = (1, 1, . . . , 1)tr; we can represent the multivariate Gaussian copula (MGC) as

CGaρ = Φρ(Φ
−1(u1), . . . ,Φ−1(un)), (11)

where Φρ is the standardised multivariate normal distribution and Φ−1
ρ is the inverse standard

univariate normal distribution function of u with correlation matrix ρ. If the margins are normal,

then the Gaussian copula will generate the standard Gaussian joint distribution function with

density function

cGaρ (u1, u2, . . . , un) =
1

|ρ|
1
2

exp

(
−1

2
ς
′
(ρ−1 − I)ς

)
, (12)

where ς = (Φ−1(u1), . . . ,Φ−1(un))
′

and I is the identity matrix.

On the other hand, the multivariate Student’s-t copula (MTC) can be represented as

Tρ,v(u1, . . . , un) = tρ,v(t
−1
v (u1), . . . , t−1

v (un)) (13)

with density function

cρ,v(u1, . . . , un) = |ρ|−
1
2

Γ(v+n
2 )

Γ(v2 )

(
Γ(v2 )

Γ(v+1
2 )

)n
(1 + 1

v ς
′
ρ−1ς)−

v+n
2∏n

j=1

(
1 +

ς2j
v

)− v+1
2

, (14)

where tρ,v is the standardised Student’s-t distribution with correlation matrix ρ and v degrees of
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freedom.

Archimedean copulas are useful in risk management analysis because they capture an asym-

metric tail dependence between financial asset returns. The most commonly used Archimedean

copulas in financial applications are the Gumbel (1960), Clayton (1978) and Frank (1979) copulas,

which are built via a generator as

C(u1, . . . , un) = ϕ−1(ϕ(u1) + . . .+ ϕ(un)), (15)

with density function

c(u1, . . . , un) = ϕ−1(ϕ(u1) + . . .+ ϕ(un))
n∏
i=1

ϕ
′
(ui), (16)

where ϕ is the copula generator and ϕ−1 is completely monotonic on [0,∞]. That is, ϕ must be

infinitely differentiable with derivatives of ascending order and alternative sign such that ϕ−1(0) = 1

and limx→+∞ ϕ(x) = 0 (Cherubini et al., 2011; Yan et al., 2007). Thus, ϕ
′
(u) < 0 (i.e., ϕ is strictly

decreasing) and ϕ
′′
(u) > 0 (i.e., ϕ is strictly convex).

The Gumbel copula captures upper tail dependence, is limited to positive dependence, and has

generator function ϕ(u) = (− ln(u))α and generator inverse ϕ−1(x) = exp(−x
1
α ). This will generate

a Gumbel n-copula represented by

C(u1, . . . , un) = exp

−
[

n∑
i=1

(− lnui)
α

] 1
α

 α > 1. (17)

The generator function for the Clayton copula is given by ϕ(u) = u−α − 1 and generator inverse

ϕ−1(x) = (x+ 1)−
1
α , which yields a Clayton n-copula represented by

C(u1, . . . , un) =

[
n∑
i=1

u−αi − n+ 1

]− 1
α

α > 0. (18)

The Frank copula has generator function ϕ(u) = ln
(

exp(−αu)−1
exp(−α)−1

)
and generator inverse ϕ−1(x) =

− 1
α ln (1 + ex(e−α − 1)), which will result in a Frank n-copula represented by

C(u1, . . . , un) = − 1

α
ln

{
1 +

∏n
i=1(e−αui − 1)

(e−α − 1)n−1

}
α > 0. (19)

We follow Breymann et al. (2003) and employ Gaussian, Student’s-t, Gumbel, Clayton and

Frank copulas in this study.

2.3 Measuring Dependence

The traditional way to measure the relationship between markets and risk factors is by looking

at their linear correlations, which depend both on the marginal and joint distributions of the risk

factors. If there is no linear relationship —in the case of non-normality —the results might be
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misleading (Cherubini et al., 2011). In this situation, non-parametric invariant measures that are

not dependent on marginal probability distributions are more appropriate. Copulas measure a

form of dependence between pairs of risk factors (i.e., asset returns) known as concordance using

invariant measures. Two observations (xi, yi) and (xj , yj) from a vector (X,Y ) of continuous

random variables are concordant if (xi − xj)(yi − yj) > 0 and discordant if (xi − xj)(yi − yj) < 0.

Large values of X are paired with large values of Y and small values of X are paired with small

values of Y as the proportion of concordant pairs in the sample increases. On the other hand, the

proportion of concordant pairs decreases as large values of X are paired with small values of Y and

small values of X are paired with large values of Y (Alexander, 2008).

