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 

Abstract—We report a compact and efficient picosecond 

diamond Raman laser at 573 nm wavelength. The laser consists of 

a 0.5 mm thick single-crystal synthetic diamond coated to form a 

plane–plane laser resonator, and pumped at 532 nm by a 

frequency-doubled Q-switched microchip laser system. The pump 

delivers 85 ps pulses at 100 kHz repetition rate at a maximum 

average power of ~500 mW. We demonstrate 1st Stokes emission 

from the diamond Raman laser with maximum power of 175 mW, 

corresponding to a conversion efficiency of 47% and a pulse 

duration of 71 ps. Substantial pulse shortening is obtained by 

proper adjustment of the pump spot diameter on the diamond 

sample. A minimum pulse duration of 39 ps is reported for a 

conversion efficiency of 36% and 150 mW output power. The 

simplicity of the architecture makes the system highly appealing 

as a yellow picosecond laser source. 

Index Terms—Raman lasers, Diamond Raman lasers, Q-

switched lasers, Pulsed lasers, Visible lasers.  

I. INTRODUCTION 

PPLICATIONS in fluorescence lifetime imaging, two-

photon microscopy and spectroscopy often require 

specialized excitation sources [1] with stringent requirements 

on wavelength and pulse duration. One method of accessing 

hard-to-reach wavelengths is to use ubiquitous solid-state 

sources to pump Raman lasers, with diamond being an excellent 

Raman laser material due to its unrivalled thermo-optic 

properties [2] and large Raman shift. The latter gives access to 

yellow-orange spectral range under green pumping, which is of 

interest in ophthalmology (retinal vascular disease, 

photocoagulation), astronomy (laser guide stars), and 

dermatology (vascular lesions, pigmentation, acne). 

While Raman conversion of CW and Q-switched lasers has 

become routine [3–7], extending the wavelength coverage of 

ultrafast (pico- and femtosecond) sources is significantly more 

complex, often requiring synchronous pumping of external 

cavity Raman lasers to achieve high (>30%) conversion 

efficiencies [8–11]. Mode-locked pump sources used in these 

Raman laser experiments are also rather complex. They usually 

emit at the repetition rates of several MHz and typical pulse 
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energies vary from sub-nJ (for fs lasers) to sub-µJ (for ps 

lasers). On the other hand, power amplification (PA) of master 

oscillation (MO) from passively Q-switched microchip lasers 

emitting sub-ns pulses at several kHz repetition rate could often 

be a simpler alternative to mode-locked lasers. 

In this report such a MOPA is used as a pump source. The 

532 nm MOPA produced 85 ps pulses with up to 500 mW of 

average power at a repetition rate of 100 kHz with M2 of <1.88. 

The MO was a Q-switched 100 µm thick Nd:YVO4 single-

frequency microchip laser emitting 10 mW of average power 

and 100 ps pulses at 1064 nm. The signal was amplified to >1 

W average power with a Nd:YVO4 bulk power amplifier and 

frequency-doubled with a 10 mm long LBO crystal. 

Exploiting the high Raman gain in diamond [12, 13], it has 

been previously demonstrated that near quantum limited 

conversion efficiencies of 532 nm nanosecond pulses can be 

achieved in a 2-mm long, monolithic Raman cavity [3]. Such 

resonators should also be short enough to efficiently convert 

sub-100 ps pulses by allowing several round trips of the intra-

cavity Raman field per pump pulse. Here 85 ps pump pulses are 

converted to 1st Stokes, 573 nm, emission with conversion 

efficiency of 36–52% and pulse duration of 39–76 ps in a 

0.5 mm long plane–plane monolithic diamond Raman laser. 

