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Stability of Highly Nonlinear Neutral Stochastic

Differential Delay Equations
Mingxuan Shen, Weiyin Fei, Xuerong Mao, Yong Liang

Abstract—Stability criteria for neutral stochastic differential delay
equations (NSDDEs) have been studied intensively for the past several
decades. Most of these criteria can only be applied to NSDDEs where
their coefficients are either linear or nonlinear but bounded by linear
functions. This paper is concerned with the stability of hybrid NSDDEs
without the linear growth condition, to which we will refer as highly
nonlinear ones. The stability criteria established in this paper will be
dependent on delays.

Index Terms—Neutral stochastic differential delay equation; Nonlinear
growth condition; Asymptotic stability; Delay dependent; Markovian
switching

1. INTRODUCTION

Many stochastic dynamical systems do not only depend on present

and past states but also involve derivatives with delays. Neutral

stochastic differential delay equations (NSDDEs) are often used to

model such systems. NSDDEs with Markovian switching (also known

as hybrid NSDDEs) form an important class of hybrid dynamical

systems. They have been successfully applied in practice, such as

in traffic control, switching power converters, neural networks, and

so on (see, e.g., [1–5]). The research on the stability of NSDDEs

with Markovian switching has received considerable attention for the

past several decades (see, e.g., [6–9]). The stability criteria are in

general classified into two categories: delay-dependent and delay-

independent stability criteria. The delay-dependent stability criteria

take into account the size of delays and hence are generally less

conservative than the delay-independent ones which work for any

size of delays.

A common feature of the existing delay-dependent stability criteria

is that most of them can only be applied to delay systems where

their coefficients are either linear or nonlinear but bounded by linear

functions (see, e.g., [10–12]). However, the linear growth condition

is usually violated in many practical applications. Recently, there are

some progress on stability for highly nonlinear stochastic delay sys-

tems. For example, the stability and boundedness of nonlinear hybrid

SDDEs were studied in [13], the robust stability and boundedness of

SDDEs without the linear growth condition were studied in [14], the

stability of neutral stochastic differential equations with unbounded

delay and Markovian switching was studied in [15]. But those results

are all delay independent. [16] is the first to establish delay-dependent

criteria for highly nonlinear hybrid SDDEs . However, to the best of

our knowledge, there is so far no delay-dependent stability criteria

for highly nonlinear hybrid NSDDEs. Motivated by [16], the key
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aim of this paper is to establish the delay-dependent stability criteria

for hybrid NSDDEs with the polynomial growth condition instead of

the linear growth condition. To explain our aim more clearly, let us

consider the scalar highly nonlinear hybrid NSDDE

d[x(t)−D(x(t− τ))] =f(x(t), x(t− τ), r(t), t)dt

+ g(x(t), x(t− τ), r(t), t)dB(t), (1.1)

where x(t) ∈ R is the state, τ stands for time delay, B(t) is a

scalar Brownian motion, r(t) is a Markov chain on the state space

S = {1, 2} with its generator

Γ =

(

−1 1
2 −2

)

(1.2)

and the coefficients are defined by

f(x, y, 1, t) = −y − 4x3, f(x, y, 2, t) = −y − 5x3,

g(x, y, 1, t) = g(x, y, 2, t) = 0.5y2,

D(x(t− τ)) = 0.1x(t− τ). (1.3)

This nonlinear hybrid NSDDE can be regarded as that it operates in

two modes and it obeys

d[x(t)− 0.1x(t− τ)] =[−x(t− τ)− 4x3(t)]dt

+ 0.5x2(t− τ)dB(t),

d[x(t)− 0.1x(t− τ)] =[−x(t− τ)− 5x3(t)]dt

+ 0.5x2(t− τ)dB(t)

in mode 1 and 2, respectively. The system will switch from one mode

to the other according to the probability law of the Markov chain.

If τ = 0.01, the computer simulation shows that the hybrid NSDDE

is asymptotically stable. If the time-delay is large, say τ = 2, the

computer simulation shows that the hybrid NSDDE is unstable. In

other words, whether the hybrid NSDDE is stable or not depends on

how small or large the time-delay is. On the other hand, both drift

and diffusion coefficients of the hybrid NSDDE are highly nonlinear.

Unfortunately, there is so far no delay-dependent criterion which can

be applied to this NSDDE to derive a sufficient bound on the time-

delay τ for the NSDDE to be stable. Our aim here is to establish

delay-dependent criteria for such highly nonlinear hybrid NSDDEs.

2. NOTATION AND ASSUMPTION

Throughout this paper, unless otherwise specified, we use the

following notation. If A is a vector or matrix, its transpose is denoted

by AT . If x ∈ R
n, then |x| is its Euclidean norm. For a matrix A,

it’s trace norm is denoted by |A| =
√

trace(ATA) . For τ > 0,

denote by C([−τ, 0];Rn) the family of continuous functions φ
from [−τ, 0] → R

n with the norm ∥φ∥ = sup−τ≤u≤0 |φ(u)|.
Let (Ω,F , {Ft}t≥0,P) be a complete probability space with a

filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is in-

creasing and right continuous while F0 contains all P-null sets).