The most commonly used invariant measures are the Kendall’s τ and Spearman’s ρ. Consider

n paired continuous observations (xi, yi) ranked from smallest to largest, with the smallest ranked

1, the second smallest ranked 2, and so on. Then, Kendall’s τ is defined as the sum of the number

of concordant pairs minus the sum of the number of discordant pairs divided by the total number

of pairs, i.e., the probability of concordance minus the probability of discordance:

τX,Y = P [(xi − xj)(yi − yj) > 0]− P [(xi − xj)(yi − yj) < 0] =
C−D

C + D
, (20)

where C is the number of concordant pairs below a particular rank that are larger in value than

that particular rank, and D is the number of discordant pairs below a particular rank that are

smaller in value than that particular rank.

Spearman’s ρ, on the other hand, is defined as the probability of concordance minus the prob-

ability of discordance of the pair of vectors (x1, y1) and (x2, y3) with the same margins. That

is,

ρX,Y = 3(P [(x1 − x2)(y1 − y3) > 0]− P [(x1 − x2)(y1 − y3)] < 0).

The joint distribution function of (x1, y1) is H(x, y), while the joint distribution function of (x2, y3)

is F (x), G(y) because x2 and y3 are independent (Nelsen, 2007). Alternatively,

ρX,Y = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
,

where d is the difference between the ranked samples.

Nelsen (2007) has shown that Kendall’s τ and Spearman’s ρ depend on the vectors (x1, y1),

(x2, y2) and (x1, y1), (x2, y3), respectively, through their copulas C, and that the following relation-

ship holds:

τX,Y = 4

∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1

ρX,Y = 12

∫ 1

0

∫ 1

0
C(u, v)dudv − 3.
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3 Data and Empirical Results

3.1 Data and Description

The data employed in this study consist of daily closing prices of 47 stocks from the banking sector

of seven selected European countries, namely, Germany, UK, Sweden, France, Italy, Spain, and

Greece. These stocks are within the top ten banks for each country. We selected our data starting

from 31 December 2004 to 31 December 2015 to include the 2008 global financial crisis and 2011

European financial crisis period. All data are from DataStream and consist of 2870 observations.

The daily log return series of the stocks are calculated via

rt =

[
log

(
S1,t+τ

S1,t

)
, . . . , log

(
SN,t+τ
SN,t

)]
= (r1t, . . . , rNt) , (21)

where N represents the number of stocks in the sample. Figures 1, 2, 3, and 4 show time series

plots of daily log returns series for the different countries. From the plots, we can observe the

presence of volatility clustering. That is, small changes in volatility tend to be followed by small

changes for a prolonged period of time and large changes in volatility tend to be followed by large

changes for a prolonged period of time.

Basic statistics of the stock returns are reported in Table 1. We see from the table that the

stock returns are far from being normally distributed, as indicated by their high excess kurtosis and

skewness. We confirm this by running a multivariate autoregressive conditional heteroscedasticity

(ARCH) test based on Ljung-Box test statistics Qk(m) and its modification known as robust Qrk(m)

test on the log returns at 5% significance, where m is the number of lags of cross-correlation matrices

used in the tests. The modification involves discarding those observations from the return series

whose corresponding standardised residuals exceed 95-th quantile in order to reduce the effect of

heavy tails. The motivation for the Qrk(m) test is because Qk(m) may fare poorly in finite samples

when the residuals of the time series, ai,t = σi,tηi,t, have heavy tails (Tsay, 2013). The test statistic

is given as follows:

Qk(m) = T 2
m∑
i=1

1

T − i
b′i(ρ̂

−1
0 ⊗ ρ̂−1

0 )bi ≈ χ2
k2(m), (22)

which is asymptotically equivalent to the multivariate Lagrange multiplier (LM) test for conditional

heteroscedasticity by Engle (1982); here, k is the dimension of ai,t, T is the sample size, bi = vec(ρ̂′i)

with ρ̂j being the lag-j cross-correlation matrix of a2
i,t. The results shown in Table 2 indicate the

presence of conditional heteroscedasticity.
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(a)

(b)

Figure 1: Time plots of daily log return series for UK stocks (panel (a)), and German stocks (panel
(b)), for the period from 31 December 2004 to 31 December 2015.
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(a)

(b)

Figure 2: Time plots of daily log return series for Swedish stocks (panel (a)), and French stocks
(panel (b)), for the period from 31 December 2004 to 31 December 2015.
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(a)

(b)

Figure 3: Time plots of daily log return series for Spanish stocks (panel (a)), and Italian stocks
(panel (b)), for the period from 31 December 2004 to 31 December 2015.
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Figure 4: Time plots of daily log return series using stocks from Greece for the period from 31
December 2004 to 31 December 2015. The plots show the effects of the 2008 global financial crisis
and 2011 European financial crisis, and the presence of volatility clustering.
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Table 1: Summary statistics of daily log-returns (in percentages). High excess kurtosis and skewness suggest stock returns are
not normally distributed.