II. EXPERIMENTAL AND RESULTS 

A single crystal synthetic diamond sample with 4 mm 

diameter and 0.5 mm thickness was employed. The diamond 

was fabricated by Element 6 Ltd. using chemical vapor 

deposition, and had a birefringence of <1×10-5 and specified 

absorption coefficient of <0.01 cm-1 at 1064 nm (it is ~2.5 times 

higher at ~570 nm [12]). Laser mirror coatings were deposited 

on the diamond to form a plane–plane monolithic diamond 

Raman laser cavity. The input coupler provided ~82% 

transmission for the pump at 532 nm, and high reflectivity (HR) 

for the Raman laser at 573 nm. The output coupler (OC) was 

highly reflective at 532 nm to enable a double pass of the pump, 

and partially reflective at 573 nm. A schematic of the setup and 
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coating details are given in Fig. 1. Pump focusing optics of 100, 

75, and 50 mm focal length were used, giving calculated pump 

diameters of ~62 µm, ~47 µm, and ~31 µm, respectively. 

The output characteristics of the Raman laser (Fig. 2) were 

measured as a function of incident 532 nm pump power using a 

3W thermal power meter (Ophir Optronics). The highest 1st 

Stokes output power of 179 mW with conversion efficiency of 

47% was achieved with the f=75 mm lens and pump spot 

diameter of ~47 µm. This conversion efficiency to the 1st Stokes 

is higher than that reported for 1.5 ns pump pulses in plane-

plane configuration (38%) [3]. A slight wedge between the 

diamond surfaces (which adds losses), differences in coatings 

and the presence of the 2nd Stokes at high pump powers are the 

main limiting factors in conversion efficiency. By scaling up 

the pump spot size (~62 µm) with a  f=100 mm lens, 150 mW 

of 573 nm output power was achieved with 36% conversion 

efficiency and reduced pulse duration of 39 ps. Up to 16.4 mW 

of 2nd Stokes average power was obtained in the forward 

direction with the f=50 mm focusing lens. The 1st anti-Stokes 

line (497 nm) was present at all pump spot sizes studied; 

however, the maximum average power was only 2 mW in the 

forward direction. With the f=50 mm focusing lens some tens 

to hundreds of µW of 3rd Stokes (676 nm), and 2nd anti-Stokes 

(466 nm) were observed at high pump powers.  

The autocorrelation traces (Fig. 3) were measured with a 

Femtochrome FR-103WS autocorrelator and corresponding 

pulse durations were calculated using Gaussian fits. The Raman 

pulse duration remained nearly constant for f=100 mm (36–39 

ps) and f=75 mm (65–76 ps) pump focusing lenses, over the 

range of pump powers used. With the f=50 mm lens, the 

appearance of significant 2nd Stokes started to deplete the 1st 

Stokes, causing the pulse shape to distort (Fig. 3). 

The typical standard deviation of the average output power 

fluctuations of the 1st Stokes was <1% over 10 minutes, a value 

similar to the pump, measured at ~100 mW output power. 

Pulse-to-pulse energy fluctuations (measured using a 10 MHz 

Si-photodiode) for the 1st Stokes were <8% at 160 mW output 

power, and much larger for 2nd Stokes and 1st anti-Stokes. The 

pulse trains measured with the f=50 mm lens are shown in Fig. 

4. The output spectra (Fig. 5) were measured with a Yokogawa 

AQ6373 spectrum analyzer (0.02 nm resolution). Spectral 

widths of the Raman output were approximately 0.035 nm, 

slightly broader than the 0.026 nm spectral width of the pump. 

The secondary peaks in the spectra (Fig. 5 (b,c)) are separated 

by ~2.5 cm-1 and may be due to Brillouin scattering in diamond 

[14]. The photograph in Fig. 5(f) was taken when the diamond 

was tilted by ~2° with respect to the incoming pump beam to 

better satisfy the phase-matching conditions required for 

efficient 2nd anti-Stokes conversion [15]. The 1st Stokes output 

beam consisted of several concentric rings, similar to results in 

[3]. For that reason no reliable measurements of the M2 factor 

of the beam could be made. 