Let B(t) = (B1(t), · · · , Bm(t))T be an m-dimensional Brownian

motion defined on the probability space. Let r(t), t ≥ 0, be a right-

continuous Markov chain on the probability space taking values in a

finite state space S = {1, 2, · · · , N} with generator Γ = (γij)N×N ,
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Here γij ≥ 0 is the transition rate from i to j if i ̸= j while

γii = −
∑

j ̸=i γij . We assume that the Markov chain r(·) is

independent of the Brownian motion B(·). Let

f : Rn ×R
n × S×R+ → R

n,

g : Rn ×R
n × S×R+ → R

n×m, D : Rn → R
n

be Borel measurable functions. Consider an n-dimensional hybrid

NSDDE

d[x(t)−D(x(t− τ))] = f(x(t), x(t− τ), r(t), t)dt

+ g(x(t), x(t− τ), r(t), t)dB(t) (2.1)

on t ≥ 0 with initial data

{x(t) : −τ ≤ t ≤ 0} = η ∈ C([−τ, 0];Rn), r(0) = i0 ∈ S. (2.2)

The well-known conditions imposed for the existence and unique-

ness of the global solution are the local Lipschitz condition and the

linear growth condition (see, e.g., [4, 9, 17]). In this paper, we need

the local Lipschitz condition. However, we impose the polynomial

growth condition instead of the linear growth condition. Let us state

these conditions as an assumption for the use of this paper.

Assumption 2.1. Assume that for any h > 0, there exists a positive

constant Kh such that

|f(x, y, i, t)− f(x̄, ȳ, i, t)| ∨ |g(x, y, i, t)− g(x̄, ȳ, i, t)|

≤ Kh(|x− x̄|+ |y − ȳ|) (2.3)

for all x, y, x̄, ȳ ∈ R
n with |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ h and all (i, t) ∈

S×R+. Assume also that there exist three constants K > 0, q1 ≥ 1
and q2 ≥ 1 such that

|f(x, y, i, t)| ≤ K(1 + |x|q1 + |y|q1),

|g(x, y, i, t)| ≤ K(1 + |x|q2 + |y|q2) (2.4)

for all (x, y, i, t) ∈ R
n×R

n×S×R+. Assume moreover that there

is a constant κ ∈ (0,
√
2

2
) such that

|D(u)−D(v)| ≤ κ|u− v| (2.5)

for all u, v ∈ R, and D(0) = 0.

Of course, if q1 = q2 = 1, then condition (2.4) is the familiar

linear growth condition. However, we emphasise once again that we

are here interested in highly nonlinear NSDDEs which have either

q1 > 1 or q2 > 1. We will refer to condition (2.4) as the polynomial

growth condition. Of course, without the linear growth condition, the

solution of the NSDDE (2.1) may explode to infinity at a finite time.

To avoid such a possible explosion, we need to impose an additional

condition in terms of Lyapunov functions. For this purpose, we need

more notation. Let C2,1(Rn × S × R+;R+) denote the family of

non-negative functions U(x, i, t) defined on (x, i, t) ∈ R
n×S×R+

which are continuously twice differentiable in x and once in t. We

now state another assumption.

Assumption 2.2. Assume that there exists a pair of functions Ū ∈
C2,1(Rn × S×R+;R+) and G ∈ C(Rn × [−τ,∞);R+), as well

as positive numbers c1, c2, c3 and q ≥ 2(q1 ∨ q2), such that

c3 < c2, |x|q ≤ Ū(x, i, t) ≤ G(x, t),

∀(x, i, t) ∈ R
n × S×R+, and

LŪ(x−D(y), y, i, t) :

= Ūt(x−D(y), i, t) + Ūx(x−D(y), i, t)f(x, y, i, t)

+
1

2
trace[gT (x, y, i, t)Ūxx(x−D(y), i, t)g(x, y, i, t)]

+

N
∑

j=1

γijŪ(x−D(y), j, t)

≤ c1 − c2G(x, t) + c3G(y, t− τ),

∀(x, y, i, t) ∈ R
n ×R

n × S×R+.

We now cite a result from [15] as a lemma for the use of this

paper.

Lemma 2.3. Under Assumptions 2.1 and 2.2, the NSDDE (2.1) with

the initial data (2.2) has the unique global solution x(t) on t ≥ −τ
and the solution has the property that sup−τ≤t<∞ E|x(t)|q <∞.

3. DELAY-DEPENDENT ASYMPTOTIC STABILITY

In this section, we will use the method of Lyapunov functionals to

investigate the delay-dependent asymptotic stability. We define two

segments x̄t := {x(t + s) : −2τ ≤ s ≤ 0} and r̄t := {r(t + s) :
−2τ ≤ s ≤ 0} for t ≥ 0. For x̄t and r̄t to be well defined for

0 ≤ t < 2τ , we set x(s) = η(−τ) for s ∈ [−2τ,−τ) and r(s) = r0
for s ∈ [−2τ, 0). The Lyapunov functional used in this paper was

defined by

V (x̄t, r̄t, t) = U(x(t)−D(x(t− τ)), r(t), t)

+ θ

∫ 0

−τ

∫ t

t+s

[

τ |f(x(v), x(v − τ), r(v), v)|2

+ |g(x(v), x(v − τ), r(v), v)|2
]

dvds

for t ≥ 0, where U ∈ C2,1(Rn × S×R+;R+) such that

lim
|x|→∞

[ inf
(t,i)∈R+×S

U(x, r, t)] = ∞, (3.1)

and θ is a positive number to be determined later while we set

f(x, y, i, s) = f(x, y, i, 0), g(x, y, i, s) = g(x, y, i, 0)

for (x, y, i, s) ∈ R
n×R

n×S×[−2τ, 0). Applying the generalized Itô

formula (see, e.g.,[5, Theorem 1.45 on page 48]) to U(x(t), r(t), t),
we get

dU(x(t)−D(x(t− τ)), r(t), t))

