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Abstract

The propulsive efficiencies of multi-functional appendage configurations in a small drag-
based swimmer are investigated computationally. Due to the lack of actual actuators
to measure input power, efficiency is evaluated indirectly and may be instinctively asso-
ciated to higher production of forward thrust. However, the relation is not intuitively
self-evident, since the shape of the propulsive system is known to influence the genera-
tion of hydrodynamic forces, along with the particular kinematics used, which in turn
affect the power consumption. The current article investigates this topic in the case of a
reduced-size appendage-based swimmer producing small values of thrust, and discusses
the role of design in the relation between propulsive efficiency and thrust production un-
der a “sculling” kinematic motion profile. The study implements seven different shapes
of appendages, inspired by both the biology and engineering, which perform a drag-
based swimming pattern while being attached, in pairs, at the dorsal side of a common
body. The work utilises an immersed boundary approach to solve numerically the fluid
equations and capture the flow patterns around the swimmer. The results contribute
to our understanding of drag-based propulsive systems and may influence the develop-
ment of novel underwater robotic systems and limb prosthetic devices for underwater
rehabilitation.

Keywords: Propulsive efficiency, drag-based swimming, immersed boundary method,
numerical simulations, aquatic locomotion

1. Introduction

Swimming in nature has evolved from diverse aquatic morphologies, complex kine-
matic patterns, and distinctive mechanisms, such as body undulations, appendage mo-
tions, or jet production [1, 2]. Much like flying, the main objective of a swimming
organism is to produce enough forward force (thrust) to overcome the induced resistive5
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force (drag), acting parallel to the direction of motion, and balance any lateral and verti-
cal forces to avoid sinking [3]. The high density of water and its incompressibility makes
swimming energetically easier than flying in an aerial medium, particularly for animals
with a body density close to water density, which can remain suspended or cruise with
minimal effort (neutral buoyancy). Other animals can regulate their buoyancy with al-10

ternate means and optimised energy consumption [4], or develop strategies that exploit
vortices in the fluid to improve their swimming performances [5, 6, 7, 8].

In appendage-based swimming, propulsion can be achieved by the production of lift
or drag, e.g. through flapping or through paddling or rowing, respectively, by moving
the appendage(s) in an upward and downward cyclic fashion (“lift-based propulsion”), or15

parallel to the plane of motion (“drag-based propulsion”). The direction of the generated
propulsive forces, namely whether they act perpendicularly or parallel to the plane of
motion, has therefore played a significant role in the evolution of propulsive appendages.
Nevertheless, the two modes can be interchangeably combined and the same appendages
can be used equally for one or another mode, or in a mixed transitional fashion [9].20

Lift-based propulsion has been associated with animals that can sustain higher attainted
velocities for longer swimming durations, such as penguins, sea lions, sea turtles, sea
butterflies, fish with lift-based pectoral fins (e.g. shiner seaperch), cartilagenous fishes,
petropod molluscs, and certain species of crabs [1, 10]. Drag-based thrust, on the other
hand, appears in animals that require the generation of sudden high-speed bursts for25

escaping, chasing, or high-speed maneuvering purposes, such as ducks, muskrats, fresh-
water turtles, angelfish, polychaete worms, water beetles, octopuses, shrimps, copepods,
remipede crustaceans, and backswimmers [1, 10]. Drag-based paddling can be found also
in quadrupedal mammals and human swimming.

Drag-based propulsion is superior for initial bursts of activity but, in general, the ef-30

ficiency is low and the mode is considered evolutionary simpler than lift-based swimming
[9]. Drag propulsors appear at various Reynolds numbers, though mostly work best at
lower or intermediate values, where viscous effects can be exploited to contribute towards
thrust production [11, 10]. Swimming based on drag forces is thus predominantly found
in animals with mixed modes of locomotion, that is, animals that combine swimming35

with e.g. walking or burrowing modes (for example, ducks or polychaete worms), or an-
imals that use their appendages for both propulsion and manipulation (multi-functional
appendages, e.g. octopuses) [1]. Drag-based propulsion appears to work best at station-
ary systems, providing highest accelerations with a maximum attainted velocity, while
thrust is reduced once the body is in motion. The easiest way therefore to examine40

morphological effects of appendages in drag-based systems is to maintain the body sta-
tionary.