Country Stocks from various banks
France F.BNP F.SGE F.CRDA F.KNF F.CC F.CAI F.CAMO F.LAV F.CAIV F.CPD

Mean 0.0006 -0.0151 -0.0215 -0.0019 0.0006 -0.0108 -0.0102 -0.0011 -0.0103 -0.0166
Variance 0.0647 0.0807 0.0764 0.0959 0.0197 0.0145 0.0262 0.0267 0.0225 0.0202
Std. deviation 2.5427 2.8399 2.7645 3.0969 1.4027 1.2029 1.6182 1.6340 1.5003 1.4212
Skewness 34.4305 6.9738 27.7890 60.0710 62.1017 7.6754 -43.2826 -46.9617 5.3467 -1.5654
Excess kurtosis 867.8928 680.0429 624.0289 1209.1365 821.6399 678.3979 476.7556 1107.4525 601.0420 702.8488

Italy I.ISP I.UCG I.MB I.PMI I.BMPS I.BP I.UBI I.BPE I.CE I.BPSO
Mean -0.0023 -0.0519 -0.0078 -0.0250 -0.1260 -0.0635 -0.0278 -0.0129 -0.0022 -0.0132
Variance 0.0671 0.0829 0.0429 0.0773 0.0870 0.0814 0.0566 0.0574 0.0517 0.0335
Std. deviation 2.5905 2.8797 2.0722 2.7800 2.9488 2.8539 2.3799 2.3966 2.2734 1.8305
Skewness -25.1383 -16.0663 3.8658 29.6811 -24.7777 2.9842 -4.4575 24.7941 1.4148 58.9718
Excess kurtosis 656.5973 589.0746 320.6962 383.9322 891.5712 461.0507 273.2804 392.4517 408.2981 553.0105

UK HSBA BARC LLOY RBS STAN CIHL
Mean -0.0124 -0.0306 -0.0407 -0.0971 -0.0112 -0.1171
Variance 0.0293 0.1030 0.1077 0.1504 0.0594 0.0762
Std. deviation 1.7122 3.2098 3.2823 3.8785 2.4376 2.7600
Skewness -33.6697 143.8658 -105.4936 -840.1325 31.6077 9.0031
Excess kurtosis 1690.7965 4021.7880 3727.5413 23552.6326 1308.5010 4940.1441

Germany D.DBK D.CBK D.IKB D.MBK D.OLB D.UBK
Mean -0.0320 -0.0782 -0.1287 0.0008 -0.0457 0.0879
Variance 0.0615 0.0904 0.1529 0.0550 0.0478 0.0466
Std. deviation 2.4803 3.0066 3.9100 2.3445 2.1863 2.1586
Skewness 32.5034 -13.9034 151.9830 31.5160 83.5634 -31.7385
Excess kurtosis 1022.5506 873.5286 1914.4094 1145.6160 2008.7958 1984.3534

Greece G.PIST G.PEIR G.EFG G.ETE G.ATT G.ELL
Mean -0.1603 -0.3371 -0.3377 -0.2872 -0.2045 -0.0642
Variance 0.2287 0.2876 0.3162 0.2487 0.2818 0.0448
Std. deviation 4.7826 5.3624 5.6234 4.9866 5.3087 2.1157
Skewness -12.5182 -105.8321 -61.0233 -103.6301 -59.4886 -7.5496
Excess kurtosis 827.1241 1063.2666 865.8341 1044.0274 1317.2709 1519.9341

Spain E.SCH E.BBVA E.BSAB E.BKT E.POP
Mean -0.0070 -0.0154 -0.0199 0.0117 -0.0702
Variance 0.0463 0.0444 0.0359 0.0512 0.0529
Std. deviation 2.1519 2.1078 1.8940 2.2617 2.2991
Skewness 20.4736 32.7311 71.6545 49.2691 43.5654
Excess kurtosis 828.4460 668.4718 623.2511 304.9592 494.7029

Sweden W.NDA W.SVK W.SWED W.SEA
Mean 0.0202 0.0234 0.0109 0.0104
Variance 0.0419 0.0347 0.0631 0.0643
Std. deviation 2.0471 1.8633 2.5116 2.5361
Skewness 52.6835 12.2476 -20.9301 5.3782
Excess kurtosis 657.9097 690.7580 906.9637 1278.0779
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Table 2: Multivariate-ARCH test on the standardised residuals. The null hypothesis of no ARCH
effect and no serial correlation is rejected at 95% significance level.

Multivariate-ARCH Test
France Italy UK Germany Greece Spain Sweden

Qk(10) 3686 4008 1244 1187 3586 808 5747
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Qrk10) 5053 3769 3195 3518 3180 1546 1931
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3.2 Modeling Results

From the analysis, we obtained the volatility matrix, which consists of the marginal standardised

residuals {ηi,t}Tt=1, by applying the M-GARCH DCC model to the log return series and setting the

conditional distribution of the standardised residuals to the Student’s-t distribution to account for

the heavy tails.