=
(

Ut(x(t)−D(x(t− τ)), r(t), t)

+ Ux(x(t)−D(x(t− τ)), r(t), t)f(x(t), x(t− τ), r(t), t)

+
1

2
trace[gT (x(t), x(t− τ), r(t), t)

× Uxx(x(t)−D(x(t− τ)), r(t), t)g(x(t), x(t− τ), r(t), t)]

+

N
∑

j=1

γr(t),jU(x(t)−D(x(t− τ)), r(t), t)
)

dt+ dM(t),

for t ≥ 0, where M(t) is a continuous local martingale with M(0) =
0 (see, e.g.,[5, Theorem 1.45 on page 48]). Rearranging terms gives

dU(x(t)−D(x(t− τ)), r(t), t)

=
(

Ux(x(t)−D(x(t− τ)), r(t), t)

× [f(x(t), x(t− τ), r(t), t)− f(x(t), x(t), r(t), t)]

+ LU(x(t)−D(x(t− τ)), x(t− τ), r(t), t)
)

+ dM(t),
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where the function LU : Rn ×R
n × S×R+ → R is defined by

LU(x−D(y), y, i, t)

= Ut(x−D(y), i, t) + Ux(x−D(y), i, t)f(x, x, i, t)

+
1

2
trace[gT (x, y, i, t)Uxx(x−D(y), i, t)g(x, y, i, t)]

+

N
∑

j=1

γijU(x−D(y), j, t). (3.2)

Lemma 3.1. With the notation above, V (x̄t, r̄t, t) is an Itô process

on t ≥ 0 with its Itô differential

dV (x̄t, r̄t, t) = LV (x̄t, r̄t, t)dt+ dM(t),

where M(t) is a continuous local martingale with M(0) = 0 and

LV (x̄t, r̄t, t) = Ux(x(t)−D(x(t− τ)), r(t), t)

× [f(x(t), x(t− τ), r(t), t)− f(x(t), x(t), r(t), t)]

+ LU(x(t)−D(x(t− τ)), x(t− τ), r(t), t)

+ θτ
[

τ |f(x(t), x(t− τ), r(t), t)|2 + |g(x(t), x(t− τ), r(t), t)|2
]

− θ

∫ t

t−τ

[

τ |f(x(v), x(v − τ), r(v), v)|2

+ |g(x(v), x(v − τ), r(v), v)|2
]

dv

To study the delay-dependent asymptotic stability of the NSDDE

(2.1), we need to impose a couple of new assumptions.

Assumption 3.2. Assume that there are functions U ∈ C2,1(Rn ×
S×R+;R+), U1 ∈ C(Rn × [−τ,∞);R+),W ∈ C(Rn;R+), and

positive numbers αk (k = 1, 2) and βj (j = 1, 2, 3) such that

α2 < α1 (3.3)

and

LU(x−D(y), y, i, t) + β1|Ux(x−D(y), i, t)|2

+ β2|f(x, y, i, t)|
2 + β3|g(x, y, i, t)|

2

≤ −α1U1(x, t) + α2U1(y, t− τ)−W (x−D(y)), (3.4)

for all (x, y, i, t) ∈ R
n × R

n × S × R+. Furthermore W has the

property

W (x) = 0 if and only if x = 0. (3.5)

Assumption 3.3. Assume that there exists a positive number β4 such

that

|f(x, x, i, t)− f(x, y, i, t)| ≤ β4|x− y| (3.6)

for all (x, y, i, t) ∈ R
n ×R

n × S×R+.

We can see (3.4) also implies

LU(x−D(y), y, i, t)

≤ −α1U1(x, t) + α2U1(y, t− τ)−W (x−D(y)).

Rearranging hybrid NSDDE (2.1) as

d[x(t)−D(x(t− τ))]

= f(x(t), x(t), r(t), t)dt+ g(x(t), x(t− τ), r(t), t)dB(t)

+
[

f(x(t), x(t− τ), r(t), t)− f(x(t), x(t), r(t), t)
]

dt,

we see that NSDDE (2.1) is a perturbed system of the stable NSDDE

d[X(t)−D(X(t− τ))]

= f(X(t), X(t), r(t), t)dt+ g(X(t), X(t− τ), r(t), t)dB(t).

If the time delay is not too large, then the difference f(x(t), x(t −
τ), r(t), t)−f(x(t), x(t), r(t), t) would be small so that x(t) should

be close to X(t).

Theorem 3.4. Let Assumptions 2.1, 2.2, 3.2 and 3.3 hold. Assume

also that

τ ≤
(1− 2κ2)β1β3

β2
4

∧

√

(1− 2κ2)β1β2

β4
. (3.7)

Then for any given initial data (2.2), the solution of the NSDDE (2.1)

has the properties that
∫ ∞

0

EU1(x(t), t)dt <∞, (3.8)

sup
0≤t<∞

EU(x(t)−D(x(t− τ)), r(t), t) <∞. (3.9)

Proof: Fix the initial data η ∈ C([−τ, 0];Rn) and r0 ∈ S

arbitrarily. Let k0 > 0 be a sufficiently large integer such that

∥η∥ := sup−τ≤s≤0 η(s) < k0. For each integer k > k0, define

the stopping time

σk = inf{t ≥ 0 : |x(t)−D(x(t− τ))| ≥ k},

where throughout this paper we set inf ∅ = ∞ (as usual ∅ denotes

the empty set). It is easy to see that σk is increasing as k → ∞ and

limk→∞ σk = ∞ a.s. By the generalized Itô formula we obtain from

Lemma 3.1 that

EV (x̄t∧σk
, r̄t∧σk

, t ∧ σk)