The flow development and vortex generation around a drag-based swimming mode
involving a periodic rotation of appendages can be very complex. The production of
thrust is greatly affected by the morphology (shape or design) of the appendages and45

by their interaction with the main body (and its shape) on which they are attached
[10, 12]. For example, streamlined appendages and bodies appear to be superior than
non-streamlines shapes [9]. Engineering models on the labriform swimming mode, which
is characteristic of the movement of paired pectoral fins and includes distinctive drag-
based periodic power and recovery strokes, have shown that triangular fin designs surpass50

square or rectangular shapes in thrust production [13]. Delta-wing-shaped appendages
also appear to generate stronger tip-vortex flow separation in a drag-based paddling

2



(a) (b)

Figure 1: (a) Part of the computational domain used to simulate a small appedange-based swimmer,
here shown with a pair of conical frustum appendages (Fig. 2a). (b) Robotic analogue (prototype, [16]).

mode [12]. The drag-based “sculling” mode, which includes a combination of a fast
power stroke and a slow recovery stroke for thrust production [14, 15], equally presents
interesting morphological dependences [16].55

Expanding the work presented in [16], the current paper utilises a version of the four
appendage morphologies presented and introduces three new designs, focusing on the
evaluation of the propulsive efficiency in a small, slow swimmer with two appendages
at the rear side (Fig. 1) and its relation to thrust production. This study contributes
to the understanding of drag-based swimming modes and the influence of appendage60

morphology.
The rest of this paper is organized as follows: the drag-based swimming model is

presented in Section 2; results on the propulsive efficiency and the role of appendage
morphology in thrust production are highlighted and discussed in Section 3, and Section
4 concludes with some final remarks.65

2. Computational Approach

The computational approach employed in this work to simulate propulsion of a small
appendage-based aquatic swimmer is presented in this section. The numerical approach,
also used in [17], is outlined first. The geometry representation and necessary details of
the mesh are given next. The kinematics employed for the aquatic swimmer with the70

associated definition of the propulsive efficiency are then provided, before the presentation
of results in the Section 3.

2.1. Numerical method

The flow around the swimmer is solved assuming the three-dimensional Navier-Stokes
equations for incompressible Newtonian flow, expressed as:75

∂u

∂t
+ (u · ∇)u = −

1

ρ
∇p + ν∇2u, ∇ · u = 0 (1)

where u is the vector of velocity, p the pressure, ν the kinematic viscosity, and ρ the
fluid density. The Reynolds number Re = UD/ν, based on a circular appendage base
diameter D (Fig. 2) and a fictitious mean steady-state forward speed U (explained in
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Figure 2: Shapes of appendages tested, in pairs, on a common body, as in Fig. 1: (a) Conical frustum, (b-
c) Reuleaux shapes, (d) Flap-assisted conical frustum [16], (e-f) Fish-like with/without tail, (g) Airfoil-
like. For each shape: (left) base with surface triangular mesh, (right) side viewpoint. Arrows in (c)
indicate the direction of movement for all appendages, during the power stroke phase of the assumed
kinematic profile.

Section 2.4), is approximately 340. The Strouhal number, expressed as St = U/(WD),
where W is the mean angular velocity (discussed in Section 2.3), is about 48.80

The flow is numerically solved using a curvilinear/immersed boundary method, pro-
posed by [18, 19]. Contrary to body-conforming methods, which include computationally
demanding mesh deformation strategies, and based on the computationally inexpensive
immersed boundary approach [20], the current hybrid method considers the swimmer’s
body and pair of appendages as sharp interfaces immersed in a fixed curvilinear com-85

putational domain. The position of the moving body is reconstructed with a 2nd-order
quadratic interpolation scheme at the nodes near the interface between the fluid and
the (solid) immersed boundaries. The nodes that correspond to the solid do not af-
fect the solution of the fluid as they are identified separately. The advantage of this
approach is its great flexibility in handling arbitrarily complex geometrical movements90

and deformations, while avoiding numerical instabilities and smearing effects around the
immersed boundary. Further, the hybrid scheme does not require the explicit definition
for the boundary conditions of the pressure field at the immersed boundary nodes. A
second-order fractional step scheme is used for the implicit time integration of the flow
equations. Validation of the method can be found in [18, 19] for several applications.95