Copula parameters are estimated by the canonical maximum likelihood (CML) method (Cheru-

bini et al., 2004). That is, we use pseudo-observations of the standardised residuals from the fitted

DCC model to estimate the marginals and then estimate the copula parameters by means of max-

imum likelihood estimation (MLE):

Θ̂2 = ArgMaxΘ2

T∑
t=1

ln c(F̂1(x1t), . . . , F̂n(xnt); Θ2). (23)

The best copula to be used for our VaR modelling is selected by comparing their MLE values.

The copula that best fits the data should be the one with the highest MLE value. Chollete et al.

(2009) argued that by selecting the best model based on the MLE method or a related criterion such

as the Akaike information criterion (AIC) or Bayesian information criterion (BIC), the restriction

will not matter because copulas that allow for negative dependence will still be chosen if the data

set contains periods with negative dependence of data. As seen in Table 3, the same copula types

have been selected based on the AIC and the MLE method, i.e., the copula with the smallest AIC

value. We select two models, one from each copula family. Table 3 shows the MLE and copula

parameter values for both elliptical and Archimedean copulas.
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Table 3: Copula parameter values and model selection based on MLE values and AIC criteria. The
copula that best fits the data (in bold) is selected based on the highest MLE value, and the smallest
AIC value.

Archimedean copula Elliptical copula
Country stocks Gumbel Clayton Frank Gaussian Student’s-t

UK Copula parameter 1.30 0.47 2.33 ρn ρt
MLE 1691 1813 1810 3834 4047
AIC -3380 -3624 -3618 -7638 -8062

Germany Copula parameter 1.05 0.10 0.43 ρn ρt
MLE 81.47 152.5 105.2 986.6 1018
AIC -161 -303 -208 -1943 -2004

Greece Copula parameter 1.55 0.81 3.86 ρn ρt
MLE 3861 3609 3825 4717 5092
AIC -7720 -7216 -7648 -9404 -10152

Spain Copula parameter 1.88 1.34 5.73 ρn ρt
MLE 4817 4616 4952 5936 6362
AIC -9631 -9230 -9902 -11852 -12702

France Copula parameter 1.16 0.24 1.32 ρn ρt
MLE 1352 1615 1298 4789 5059
AIC -2702 -3228 -2594 -9488 -10026

Italy Copula parameter 1.45 0.70 3.55 ρn ρt
MLE 6959 6816 7024 8846 9493
AIC -13916 -13630 -14046 -17602 -18894

Sweden Copula parameter 1.95 1.32 6.00 ρn ρt
MLE 3747 3142 3715 4057 4047
AIC -7492 -6282 -7028 -8102 -8080
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Next, we specify the desired marginal distributions, which we set to a Student’s-t distribution.

Student’s-t distribution is selected for the margins because the multivariate ARCH test on the

standardised residuals, {ηi,t}Tt=1, i.e., before fitting the DCC models and the residuals after fitting

the DCC models, fails to reject the null hypothesis of no conditional heteroscedasticity. This is a

weakness of the DCC models because it is hard to justify that all correlations evolve in the same

manner regardless of the assets involved (Tsay, 2013).

Finally, the estimated copula parameters are then used to generate a new matrix of T × N

simulations,

Σ̂ = {ζi,t} , i = 1, . . . , N, t = 1, . . . , T (24)

with margins that are completely free from assumptions of normality or linear correlations. N

represents the stocks in each country and T represents the length or the sample size of original

data. We then reintroduce the GARCH(1,1) model, Eqns. (1a) and (1b), and convert the daily

simulated data with t-margins to daily risk factor returns. That is,

ri,t = µi + ξi,t, ξi,t = σ̂i,tζi,t, (25)

where ζi,t are the daily simulated observations from the copulas with t-margins (Eqn. (24)).

3.3 Estimating VaRs

For each country, we apply the risk factor mappings to construct a simulated portfolio of returns

consisting of all represented stocks. The portfolio return on day t is a weighted average of the return

on individual stocks. Let Inv be the total amount invested in the portfolio, xi be the fraction of

the total investment in stock i, and ri,t be the return of stock i at time t; then, the weight applied

to ri,t is the fraction of the portfolio invested in stock i calculated as wi = xi
Inv . We assume equal

weights, and therefore, the return on the portfolio at time t is given by

R̄p,t = E (Rp,t) =
N∑
i=1

wiE (ri,t) ,
N∑
i=1

wi = 1. (26)

The one day VaR at time t with q% confidence level is calculated as

V aRq,t = F−1
q (R̄p), (27)

where F−1
q represents the q-th quantile of the distribution of R̄p below which lies (1 − q)% of the

observations and above which lies q% of the observations. Thus, we are q% confident that in the

worst case scenario, the losses on the portfolio will not exceed the 1 − q quantile. Table 4 shows

VaR estimates with confidence levels q = 99%, 95%, and 90%, based on the selected elliptical and

Archimedean copulas for the constructed portfolios.
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Table 4: VaR estimates based on the selected Archimedean and elliptical copulas for the constructed
portfolios.