= V (x̄0, r̄0, 0) + E

∫ t∧σk

0

LV (x̄s, r̄s, s)ds (3.10)

for any t ≥ 0 and k ≥ k0. Let θ = β2
4/(β1(1−2κ2)). By Assumption

3.2, it is easy to see that

Ux(x(t)−D(x(t− τ)), r(t), t)

× [f(x(t), x(t− τ), r(t), t)− f(x(t), x(t), r(t), t)]

≤ β1|Ux(x(t)−D(x(t− τ)), r(t), t)|2 +
β2
4

4β1
|x(t)− x(t− τ)|2.

By condition (3.7), we also have

θτ2 ≤ β2 and θτ ≤ β3.

It then follows from Lemma 3.1 that

LV (x̄s, r̄s, s) ≤ LU(x(s)−D(x(s− τ)), x(s− τ), r(s), s)

+ β1|Ux(x(s)−D(x(s− τ)), r(s), s)|2

+ β2|f(x(s), x(s− τ), r(s), s)|2

+ β3|g(x(s), x(s− τ), r(s), s)|2 +
β2
4

4β1
|x(s)− x(s− τ)|2

−
β2
4

β1(1− 2κ2)

∫ s

s−τ

[

τ |f(x(v), x(v − τ), r(v), v)|2

+ |g(x(v), x(v − τ), r(v), v)|2
]

dv.

By Assumption 3.2, we then have

LV (x̄s, r̄s, s) ≤ −α1U1(x(s), s) + α2U1(x(s− τ), s− τ)

−W (x(s)−D(x(s− τ))) +
β2
4

4β1
|x(s)− x(s− τ)|2

−
β2
4

β1(1− 2κ2)

∫ s

s−τ

[

τ |f(x(v), x(v − τ), r(v), v)|2

+ |g(x(v), x(v − τ), r(v), v)|2
]

dv.

Substituting this into (3.10) implies

EV (x̄t∧σk
,r̄t∧σk

, t ∧ σk)

≤ V (x̄0, r̄0, 0) +H1 −H2 +H3 −H4, (3.11)
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where

H1 = E

∫ t∧σk

0

[

− α1U1(x(s), s) + α2U1(x(s− τ), s− τ)
]

ds,

H2 = E

∫ t∧σk

0

W (x(s)−D(x(s− τ)))ds,

H3 =
β2
4

4β1
E

∫ t∧σk

0

|x(s)− x(s− τ)|2ds,

H4 =
β2
4

β1(1− 2κ2)
E

∫ t∧σk

0

∫ s

s−τ

[

τ |f(x(v), x(v − τ), r(v), v)|2

+ |g(x(v), x(v − τ), r(v), v)|2
]

dvds.

Noting that

∫ t∧σk

0

U1(x(s− τ), s− τ)ds ≤

∫ t∧σk

−τ

U1(x(v), v)dv,

we have

H1 ≤ α2

∫ 0

−τ

U1(η(s), s)ds− α3E

∫ t∧σk

0

U1(x(s), s)ds,

where α3 = α1 − α2 > 0 by condition (3.3). Substituting this into

(3.11) yields

α3E

∫ t∧σk

0

U1(x(s), s)ds ≤ C1 −H2 +H3 −H4, (3.12)

where C1 is a constant defined by

C1 = V (x̄0, r̄0, 0) + α2

∫ 0

−τ

U1(η(s), s)ds.

Applying the classical Fatou lemma and let k → ∞ in (3.12) to

obtain

α3E

∫ t

0

U1(x(s), s)ds ≤ C1 − H̄2 + H̄3 − H̄4, (3.13)

where

H̄2 = E

∫ t

0

W (x(s)−D(x(s− τ)))ds,

H̄3 =
β2
4

4β1
E

∫ t

0

|x(s)− x(s− τ)|2ds,

H̄4 =
β2
4

β1(1− 2κ2)
E

∫ t

0

∫ s

s−τ

[

τ |f(x(v), x(v − τ), r(v), v)|2

+ |g(x(v), x(v − τ), r(v), v)|2
]

dvds.

Noting that W ∈ C(Rn;R+), (3.13) implies

α3E

∫ t

0

U1(x(s), s)ds ≤ C1 + H̄3 − H̄4. (3.14)

By the well-known Fubini theorem, we have

H̄3 =
β2
4

4β1

∫ t

0

E|x(s)− x(s− τ)|2ds.

For t ∈ [0, τ ], we have

H̄3 ≤
β2
4

2β1

∫ τ

0

(E|x(s)|2 + E|x(s− τ)|2)ds

≤
τβ2

4

β1

(

sup
−τ≤v≤τ

E|x(v)|2
)

=: C2,

where, as usual, =: means ‘denoted by’. For t > τ , we have

H̄3 ≤ C2 +
β2
4

4β1

∫ t

τ

E|x(s)− x(s− τ)|2ds.

Noting that

|x(s)− x(s− τ)| ≤ |[x(s)−D(x(s− τ))]

− [x(s− τ)−D(x(s− 2τ))]|+ |D(x(s− τ))−D(x(s− 2τ))|

≤ κ|x(s− τ)− x(s− 2τ)|+ |

∫ s

s−τ

f(x(u), x(u− τ), r(u), u)du

+

∫ s

s−τ

g(x(u), x(u− τ), r(u), u)dB(u)|.