The CURVIB code is fully parallelized for massively parallel HPC systems and is not
I/O intensive. The parallelization was performed using the PETSc library, which provides
routines for parallel numerical solution of partial differential equations requiring the
solution of sparse, large-scale nonlinear systems of equations. The background fluid mesh
is parallelized by assigning a set of grid nodes to each processor using PETSc’s distributed100

array (DA) object, which also manages parallel communications for structured mesh
problems. The sparse parallel matrices and Krylov linear solvers in PETSc are used
to solve the large sparse systems resulting from the discretization of momentum and
pressure-correction equation. The implementation of the code is highly scalable for 3D
flows, with an almost linear speedup for grids with 20 million nodes (scalability tests105

performed in several HPC clusters in USA and EU [17]), which are the typical sizes to
be used in this study, and can utilise the openMPI implementation of MPI.
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2.2. Geometry representation and mesh details

A small swimmer with an ellipsoid body and a pair of appendages on its dorsal surface
(Fig. 1) is used here as a test platform for various appendage shapes (Fig. 2), with the110

aim to study their respective efficiency and thrust production. The body is designed to
be 5D long in the major ellipsoid diameter and 3.25D wide in the minor diameter—where
D is the base dimension of the conical appendage (Fig. 2a)—, while its dorsal side is
shortened to 75% of the major dimension. The appendages are modelled at symmetrical
(mirrored) positions behind the body and at 5 ◦ starting angle with the body axis. In the115

following, we present seven appendage geometries, of which a version of the first four,
from (a) to (d), were presented first in [16] and the final three, from (e) to (g), are new.

(a) A conical frustum of 1D in base diameter, taper 9.75:1 (length to base diameter)
and aspect ratio 17.5:1 (length to mean diameter, Fig. 2a).

(b-c) Two reuleaux-based shapes (Fig. 2b-c), with convex and concave sides with respect120

to the body axis, respectively, and base with circumcircle diameter of the reuleaux
triangle D.

(d) A flap-assisted conical frustum, similar to (a) but with a pair of “flaps”, positioned
symmetrically at the sides of the appendage with respect to its axis and at 120◦

angle (Fig. 2d).125

(e) A fish-like geometry with tail of elliptical cross-section (in the yz−direction), de-
signed out of a NACA0010 airfoil shape, in the xz−direction, and a NACA0020
airfoil shape in the xy-direction. The tail has a height of 2D (Fig. 2e).

(f) A fish-like geometry without tail (Fig. 2f), of the same design specifications as (e).

(g) A frustum of a very thick airfoil with NACA0050 cross-section and taper 9.75:1.130

These shapes are inspired both from biology, e.g. fish bodies or molluscs (octopus
arms), or even loosely the human arm or leg (for the conical frustum), but also from
engineering designs, e.g. the reuleaux shapes and airfoils. The study is non-exhaustive
in the diversity of designs that could be used as engineered appendages, but rather it
aims to examine certain distinct morphologies to highlight the association between thrust135

production and efficiency when they are used in pairs in such reduced-size drag-based
swimmers. Single appendages have been previously examined in [15, 21]. In addition,
the appendages are assumed to be rigid in this study. Effects of appendage deformation
has been previously investigated in [17].

The computational domain is of size 30D x 15D x 30D in the xyz-directions respec-140

tively and is discretised in 20 million structured cuboid cells (Fig. 1a). A uniform finer
mesh of 8D in x-, D in y-, and 2D in z-directions with element size h = 0.02D is con-
structed around the tips of the appendages to capture the flow separation. The grid
resolution has been found sufficient for modelling viscous flow effects [17] and vortical
wake structures near the swimmer. The swimmer is modelled in a quiescent fluid and145

each appendage is surface meshed with unstructured triangular elements (Fig. 2) of a
total number of: (a) 38754 for the conical frustum, (b) 28776 and (c) 28608 for the
reuleaux-based shapes, (d) 57338 for the flap-assisted conical frustum, (e) 49924 and (f)
16588 for the fish-like geometries, and (g) 50830 for the airfoil-like geometry.
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Figure 3: Schematic of applied force components during the power stroke for the calculation of the
propulsive efficiency. Tavg is the average thrust over a cycle and F⊥i(t)ri (i = 1, 2) is the torque applied
at the centre of mass of each appendage. See text for description.