Copula family
Portfolio Confidence level Archimedean Elliptical
UK Clayton Student’s-t

99% -7.52 -7.85
95% -3.41 -3.76
90% -2.19 -2.39

Germany Clayton Student’s-t
99% -6.24 -5.31
95% -3.52 -2.90
90% -2.53 -2.13

Greece Gumbel Student’s-t
99% -14.82 -18.88
95% -7.23 -8.68
90% -5.04 -5.71

Spain Frank Student’s-t
99% -6.12 -7.02
95% -3.75 -3.78
90% -2.79 -2.65

France Clayton Student’s-t
99% -5.11 -4.54
95% -2.49 -2.52
90% -1.81 -1.77

Italy Frank Student’s-t
99% -5.76 -7.35
95% -3.77 -4.07
90% -2.87 -2.78

Sweden Gumbel Gaussian-t
99% -6.44 -8.11
95% -3.53 -3.37
90% -2.34 -2.47
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3.4 Back-testing

To check that the model does not overestimate or underestimate risk, we do back-testing on the

model. This involves comparing the estimated VaRs for a given number of days to the subsequent

portfolio returns. The number of days X in which the loss on the portfolio exceeds VaR is recorded

as the number of exceptions or failures. Too many exceptions implies the VaR model underestimates

the level of risk on the portfolio, and too few exceptions implies the model overestimates risk. The

number of exceptions should be reasonably close to T (1 − q)%, where q is confidence level (CL);

depends on the choice of q and follows a binomial distribution

f(X) =
(
T
X

)
pXqT−X , (28)

with mean = pT and variance = pqT ; p = 1− q (Best, 2000).

The most common back-testing methods include the standard normal hypothesis (or failure

rate) test, Basel’s traffic light test, Kupiec’s proportion of failures (POF) test by Kupiec (1995),

and Christoffersen’s test (Christoffersen, 1998). We employ the standard normal hypothesis test,

Basel’s traffic light test, and Kupiec’s POF test to check the reliability of the VaR model on a

window of 250 and 500 observation periods and record the number of exceptions produced.

From the central limit theorem and with sufficiently large T , Eq.(28) can be approximated by

the normal distribution

z =
X − pT√
pqT

≈ Φ(0, 1), (29)

which is also the test statistic for a standard normal hypothesis test to assess the reliability of the

VaR model (Jorion, 2007). The VaR model is rejected if z < -zp/2 or z > zp/2 for a two-tailed test

and if z > zp for a one-tailed test. zp/2 and zp are the cutoff values for the inverse standard normal

cumulative distribution of p and p/2, respectively. Tables 5 and 6 show back-testing results based

on the standard normal hypothesis test.
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Table 5: Testing the reliability of the VaR model based on the standard normal hypothesis test.
The returns generated using the selected Archimedean copulas.

Exceptions VaR coverage (%) z-score One-tailed test Two-tailed test
Portfolio CL 250 500 250 500 250 500 250 500 250 500

UK 99% 28 27 0.98 0.94 -0.13 -0.32 Accept Accept Accept Accept
95% 141 138 4.94 4.81 -0.21 -0.47 Accept Accept Accept Accept
90% 277 264 9.65 9.20 -0.62 -1.43 Accept Accept Accept Accept

Germany 99% 27 26 0.94 0.91 -0.32 -0.50 Accept Accept Accept Accept
95% 137 132 4.78 4.60 -0.55 -0.98 Accept Accept Accept Accept
90% 266 259 9.27 9.03 -1.24 -1.66 Accept Accept Accept Accept

Greece 99% 27 27 0.94 0.94 -0.32 -0.32 Accept Accept Accept Accept
95% 143 140 4.98 4.88 -0.04 -0.30 Accept Accept Accept Accept
90% 282 279 9.83 9.27 -0.30 -0.49 Accept Accept Accept Accept

Spain 99% 27 27 0.94 0.94 -0.32 -0.32 Accept Accept Accept Accept
95% 142 142 4.95 4.95 -0.12 -0.12 Accept Accept Accept Accept
90% 283 283 9.86 9.86 -0.24 -0.24 Accept Accept Accept Accept

France 99% 26 26 0.91 0.91 -0.50 -0.50 Accept Accept Accept Accept
95% 140 130 4.88 4.53 -0.30 -1.15 Accept Accept Accept Accept
90% 272 253 9.48 8.82 -0.93 -2.11 Accept Accept Accept Accept

Italy 99% 27 27 0.94 0.94 -0.32 -0.32 Accept Accept Accept Accept
95% 143 143 4.98 4.98 -0.04 -0.04 Accept Accept Accept Accept
90% 283 281 9.86 9.79 -0.24 -0.37 Accept Accept Accept Accept

Sweden 99% 27 25 0.94 0.87 -0.32 -0.69 Accept Accept Accept Accept
95% 141 137 4.91 4.78 -0.21 -0.55 Accept Accept Accept Accept
90% 280 269 9.76 9.38 -0.43 -1.11 Accept Accept Accept Accept
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Table 6: Testing the reliability of the VaR model based on the standard normal hypothesis test.
The returns generated using the selected elliptical copulas.