Therefore, we have

E|x(s)− x(s− τ)|2 ≤ 2κ2
E|x(s− τ)− x(s− 2τ)|2

+ 2E|

∫ s

s−τ

f(x(u), x(u− τ), r(u), u)du

+

∫ s

s−τ

g(x(u), x(u− τ), r(u), u)dB(u)|2

≤ 2κ2
E|x(s− τ)− x(s− 2τ)|2

+ 4E

∫ s

s−τ

[τ |f(x(u), x(u− τ), r(u), u)|2

+ |g(x(u), x(u− τ), r(u), u)|2]du,

which shows
∫ t

τ

E|x(s)− x(s− τ)|2ds ≤ 2κ2

∫ t

τ

E|x(s− τ)− x(s− 2τ)|2ds

+ 4E

∫ t

τ

∫ s

s−τ

[τ |f(x(u), x(u− τ), r(u), u)|2

+ |g(x(u), x(u− τ), r(u), u)|2]duds

≤ 2κ2

∫ t

0

E|x(s)− x(s− τ)|2ds

+ 4E

∫ t

τ

∫ s

s−τ

[τ |f(x(u), x(u− τ), r(u), u)|2

+ |g(x(u), x(u− τ), r(u), u)|2]duds.

Noting that 0 < κ <
√

2
2

, it follows that

∫ t

τ

E|x(s)− x(s− τ)|2ds ≤
2κ2

1− 2κ2

∫ τ

0

E|x(s)− x(s− τ)|2ds

+
4

1− 2κ2
E

∫ t

τ

∫ s

s−τ

[τ |f(x(u), x(u− τ), r(u), u)|2

+ |g(x(u), x(u− τ), r(u), u)|2]duds.

Hence

H̄3 ≤ C2 +
2κ2τβ2

4

(1− 2κ2)β1
sup

−τ≤v≤τ

E|x(v)|2 + H̄4

= C3 + H̄4, (3.15)

where C3 = C2 +
2κ2τβ2

4

(1−2κ2)β1
sup−τ≤v≤τ E|x(v)|

2. Substituting this

into (3.14) yields α3E
∫ t

0
U1(x(s), s)ds ≤ C1 +C3. Letting t→ ∞

gives

E

∫ ∞

0

U1(x(s), s)ds ≤
1

α3
(C1 + C3). (3.16)

Similarly, we see from (3.11) that

EU
(

x(t ∧ σk)−D(x(t ∧ σk − τ)), r(t ∧ σk), t ∧ σk

)

≤ C1 −H2 +H3 −H4. (3.17)

Letting k → ∞ we get

EU(x(t)−D(x(t− τ)), r(t), t) ≤ C1 + C3 <∞,
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which shows

sup
0≤t<∞

EU(x(t)−D(x(t− τ)), r(t), t) <∞. (3.18)

Thus the proof is complete. 2

We have established delay-dependent stability criteria for highly

nonlinear NSDDEs even though the condition given by (3.7) is

sufficient rather than necessary. The following corollary gives a

criterion on H∞-stability.

Corollary 3.5. Let the conditions of Theorem 3.4 hold. If there

moreover exists a pair of positive constants c and p such that

c|x|p ≤ U1(x, t), ∀(x, t) ∈ R
n ×R+,

then for any given initial data (2.2), the solution of the NSDDE (2.1)

satisfies
∫ ∞

0

E|x(t)|pdt <∞. (3.19)

That is, the NSDDE (2.1) is H∞-stable in Lp.

This corollary follows from Theorem 3.4 obviously. However, it

does not follow from (3.19) that limt→∞ E|x(t)|p = 0.

Theorem 3.6. Let the conditions of Corollary 3.5 hold. If, moreover,

p ≥ 2 and (p+ q1 − 1) ∨ (p+ 2q2 − 2) ≤ q,

then the solution of the NSDDE (2.1) satisfies

lim
t→∞

E|x(t)|p = 0

for any initial data (2.2). That is, the NSDDE (2.1) is asymptotically

stable in Lp.

Proof: Again, fix the initial data (2.2) arbitrarily. For any 0 ≤ t1 <
t2 <∞, by the Itô formula, we get

E|x(t2)−D(x(t2 − τ))|p − E|x(t1)−D(x(t1 − τ))|p

= E

∫ t2

t1

(

p|x(t)−D(x(t− τ))|p−2(x(t)−D(x(t− τ)))T

× f(x(t), x(t− τ), r(t), t)

+
p

2
|x(t)−D(x(t− τ))|p−2|g(x(t), x(t− τ), r(t), t)|2

+
p(p− 2)

2
|x(t)−D(x(t− τ))|p−4|(x(t)−D(x(t− τ)))T

× g(x(t), x(t− τ), r(t), t)|2
)

dt.

This implies
∣

∣E|x(t2)−D(x(t2 − τ))|p − E|x(t1)−D(x(t1 − τ))|p
∣

∣

≤ E

∫ t2

t1

(

p|x(t)−D(x(t− τ))|p−1|f(x(t), x(t− τ), r(t), t)|

+
p(p− 1)

2
|x(t)−D(x(t− τ))|p−2|g(x(t), x(t− τ), r(t), t)|2

)

dt

≤ E

∫ t2

t1

(

pK|x(t)−D(x(t− τ))|p−1[1 + |x(t)|q1 + |x(t− τ)|q1
]

+
3p(p− 1)K2

2
|x(t)−D(x(t− τ))|p−2

×
[

1 + |x(t)|2q2 + |x(t− τ)|2q2
]

)

dt.