2.3. Kinematics150

The paired appendages follow kinematic profiles that are symmetrical to the body axis
and are inspired from observations of a particular drag-based swimming mode, sculling
[22, 23], which is observed for example in the octopus [24]. The simplified pattern
is comprised of a high-thrust rapid motion of the appendages towards the body axis
(“power stroke”) and a low-thrust, three-time slower, motion away from the body axis155

(“recovery stroke”). The angular velocity, W (t), of each arm can be expressed as:

W (t) =
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(2)

where ωr = 10◦/ sec represents the constant recovery stroke (low-thrust) angular velocity,
ωp = βωr the power stroke (high-thrust) angular velocity, β = 3 the ratio between power
and recovery strokes, A = 5◦ the amplitude, and ψ = 10◦ the angular axial position of
the rotation. The overall cycle is assumed to be Ts = Tr+Tp, where Tp = − 3

5β (β
2+60)t1160

corresponds to the power stroke and Tr = 61A
30ω to the recovery stroke. Finally, t1 = A

18ω is
the time that W (t) requires to reach the initial steady angular speed, for C2 continuity.
The swimmer’s body is assumed stationary in the model, similar to typical robotic tests
for force measurements, as the focus here lies on thrust generation by the paired motion
of the appendages. An investigation of self-propulsion was previously presented in [15].165
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2.4. Propulsive efficiency

Propulsive efficiency (or Froude efficiency), η, is the ratio of the average output power,
Pout, over the average input power, Pin, to a system (η = Pout/Pin) and, therefore, a
measure of the gain versus loss of energy. In animal locomotion and engineering models,
this is particularly interesting as it captures the effectiveness of a swimming mode over170

another. Here, the focus is on the influence of appendage morphology on drag-based
swimming efficiency, under a common motion profile, and averaging is taken during one
period of the cyclic appendage movement.

Although it is not straightforward to define the propulsive efficiency on a computa-
tional model swimmer that lacks power consumption from a real actuator and is restricted
from self-propulsion, the propulsive efficiency η can be expressed as follows:

η =
Tavg U

τavg W
(3)

where Tavg is the average forward propulsive force (thrust) generated by each pair of
appendages during one cycle and U is a fictitious mean steady-state forward speed that
the swimmers would acquire as a result of the generated forward thrust (computed as
the mean of the thrust integrals of each pair over the total mass of the system of two
appendages [15], for all pairs). For rotational systems like the one examined here, Pin is
the product of mean angular velocity W (calculated from Eq. 2) and total torque of the
system, τavg, which can be expressed as:

τavg =

2
∑

i=1

F⊥i ri = (

2
∑

i=1

mir
2
i )Ẇ (4)

where F⊥i (i = 1, 2) represents the tangential force to each rotating appendage, respec-
tively (Fig. 3), applied at the centre of mass, at length ri from the centre of rotation,175

and Ẇ is the mean angular acceleration from dW (t)/dt. A mass m for each appendage
was assumed, based on its volume and a constant density ρ representative of a neutral
buoyant body in seawater. Since the system involves two identical appendages, Eq. 4
can be rewritten as: τavg = 2mr2Ẇ .

3. Results and Discussion180

This section presents and discusses results of flow simulation (Figs. 4, 5) in the wake
of a small swimmer (Fig. 1) with the use of seven pairs of appendage designs (Fig. 2),
undergoing a prescribed drag-based swimming motion (Eq. 2, for ω = 10◦/ sec, A = 5◦,
β = 3, ψ = 10◦). It also evaluates the produced thrust and propulsive efficiency of the
swimmer (Figs. 6, 7) and attempts to find their correlation, as well as their dependences185

on other morphological and flow characteristics (Figs. 8, 9).

3.1. Flow perturbations

Assuming initially quiescent fluid and a stationary swimmer, the paired appendages
move symmetrically, opening and closing together during the recovery (low-thrust) and
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Figure 4: Instantaneous vortical flow patterns (based on iso-surfaces of the λ2 criterion, λ2 = −1) at
the end of the high-thrust (power) stroke: (a) Conical frustum, (b-c) Reuleaux shapes, (d) Flap-assisted
frustum [16], (e-f) Fish-like with/without tail, (g) Airfoil-like (ω = 10◦/ sec, A = 5◦, β = 3, ψ = 10◦).

power (high-thrust) strokes. Once time-periodicity is achieved, the flow-generated vor-190

tical structures in the near-wake region of the appendages can be observed at instanta-
neous snapshots during the cycle and are visualized with iso-surfaces of the λ2 criterion
[25] (λ2=−1, Figs. 4, 5). The iso-surfaces detect the topology of the instantaneously-
concentrated extent of the vortical flow and, as a result, the vortical cores. Figs. 4 and
5 examine such instantaneous patterns around the appendages at the end of the power195

and recovery strokes, respectively, of the kinematic motion profile.
The first three designs, namely the conical frustum and the two reuleaux shapes, are

morphologically similar and display comparable vortical patterns, characterised by two
main features: (i) Flow separated from the tip of each appendage, per stroke, extends
rapidly into two counter-rotating vortices along the lee side of the appendage, merging200

with separated flow from the trailing face (Figs. 4a-c, 5a-c). (ii) The sudden move of the
appendages inwards, during the power stroke, results in the forced detachment of these
counter-rotating vortices from previous cycles (occurring mostly near the tip), which due
to the low rate of diffusion in the surrounding fluid, they remain in the field and form
horseshoe-like vortices.205