Exceptions VaR coverage (%) z-score One-tailed test Two-tailed test
Portfolio CL 250 500 250 500 250 500 250 500 250 500

UK 99% 27 27 0.94 0.94 -0.32 -0.32 Accept Accept Accept Accept
95% 142 141 4.95 4.91 -0.12 -0.21 Accept Accept Accept Accept
90% 281 273 9.79 9.52 -0.37 -0.87 Accept Accept Accept Accept

Germany 99% 27 27 0.94 0.94 -0.32 -0.32 Accept Accept Accept Accept
95% 140 132 4.88 4.60 -0.30 -0.98 Accept Accept Accept Accept
90% 279 264 9.72 9.20 -0.47 -1.36 Accept Accept Accept Accept

Greece 99% 23 23 0.80 0.80 -1.07 -1.07 Accept Accept Accept Accept
95% 122 121 4.25 4.22 -1.84 -1.92 Accept Accept Accept Accept
90% 253 245 8.82 8.54 -2.11 -2.61 Accept Accept Accept Accept

Spain 99% 27 27 0.94 0.94 -0.32 -0.32 Accept Accept Accept Accept
95% 142 137 4.95 7.78 -0.12 -0.55 Accept Accept Accept Accept
90% 279 271 9.72 9.45 -0.49 -0.99 Accept Accept Accept Accept

France 99% 27 27 0.94 0.94 -0.32 -0.32 Accept Accept Accept Accept
95% 139 135 4.84 4.71 -0.38 -0.72 Accept Accept Accept Accept
90% 280 286 9.76 9.34 -0.43 -1.18 Accept Accept Accept Accept

Italy 99% 27 27 0.94 0.94 -0.32 -0.32 Accept Accept Accept Accept
95% 140 140 4.88 4.88 -0.30 -0.30 Accept Accept Accept Accept
90% 282 275 9.83 9.59 -0.74 -0.30 Accept Accept Accept Accept

Sweden 99% 27 25 0.94 0.87 -0.32 -0.69 Accept Accept Accept Accept
95% 141 134 4.91 4.67 -0.21 -0.81 Accept Accept Accept Accept
90% 278 263 9.69 9.17 -0.55 -1.49 Accept Accept Accept Accept

The second back-testing approach is Basel’s traffic light, that was originally proposed by BCBS

in 1996. In the new accord, BCBS further came up with a set of requirements that the VaR

model must satisfy for it to be considered a reliable risk measure (Resti, 2008). That is, (i) VaR

must be calculated with 99% confidence, (ii) back-testing must be done using a minimum of a one

year observation period and must be tested over at least 250 days, (iii) regulators should be 95%

confident that they are not erroneously rejecting a valid VaR model, and (iv) Basel specifies a

one-tailed test —it is only interested in the underestimation of risk. For an unbiased VaR model,

we expect a maximum of 2.5 ≈ 3 exceptions over a period of 250 days at p = 1% confidence level.

Depending on the number of exceptions, the bank is placed in a green, yellow, or red zone; see

Table 7 that shows the acceptance region. In the red zone, the VaR model underestimates risk and

is out-rightly rejected. Test results based on this test are shown in Table 3.4.

Table 7: Acceptance region for Basel’s traffic light approach for back-testing VaR models.

Zone Number of exceptions (X) Cumulative probability

Green ≤ 4 89.22%

Yellow 5 95.88%
6 98.63%
7 99.60%
8 99.89%
9 99.97%

Red ≥ 10 99.99%
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Table 8: Testing the reliability of the VaR model based on BCBS requirements.

Exceptions C.Pr (one-tailed test) % C.Pr (two-tailed test) % Zone (one-tailed test) Zone (two-tailed test) One-tailed test Two-tailed test

Portfolio Copula family 250 500 250 500 250 500 250 500 250 500 250 500 250 500

UK Archimedean 28 27 49.81 42.32 99.96 99.91 Green Green Yellow Yellow Accept Accept Accept Accept

Elliptical 27 27 42.32 42.32 99.91 99.91 Green Green Yellow Yellow Accept Accept Accept Accept

Germany Archimedean 27 26 42.32 35.01 99.91 98.82 Green Green Yellow Yellow Accept Accept Accept Accept

Elliptical 27 27 42.32 42.32 99.91 99.91 Green Green Yellow Yellow Accept Accept Accept Accept

Greece Archimedean 27 27 42.32 42.32 99.91 99.91 Green Green Yellow Yellow Accept Accept Accept Accept