By inequalities

|x(t)−D(x(t− τ))|p ≤ 2p−1(|x(t)|p + |D(x(t− τ))|p)

≤ 2p−1(|x(t)|p + κp|x(t− τ)|p),

|x(t)|p−1|x(t− τ)|q1 ≤ |x(t)|p+q1−1 + |x(t− τ)|p+q1−1,

|x(t)|p−1 ≤ 1 + |x(t)|q.

We can obtain

∣

∣E|x(t2)−D(x(t2 − τ))|p−E|x(t1)−D(x(t1 − τ))|p
∣

∣

≤ C4(t2 − t1),

where

C4 = 2p+1[pK + 3p(p− 1)K2/2](1 + sup
−τ≤t<∞

E|x(t)|q) <∞.

Thus we have E|x(t)−D(x(t− τ))|p is uniformly continuous in t
on R+. By (3.19) we have

∫ ∞

0

E|x(t)−D(x(t− τ))|pdt

≤

∫ ∞

0

2p−1
E

(

|x(t)|p + κp|x(t− τ)|p
)

dt

≤ 2p−1(1 + κp)

∫ ∞

0

E|x(t)|pdt+ 2p−1κp∥η∥ <∞,

so we obtain limt→∞ E|x(t) − D(x(t − τ))|p = 0. Applying the

inequalities (2.5) and

(a+ b)p ≤ (1 + ϵ)p−1(ap + ϵ1−pbp), ∀a, b ≥ 0, p ≥ 1, ϵ > 0,

we have

E|x(t)|p ≤ E[|x(t)−D(x(t− τ))|+ |D(x(t− τ))|]p

≤ E[(1 + ϵ)p−1(|x(t)−D(x(t− τ))|p + ϵ1−pκp|x(t− τ)|p)].

Setting ϵ = κ/(1− κ), we have

E|x(t)|p ≤ (
1

1− κ
)p−1

E|x(t)−D(x(t− τ))|p + κE|x(t− τ)|p,

letting t→ ∞, we have

lim
t→∞

supE|x(t)|p ≤ κ lim
t→∞

supE|x(t)|p a.s.

This, together with the Lemma 2.3, yields limt→∞ E|x(t)|p = 0.
Thus the proof is complete. 2

Remark 3.7. In order to obtain the assertion limt→∞ E|x(t)|p = 0,

some new mathematical techniques have been applied compared with

[16]. In general it is not possible to imply limt→∞ U1(x(t), t) =
0 a.s. from (3.8) and hence get limt→∞ |x(t)| = 0 a.s. To make

this possible, we need some additional conditions as described in the

following theorem. It should be pointed out that there is no such a

result in [16].

Theorem 3.8. Let the conditions of Theorem 3.4 hold. If there

moreover exists pair of positive constants c and p such that

c|x|p ≤ U1(x, t) and (q1 + 1) ∨ (2q2) ≤ p. (3.20)

Then for any given initial date η in (2.2), the solution obeys that

lim
t→∞

x(t) = 0 a.s. (3.21)

Proof: Again fix the initial data η in (2.2) arbitrarily. From (3.13)

we can show that
∫ ∞

0

EW (x(t)−D(x(t− τ)))dt <∞.

By the Fubini theorem we have

C5 := E

∫ ∞

0

W (x(t)−D(x(t− τ)))dt <∞, (3.22)

which implies
∫ ∞

0

W (x(t)−D(x(t− τ)))dt <∞ a.s. (3.23)
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Setting z(t) = x(t) − D(x(t − τ)) for t ≥ 0 with σk := inf{t ≥
0 : |z(t)| = k}. We observe from (3.23) that

lim
t→∞

infW (z(t)) = 0 a.s. (3.24)

By Corollary 3.5, we have C6 :=
∫∞
0

E|x(t)|pdt < ∞. Moreover,

in the same way as Theorem 3.6 was proved, we can show that

E|z(T ∧ σk)|
p ≤ C7 + C8

∫ ∞

0

E|x(t)|pdt

= C7 + C6C8 := C, ∀T > 0,

where C7 = 2p−1κp∥η∥, C8 = 2p−1(1 + κp). This implies

kpP(σk ≤ T ) ≤ C.

Letting T → ∞ yields

kpP(σk <∞) ≤ C. (3.25)

We now claim that

lim
t→∞

W (z(t)) = 0 a.s. (3.26)

In fact, if this is false, then we can find a number ε ∈ (0, 1/4) such

that

P(Ω1) ≥ 4ε, (3.27)

where Ω1 = {limt→∞ supW (z(t)) > 2ε}. Recalling (3.25), we can

find an integer m sufficiently large for P(σm <∞) ≤ ε. This means

that

P (Ω2) ≥ 1− ε, (3.28)

where Ω2 := {|z(t)| < m for ∀t ≥ −τ}. By (3.27) and (3.28) we

get

P(Ω1 ∩ Ω2) ≥ P(Ω1)− P(Ωc
2) ≥ 3ε, (3.29)

where Ωc
2 is the complement of Ω2. Let us now define the stopped

process ζ(t) = z(t∧σm) for t ≥ −τ . Clearly, ζ(t) is a bounded Itô

process with its differential

dζ(t) = ϕ(t)dt+ ψ(t)dB(t), (3.30)

where

ϕ(t) = f(x(t), x(t− τ), t, r(t))I[0,σm)(t),

ψ(t) = g(x(t), x(t− τ), t, r(t))I[0,σm)(t).