These features can be discerned also in the flap-assisted conical frustum (Figs. 4d,
5d), however the tip-induced counter-rotating vortices extend only partially along the
lee side, breaking symmetry at the point where flow is separated from the flaps. The
horseshoe-like vortices are therefore diminished in strength and new complex vortical
patterns fill the region between the two flaps. Flow disturbance is therefore much higher210

near the bases of the two appendages in the flap-assisted frustum, rather than near the
tips, as previously seen in the simple frustum and reuleaux designs.

The two fish-like geometries, with and without a tail (Figs. 4e-f, 5e-f), cause clearly
larger flow perturbations near the ends of the appendages, producing highly non-canonical
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Figure 5: Instantaneous vortical flow patterns (based on λ2 criterion, λ2 = −1) at the end of the low-
thrust (recovery) stroke: (a) Conical frustum, (b-c) Reuleaux shapes, (d) Flap-assisted conical frustum
[16], (e-f) Fish-like with/without tail, (g) Airfoil-like (ω = 10◦/ sec, A = 5◦, β = 3, ψ = 10◦)

vortical structures that extend into the surrounding three-dimensional fluid space, during215

both strokes. Separation of flow along the entire length of each appendage is evident and
is stronger during the power stroke.

Due to the small amplitude of the motion and, hence, small incidence angles of the
appendages with the flow, the airfoil-like design has the least impact on the surrounding
fluid (Figs. 4g, 5g), though flow separates along the length of the appendages.220

3.2. Hydrodynamic performance (thrust and efficiency)

The hydrodynamic performance of the presented swimmer can be assessed through
the analysis of the produced thrust, T , and propulsive efficiency, η, for each pair of
appendages. Figure 6a presents the temporal variation of the thrust coefficient, CT , that
is, of the hydrodynamic forward force that acts on the swimmer, along the direction of225

swimming, as a result of appendage motion. CT is a non-dimensional parameter and is
calculated as T/0.5ρU2Aproj [15], where Aproj is the projected area for each shape.

As indicated from the analysis of the vortical patterns in the near-wake region around
the appendages (Section 3.1), the fish-like geometries appear to produce the highest peak
thrust values (black and orange lines in Figs. 6a), with the tail adding a considerable230

extra propulsive component to the system. The flap-assisted conical frustum (green line,
Fig. 6a) also produces high peak values, but the conical frustum, reuleaux and airfoil-like
shapes generate more moderate peak forces. It appears, therefore, that increasing the
induced perturbations in the flow, due to increased flow separation and complex vortical
structures, increases the generated peak thrust. However, in average numbers the trend235

is less straightforward. Appendage (d), the flap-assisted frustum (Fig. 6b), presents the
highest average thrust coefficient, with shape (e), the fish-like with tail, coming second
and the one without tail (shape (g)) showing a smaller average CT value than shape (c)
and almost equal to (b). A linear fit can only poorly estimate peak CT being roughly 60

9
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Figure 6: (a) Temporal variation of the propulsive thrust coefficient, CT once time periodic response
has been achieved. (c) Comparison between peak and average values. (ω = 10◦/ sec, A = 5◦, β = 3,
ψ = 10◦).

times larger than the average values; rather, the graph indicates that designs causing large240

disturbances in the flow (shapes (d)-(f)) can produce more moderate-to-higher average
CT values (and clearly larger peak values) than designs resulting in less perturbations
and display more moderate-to-lower CT (and lower peak values).