Elliptical 23 23 16.52 16.52 98.80 98.80 Green Green Yellow Yellow Accept Accept Accept Accept

Spain Archimedean 27 27 42.32 42.32 99.91 99.91 Green Green Yellow Yellow Accept Accept Accept Accept

Elliptical 27 27 42.32 42.32 99.91 99.91 Green Green Yellow Yellow Accept Accept Accept Accept

France Archimedean 26 26 35.00 35.00 99.82 99.82 Green Green Yellow Yellow Accept Accept Accept Accept

Elliptical 27 27 42.32 42.32 99.91 99.91 Green Green Yellow Yellow Accept Accept Accept Accept

Italy Archimedean 27 27 42.32 42.32 99.91 99.91 Green Green Yellow Yellow Accept Accept Accept Accept

Elliptical 27 27 42.32 42.32 99.91 99.91 Green Green Yellow Yellow Accept Accept Accept Accept

Sweden Archimedean 27 25 42.32 28.14 99.91 99.65 Green Green Yellow Yellow Accept Accept Accept Accept

Elliptical 27 25 42.32 28.14 99.91 99.65 Green Green Yellow Yellow Accept Accept Accept Accept

Note: C.Pr represents the cumulative probability (see Table 7).
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In Kupiec’s POF test, Kupiec (1995) developed a 95% confidence region for unconditional

coverage (UC) whereby the number of exceptions produced by the model must be within this

interval for it to be considered a reliable risk measure. The test is based on the likelihood ratio

LRPOF = −2 ln
qT−XpX(

1− X
T

)T−X (X
T

)X , (30)

asymptotically distributed χ2
1. We consider an indicator function on the exceptions as

It(p) = I{Lt>V aRt(q)} =

{
1, if Lt > V aRt(q)

0, otherwise.
(31)

Under the UC, the null hypothesis for LRPOF is H0 : E[It(p)] = X
T = p against Ha : E[It(p)] =

X
T 6= p. The VaR model is rejected if LRPOF > χ2

1 = 3.841. Hence by equating Eqn. (30) to 3.841

and solving for X, we obtain two values of X; the rejection region is [X1, X2]. The VaR model is

rejected if X /∈ [X1, X2] and accepted if X ∈ [X1, X2] (Holton, 2002). Results based on this test

are shown in Tables 9 and 10.

Table 9: Testing the reliability of the VaR model based on Kupiec’s POF coverage test. The returns
generated using the Archimedean copulas.

Exceptions Test statistic Kupiec’s POF test
Portfolio CL 250 500 250 500 250 500

UK 99% 28 27 0.02 0.10 Accept Accept
95% 141 138 0.04 0.22 Accept Accept
90% 277 264 NaN NaN Reject Reject

Germany 99% 27 26 0.10 0.26 Accept Accept
95% 137 132 0.31 0.99 Accept Accept
90% 266 259 NaN NaN Reject Reject

Greece 99% 27 27 0.1 0.1 Accept Accept
95% 143 140 0.00 0.09 Accept Accept
90% 282 279 NaN NaN Reject Reject

Spain 99% 27 27 0.10 0.10 Accept Accept
95% 142 142 0.02 0.02 Accept Accept
90% 283 283 NaN NaN Reject Reject

France 99% 26 26 0.26 0.26 Accept Accept
95% 140 130 0.09 1.37 Accept Accept
90% 272 253 NaN NaN Reject Reject

Italy 99% 27 27 0.10 0.10 Accept Accept
95% 143 143 0.00 0.00 Accept Accept
90% 283 281 NaN NaN Reject Reject

Sweden 99% 27 25 0.10 0.50 Accept Accept
95% 141 137 0.04 0.31 Accept Accept
90% 280 269 NaN NaN Reject Reject
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Table 10: Testing the reliability of the VaR model based on Kupiec’s POF coverage test. The
returns generated using the elliptical copulas.

Exceptions Test statistic Kupiec’s POF test
Portfolio CL 250 500 250 500 250 500

UK 99% 27 27 0.10 0.10 Accept Accept
95% 142 141 0.02 0.04 Accept Accept
90% 281 273 NaN NaN Reject Reject

Germany 99% 27 27 0.10 0.10 Accept Accept
95% 140 132 0.09 0.99 Accept Accept
90% 279 264 NaN NaN Reject Reject

Greece 99% 23 23 1.22 1.22 Accept Accept
95% 122 121 3.55 3.90 Accept Reject
90% 253 245 NaN NaN Reject Reject

Spain 99% 27 27 0.10 0.10 Accept Accept
95% 142 137 0.02 0.31 Accept Accept
90% 279 271 NaN NaN Reject Reject

France 99% 27 27 0.10 0.10 Accept Accept
95% 139 135 0.15 0.53 Accept Accept
90% 280 268 NaN NaN Reject Reject