For 0 ≤ t < σm, by (2.5) we have

|x(t)| ≤ |x(t)−D(x(t− τ))|+ |D(x(t− τ))| ≤ m+ κ|x(t− τ)|,

which shows

sup
0≤t<σm

|x(t)| ≤ m+ κ∥η∥+ κ sup
0≤t<σm

|x(t)|.

Therefore, we have

sup
−τ≤t<σm

|x(t)| ≤

(

1

1− κ
(m+ κ∥η∥)

)

∨ ∥η∥. (3.31)

Recalling the polynomial growth condition (2.4), from (3.31) we see

that ϕ(t) and ψ(t) are bounded processes, say

|ϕ(t)| ∨ |ψ(t)| ≤ C9 a.s. (3.32)

for all t ≥ 0 and some C9 > 0. Moreover, we also observe that

|ζ(t)| ≤ m for all t ≥ −τ . Define a sequence of stopping times

ρ1 = inf{t ≥ 0 :W (ζ(t)) ≥ 2ε},

ρ2j = inf{t ≥ ρ2j−1 :W (ζ(t)) ≤ ε}, j = 1, 2, · · · ,

ρ2j+1 = inf{t ≥ ρ2j :W (ζ(t)) ≥ 2ε}, j = 1, 2, · · · .

Note from (3.24) and the definition of Ω1 and Ω2, we have

Ω1 ∩ Ω2 ⊂ {σm = ∞}
∩

(

∩∞
j=1 {ρj <∞}

)

. (3.33)

We also note that for all ω ∈ Ω1 ∩ Ω2, and j ≥ 1,

W (ζ(ρ2j−1))−W (ζ(ρ2j)) = ε and

W (ζ(t)) ≥ ε when t ∈ [ρ2j−1, ρ2j ]. (3.34)

Since W (·) is uniformly continuous in the close ball S̄m = {x ∈
R

n : |x| ≤ m}. We can choose δ = δ(ε) > 0 small sufficiently for

which

|W (ζ1)−W (ζ2)| < ε, ζ1, ζ2 ∈ S̄m, with |ζ1 − ζ2| < δ. (3.35)

We highlight that for ω ∈ Ω1∩Ω2, if |ζ(ρ2j−1+u)−ζ(ρ2j−1)| < δ
for all u ∈ [0, λ] and some λ > 0, then ρ2j − ρ2j−1 ≥ λ. Choose

a sufficiently small positive number λ and then a sufficiently large

positive integer j0 such that

2C2
9λ(λ+ 4) ≤ εδ2 and C5 < ε2λj0. (3.36)

By (3.29) and (3.33), we can further choose a sufficiently large

number T for

P(ρ2j0 ≤ T ) ≥ 2ε. (3.37)

In particular, if ρ2j0 ≤ T , then |ζ(ρ2j0)| < m, and hence ρ2j0 < σm

by the definition of ζ(t). We hence have

ζ(t, ω) = z(t, ω) for all 0 ≤ t ≤ ρ2j0 and ω ∈ {ρ2j0 ≤ T}.

(3.38)

By the Hölder inequality and the Burkholder-Davis-Gundy inequality

(see, e.g.,[4, Theorem 1.7.3 on page 40]), we can have that, for 1 ≤
j ≤ j0,

E

(

sup
0≤t≤λ

|ζ(ρ2j−1 ∧ T + t)− ζ(ρ2j−1 ∧ T )|
2
)

≤2λE

∫ ρ2j−1∧T+λ

ρ2j−1∧T

|ϕ(s)|2ds+ 8E

∫ ρ2j−1∧T+λ

ρ2j−1∧T

|ψ(s)|2ds
)

≤2C2
9λ(λ+ 4).

This, together with (3.36) and Markov inequality, we can obtain that

P

(

sup
0≤t≤λ

|ζ(ρ2j−1 ∧ T + t)− ζ(ρ2j−1 ∧ T )| ≥ δ
)

≤ ε.

Noting that ρ2j−1 ≤ T if ρ2j0 ≤ T , we can derive from (3.37) and

the above inequality that

P

(

{ρ2j0 ≤ T} ∩
{

sup
0≤t≤λ

|ζ(ρ2j−1 + t)− ζ(ρ2j−1)| < δ
})

= P(ρ2j0 ≤ T )

−P

(

{ρ2j0 ≤ T} ∩
{

sup
0≤t≤λ

|ζ(ρ2j−1 + t)− ζ(ρ2j−1)| ≥ δ
})

≥ P(ρ2j0 ≤ T )−P

(

sup
0≤t≤λ

|ζ(ρ2j−1 + t)− ζ(ρ2j−1)| ≥ δ
)

≥ ε.

This, together with (3.35) , implies easily that

P

(

{ρ2j0 ≤ T} ∩ {ρ2j − ρ2j−1 ≥ λ}
)

≥ ε. (3.39)

By (3.22), (3.38) and (3.39), we derive

C5 ≥

j0
∑

j=1

E

(

I{ρ2j0≤T}

∫ ρ2j

ρ2j−1

W (z(t))dt
)

≥ ε

j0
∑

j=1

E

(

I{ρ2j0≤T}(ρ2j − ρ2j−1)
)

≥ ελ

j0
∑

j=1

P

(

{ρ2j0 ≤ T} ∩ {ρ2j − ρ2j−1 ≥ λ}
)

≥ ε2λj0.
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This contradicts the second inequality in (3.36). Thus (3.26) must

hold.