Preliminary analysis indicates that Raman gain-guiding may 

be the major mechanism determining the transverse mode in a 

plane–plane diamond Raman laser [16], particularly given that 

the minimum focal length of the thermal lens was calculated to 

be ~17 m. Further study is currently underway. 

The rate equations for the extra-cavity Raman laser 

 
 
Fig. 1.  A schematic presentation of the diamond Raman laser. 

 
 

Fig. 2.  Top: 1st Stokes output characteristics Middle: Raman conversion 
efficiency from 532 nm to 573 nm. Bottom: 620 nm output power. All given 

as a function of incident 532 nm pump power. Pump focusing lenses f = 50 

mm, f = 75 mm and f = 100 mm. Simulations: solid and dashed lines. 

 
 
Fig. 3. Autocorrelation traces of 1st Stokes lines obtained with pump focusing 

lenses having focal distances of 100 mm, 75 mm and 50 mm. Gaussian fits 

made to highest power traces. 
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introduced in [17] were used to simulate the experimental 

results. The model does not take into account anti-Stokes 

generation, or overlap of the Raman modes. Therefore, the 

simulations were carried out only for lenses with f=75 and 

100 mm, where the experimentally observed effects of anti-

Stokes generation are less pronounced. Simulated output 

powers and conversion efficiencies include total (backward and 

forward) Raman components. The fitting parameters in the 

modeling were the effective Raman gain (geff) and a 

dimensionless spontaneous scattering factor (ksp) for the 1st and 

2nd Stokes. Effective Raman gain is determined by the overlap 

factor between the pump and the Raman modes, and by the 

linewidth of the pump emission [12, 18]. The results of the 

modelling presented in Figs. 2 and 6 are for the following 

parameters: geff1=26 cm/GW, geff2=8 cm/GW, ksp1=3×10-3 and 

ksp2=10-8. These effective gain values indicate that the “Raman 

gain reduction factors” [19] are 0.6 and 0.2 for the 1st and the 

2nd Stokes, assuming Raman gain values at 532 nm and 573 

nm of ~40 and 39 cm/GW, correspondingly [12]. Higher gain 

reduction factor for the Raman gain at 573 nm could be due to 

broader linewidth. It should be noted that experimental data in 

Fig. 2 do not account for the possible backward propagating 2nd 

Stokes power. The simulated 1st Stokes pulse duration (~55 ps) 

does not change significantly with the pump power, in 

accordance with the experimental results (Fig. 6), and was 

found to be roughly the same for both focusing lenses. 

However, the experimentally observed pulse duration rises 

from ~40 ps for the f=100 mm lens to ~70 ps for the 75 mm 

one. This could be due to several factors: a mismatch in overlap 

of the pump and Stokes signal, difference in spontaneous 

scattering factor (ksp) for different configurations, influence of 

the anti-Stokes generation, which could distort and lengthen the 

1st Stoke pulse duration. The modelling suggests that the output 

coupler reflectivity used in our experiment is close to the 

optimum for maximum conversion efficiency. Decreasing the 

output coupler reflectivity from 80% to 30% shortens the 

predicted 1st Stokes pulse duration by a factor of 2, while the 

conversion efficiency drops by only 7%. 

III. CONCLUSION 

In conclusion, we have demonstrated a diamond Raman laser 

producing 150 mW of 1st Stokes Raman emission at 573 nm 

 
 
Fig. 4.  Photodiode (PD) signal showing pulse trains of the 1st Stokes, 2nd 

Stokes and 1st anti-Stokes output (f=50 mm). 

 
 

Fig. 6. Measured and simulated pulse durations as a function of the pump 

power, with pump focusing lenses of f=75 mm and f=100 mm. 