To understand better the role of appendage morphology on the performance of the
swimmer, the propulsive efficiency, η, is calculated as described in Section 2.4 and shown245

in Fig. 7a for each appendage. The flap-assisted geometry (shape (d)) exhibits the
highest efficiency, since the power consumption is smallest and most of the average input
power, Pin, is used to generate thrust (Fig. 7b). (Note that the same shape produces the
highest average CT , Fig. 6b). The second-highest efficiency design is the reuleux concave,
which also displays surprisingly low power consumption, as compared with shapes (a)250

and (b), yet with the lowest value of input power. (Note that this geometry presented the
highest average CT from the group of geometries that cause small flow perturbations).
In fact, the reuleux concave surpasses in efficiency both fish-like geometries, of which the
large peak thrust values and highly-complex induced vortical flow perturbations appear
to come at the expense of considerable power consumption. The remaining three designs255
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Figure 7: (a) Evaluation of the propulsive efficiency, η, for the swimmer, calculated according to Eq. 3
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exhibit similar or smaller efficiencies.
Figures 8a-d examine the correlations of the propulsive efficiency, η, with several

morphological and fluid characteristics, in particular the average thrust coefficient, CT

(Fig. 8a), the normalised mean forward speed Un (normalisation by U , Fig. 8b), the
normalised total mass of the system of two appendages (based on the total average, Fig.260

8c), and the normalised projected area (based on the total average, Fig. 8d).
Overall, the efficiency appears to have a strong, almost linear, relationship with the

thrust coefficient, being approximately 12 times larger (Fig. 8a). Individual appendages,
nevertheless, are more loosely linked. For example, the fish-like appendage with tail has
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Figure 8: Propulsive efficiency, η (Eq. 3) plotted against the (a) average thrust coefficient CT , (b)
normalised mean forward speed Un, (c) normalised total mass Σmn, (d) normalised projected area
Aprojn .
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Figure 9: (a) Propulsive efficiency, η (Eq. 3), and (b) average thrust coefficient, CT , as a function of the
fineness ratio, FR.

higher CT but lower η than the reuleux concave, which falls above the line fit. The265

flap-assisted conical shape displays the highest efficiency for the highest average thrust,
despite having a peak value that is lower than the fish-like shapes (as seen earlier in Fig.
6). The other four geometries have all lower values in both CT and η.
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The relationship between efficiency and normalised mean forward speed, Un, is less
evident (Fig. 8b). A poor linear fit gives a ratio of approximately 0.3 between the two,270

but the plot demonstrates that the three highest-efficiency appendages (flap-assisted,
reuleux concave and fish-like with tail) produce moderate-to-high speeds, whereas low-
efficiency appendages (shapes (a), (b), (f) and (g)) produce moderate-to-low forward
speeds.

Figure 8c indicates that η has a small depedence on the normalised total mass of the275

system, with both high-efficiency and low-efficiency shapes having a wide range of mass
values. The plot of the efficiency η over the normalised projected area, Aprojn (Fig. 8d)
shows a moderate influence, however it highlights that both large and small geometries,
(based on the projected areas) can have equally low and high efficiencies.

Finally, in Fig. 9 the efficiency and thrust coefficient for each shape are evaluated280

based on the Finess Ratio (FR), a ratio defined as the overall appendage length to
maximum width, which according to [9] could be used as an index to associate design
with propulsive performance. Since all appendage shapes have the same overall length,
9.75D in the x−direction (as shown in Figs. 1, 2), the FR depends only on the maximum
width (thickness). Both η and CT in Fig. 9 display an inverse relation to FR, with the285

highest thrust production appendages having smaller FR values for a range of η and CT

numbers. A similar relationship between drag coefficient and FR has been previously
found in [1].

4. Conclusions

In this paper, the propulsive efficiency and thrust production of various appendage290

morphologies in a reduced-size swimmer are investigated with the use of immersed-
boundary computational fluid dynamics methods. The shape of appendages is found to
influence both mean thrust production and efficiency, but these have no direct causative
correlation with the extent of flow perturbations in the surrounding fluid medium, in-
duced during the prescribed periodic motion. In fact, it is found that appendages that295

result in extended tip-vortex flow separation and complex vortical structures (fish-like
shapes) produce less average thrust and are less efficient than appendages that induce
flow disturbances in regions closer to their bases (flap-assisted conical frustum).

The results further demonstrate that the most efficient propulsion for the swimmer
examined corresponds to the morphology with flaps. They also highlight that although,300

on average, the efficiency appears to be linearly correlated with thrust production, indi-
vidual appendages may not necessarily be; for example, higher-thrust morphologies (e.g.
fish-like with tail) may be less efficient than lower-thrust morphologies (e.g. reuleux con-
cave). Design needs, therefore, to consider energetic efficiency, in addition to produced
thrust. Future investigations will attempt to include appendages related to prosthetic305

devices for underwater rehabilitation.
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