Italy 99% 27 27 0.10 0.10 Accept Accept
95% 140 140 0.00 0.00 Accept Accept
90% 282 275 NaN NaN Reject Reject

Sweden 99% 27 25 0.10 0.50 Accept Accept
95% 141 134 0.04 0.67 Accept Accept
90% 278 263 NaN NaN Reject Reject
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The results show that as the observation period increases from 250 to 500 days at a 99%

confidence level, the number of exceptions produced is unchanged using elliptical copulas with

the exception of Sweden, which exhibits a difference of 2. With Archimedean copulas, there is a

difference of 1, 1, and 2 for the UK, Germany and Sweden, respectively, at the 99% confidence

level. The number of exceptions produced is also very close to the expectation T (1− q)%, i.e., 29,

with the exception of Greece for the elliptical Student’s-t copula. This suggests that the model at

a 99% confidence level captures VaR extremely well because the difference in exceptions is very

minimal or zero.

At the 95% confidence level, there is a significant difference between the number of excep-

tions produced in some of the countries when using 250- and 500-observation periods for both

Archimedean and elliptical copulas. Although the number of exceptions is quite close to the expec-

tation, i.e., 143, the significant difference indicates that there is greater room for error in estimating

VaR at the 95% compared with the 99% confidence level. However, back-testing results indicate

that the VaR model performed reasonably well at the 95% confidence level except for the models

of Greece in the 500-observation period.

At a 90% confidence level, the difference in the number of exceptions is quite high for both

copula families. The tail dependence structure of the portfolio returns is not quite accounted for

and hence, the model fails to capture extreme events.

Back-testing results from Kupiec’s POF test confirm the above analysis. The model is accepted

at the 99% and 95% confidence levels for both copula families except for Greece, where the elliptical

Student’s-t copula rejects the model at a 95% confidence level with a 500-day observation period.

At a 90% confidence level, Kupiec’s POF test rejects the model for both copula families.

For the standard normal hypothesis test and Basel’s traffic light test, we perform one- and

two-tailed tests. Although Basel is only concerned with the underestimation of risk, we performed

a two-tailed test to make sure that the model does not overestimate risk and thereby result in

excess capital being provided (Best, 2000). The model is accepted in all cases for both one-tailed

and two-tailed tests. However, for both Archimedean and elliptical copulas, the Basel’s traffic

light tests place the VaR model in the yellow zone for a two-tailed test when using 250- and 500-

observation periods, suggesting that there might be some instances of overestimation of risk since

for a one-tailed test the model falls in the green zone in all instances.

It is important to note that the standard normal hypothesis test and the Basel’s traffic light

test do not specify whether the number of exceptions produced is too small. That is, the model

will not be rejected if the number of exceptions is too small, which would lead to overestimation

of VaR. Kupiec’s POF test rejects the model if the number of exceptions produced is too large or

too small. This is why the standard normal hypothesis test and the Basel’s traffic light test fail to

reject the model at the 90% confidence level. Thus, from the banks perspective, Kupiec’s POF test

is preferable and superior because it accounts for both underestimation and overestimation of risk.

4 Conclusion

Because VaR models attempt to capture the behaviour of asset returns in the left tail, it is important

that the model is constructed such that it does not underestimate the proportion of outliers and

hence the true VaR. The normality assumption of asset returns might severely underestimate the
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true VaR because extreme values are assumed to be very unlikely to occur. For a reliable VaR

model, it is important to take into account the dependent structure of the stock returns, and the

type of volatility models being used. We construct our VaR model for a time horizon of one day

using M-GARCH DCC model as the underlying volatility model and copula functions to model

dependence among the stock returns.

The back-testing results cover the period between 2008 and 2011, and the VaR estimates pre-

sented in Table 4 clearly show that during these periods, which includes the 2008 global financial

crisis and 2011 European financial crisis, the risk of collapse of the banking system of Greece was

extremely high. This was especially because capital was insufficient to provide a cushion capable

of withstanding sudden losses in periods of financial distress. This was almost double compared to

the other countries, which should have been a red flag for the investors.

Back-testing results based on the standard normal hypothesis test, Basel’s traffic light test and

Kupiec’s POF test suggest that the model is reliable as a risk measure at 99% and 95% confidence

levels. The results of back-testing also suggest that the type of copula family used (i.e., elliptical

or Archimedean) to model the dependence structure does not have a significant effect when dealing

with quantile VaRs. The results are quite similar based on the number of exceptions produced.

This study also suggests a challenging yet possible development in the world of risk management,

which is to design a back-testing method based on the Basel requirements that detects when the

number of exceptions produced by a VaR model are too small; this is because the current traffic

light back-testing method does not address this issue.

In subsequent studies, we suggest employing the extreme value theory to model the tail be-

haviour of the risk factors to see if there will be any improvement at the 90% confidence level where

the VaR model is rejected by Kupiec’s POF test.
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