TABLE I 

LASER OUTPUT PARAMETERS 

Calculated pump spot 

diameter 

 Pump focal length (mm) 

 100 75 50 

µm 62 47 31 

1st Stokes, 573 nm     

Output powera mW 127 157 162 

Max pump conv. eff. % 40.6 52.1 42.3 

Pulse durationa ps 39.2 71.0 ~48.9b 

Threshold mW 109 83.3 52.7 

Slope efficiency % 73.4 80.6 54.7 

2nd Stokes, 620 nm     

Output powera mW 4.4 11.3 16.4 

Max pump conv. eff. % 1.0 2.8 3.6 

Pulse durationa ps - - ~59b 

Threshold mW 302 164 122 

Slope efficiency % 3.2 4.9 5.7 

1st anti-Stokes, 497 nm    

Output powera mW 0.22 0.28 1.97 

Max pump conv. eff. % 0.052 0.083 0.49 

Threshold mW 209 82 96 

Slope efficiency % 0.10 0.10 0.64 
a) Output power and pulse duration at maximum pump conversion 

efficiency; b) Pulse shape is not Gaussian. 

 

 

 
 

Fig. 5. Output spectra of the diamond Raman laser from 2nd anti-Stokes (a) to 
3rd Stokes (e), and a photograph of the laser output beam showing the five 

wavelengths (f). 
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with pulse duration of 39 ps and pump conversion efficiency of 

36%, at 100 kHz pulse repetition rate. By decreasing the pump 

spot size, we achieved up to 47% pump conversion efficiency 

with a maximum 1st Stokes Raman output power of 175 mW 

yielding 0.18 µJ in pulse energy and pulse duration of 71 ps. 

For a given pump intensity, the conversion efficiency in the 

steady-state regime (pump pulse duration >> dephasing time of 

the Raman crystal [20] (6.8 ps in diamond [10])), is mainly 

determined by the number of roundtrips of the Stokes during 

the pump pulse and the reflectivity of the output mirror [21]. 

Analysis [21] shows that conversion efficiency saturates after 

about 15 round-trips if the output coupler reflectivity is 

optimised. In [3] the conversion efficiency to the 1st Stokes in 

the plane-plane cavity configuration was 38% with 1.5 ns pump 

pulse duration and the diamond (resonator) length of 1.6 mm. 

The number of round-trips of the Stokes emission in the cavity 

during the FWHM pump pulse duration in that case was 58. In 

our case, the number of round-trips is only 10, but the 

conversion efficiency to the 1st Stokes is even higher (52%) due 

to more optimal reflectivity of the output coupler. Even so, this 

short gain period will limit the conversion efficiency. When 

considering even shorter pump pulses (10–20 ps) for monolithic 

Raman lasers, one has to consider two additional factors: i) 

Raman scattering will be in the quasi-steady-state regime with 

reduced conversion efficiency [20] (e.g. in [10] it was 25.6% 

under synchronous pumping of diamond Raman laser); ii) the 

thickness of diamond required for 10–15 round-trips with 

~20 ps pump pulses is ~0.1 mm, making fabrication 

challenging. The conversion efficiency is likely to be improved 

by using microlens structures etched into the diamond surface 

[3].  

By reducing the pump spot size, we achieved 16.4 mW of 

2nd Stokes Raman emission at 620 nm, while the corresponding 

1st Stokes emission had 162 mW power with 49 ps pulse 

duration. By coating optimization it should be also possible to 

increase the output power of higher order Stokes lines, if 

required. In addition, monolithic resonators are equally 

applicable to other Raman crystals, and Raman conversion in 

plane-plane cavity with barium nitrate crystal was recently 

demonstrated [22]. 

Overall, we believe that the concept of a SESAM Q-switched 

microchip pump source, in combination with a monolithic 

diamond Raman laser, offers an interesting alternative for 

generation of picosecond visible pulses outside common 

532/355/266 nm wavelengths. The main advantages are its 

simple design and unique combination of output parameters, 

including short pulse duration, high pulse intensity, low 

repetition rate and narrow spectrum. In our view, the system 

defines a new frontier in terms of simplicity and parameters 

attained, making such a picosecond yellow pulsed source 

appealing to a wide range of applications. 
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