We now claim limt→∞ z(t) = 0 a.s. If this were not true, then

ε1 := P(Ω3) > 0, where Ω3 = {lim supt→∞ |z(t)| > 0}. On the

other hand, by (3.25), we can find a positive integer m0 large enough

for P(σm0
<∞) ≤ 0.5ε1. Let Ω4 = {σm0

= ∞}. Then

P(Ω3 ∩ Ω4) ≥ P(Ω3)−P(Ωc
4) ≥ 0.5ε1.

For any ω ∈ Ω3 ∩ Ω4, z(t, ω) is bounded on t ∈ R+. We can then

find a sequence {tj}j≥1 such that tj → ∞ and z(tj , ω) → z̄(ω) ̸= 0
as j → ∞. This, together with the continuity of W , implies

lim
j→∞

W (z(tj , ω)) =W (z̄(ω)) > 0.

Consequently, we have

lim sup
t→∞

W (z(t, ω)) > 0 for all ω ∈ Ω3 ∩ Ω4.

But this contradicts (3.26). We therefore must have the assertion

limt→∞ z(t) = 0 a.s. Hence we obtain

sup
0≤t<∞

|z(t)| <∞ a.s. (3.40)

Finally, let us show our assertion (3.21). By (2.5), we have

|x(t)| ≤ |x(t)−D(x− τ)|+ |D(x− τ)|

≤ |z(t)|+ κ|x(t− τ)| a.s. (3.41)

This implies, for any T > 0,

sup
0≤t≤T

|x(t)| ≤ sup
0≤t≤T

|z(t)|+ κ∥η∥+ κ sup
0≤t≤T

|x(t)| a.s.

Hence we deduce

sup
0≤t≤T

|x(t)| ≤
1

1− κ

(

sup
0≤t≤T

|z(t)|+ κ∥η∥
)

a.s.

Letting T → ∞ and using (3.40) we obtain that

sup
0≤t<∞

|x(t)| <∞ a.s. (3.42)

By (3.41), letting t → ∞, using limt→∞ z(t) = 0 a.s., we obtain

that

lim sup
t→∞

|x(t)| ≤ κ lim sup
t→∞

|x(t)| a.s.

For κ ∈ (0,
√

2
2
), together with (3.42), we must have

lim
t→∞

|x(t)| = 0 a.s.

which is the required assertion (3.21). The proof is complete. 2

Remark 3.9. Although the adopted methods and skills borrow from

[16], the existence of the neutral term D(x(t−τ)) essentially changes

the problem, and a significant amount of new mathematics has been

developed to deal with the difficulties due to the neutral term.

4. CONCLUSION

Stability of NSDDEs have been studied for many years, most of the

results in this area require that the coefficients of equations are linear

or nonlinear but bounded by linear functions. In this paper, without

the linear growth condition, we have established delay-dependent

stability criteria for highly nonlinear NSDDEs by the method of

Lyapunov function. The H∞ stability in Lp, asymptotic stability in

Lp and almost surely asymptotic stability are discussed in this paper.

Although the condition imposed in (3.6) covers many NSDDEs, this

condition may exclude some highly nonlinear hybrid NSDDEs, in

our future work we will remove this restrictive condition and give a

generalised result to include a much wider class of hybrid NSDDEs.

ACKNOWLEDGEMENTS

The authors would like to thank the editor and reviewers for their

very helpful comments and suggestions. This research was supported

in part by the Natural Science Foundation of China (No. 71571001),

the Promoting Plan of Higher Education of Anhui Province (T-

SKJ2016B11, TSKJ2015B24), the Royal Society (WM160014, Royal

Society Wolfson Research Merit Award), the Royal Society and

the Newton Fund (NA160317, Royal Society-Newton Advanced

Fellowship) and the EPSRC (EP/K503174/1).

REFERENCES

[1] W. Chen, W. Zheng, Y. Shen, Delay-dependent stochastic sta-

bility and H∞-control of uncertain neutral stochastic systems

with time delay, IEEE. T. Automat. Contr. 54(2009)1660-1667.

[2] M. Frederic, Stability analysis of time-varying neutral time-

delay systems, IEEE. T. Automat. Contr. 60(2016)540-546.

[3] V. B. Kolmanovskii, A. D. Myshkis, Applied theory of function-

al differential equations, Kluwer Academic Pub., Amsterdam,

1992.

[4] X. Mao, Stochastic differential equations and their applications,

2nd Edition, Horwood Pub., Chichester, 2007.

[5] X. Mao, C. Yuan, Stochastic differential equations with marko-

vian switching, Imperial College Press, London, 2006.

[6] H. Chen, P. Shi, C. Lim, P. Hu, Exponential stability for neutral

stochastic Markov systems with time-varying delay and its

applications, IEEE. T. Cybernetics. 46(2016)1350-1362.

[7] Q. Luo, X. Mao, Y. Shen, New criteria on exponential stability

of neutral stochastic differential delay equations, Syst. Control.

Lett. 55(2006)826-834.

[8] X. Mao, Y. Shen, C. Yuan, Almost surely asymptotic stability

of neutral stochastic differential delay equations with Markovian

switching, Stoch. Proc. Appl. 118(2008)1385-1406.

[9] X. Mao, Exponential stability in mean square of neutral stochas-

tic differential equations, Syst. Control. Lett. 26(1995)245-251.
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